第1章数字电路基础知识 - 数模和模数转换.
- 格式:ppt
- 大小:360.50 KB
- 文档页数:24
第17章 模数和数模转换数模转换即将数字量转换为模拟电量(电压或电流),使输出的模拟电量与输入的数字量成正比。
实现数模转换的电路称数模转换器模数转换即将模拟电量转换为数字量,使输出的数字量与输入的模拟电量成正比。
实现模数转换的电路称模数转换器17.1 数模(D/A ) 转换器一、D/A 转换器的基本原理及分类1.数模转换的基本原理要求:输出的模拟量与输入的数字量成正比。
输入数字量 D = (D n -1 D n -2 ⋅⋅⋅ D 1 D 0 ) 2= D n -1 2n -1 + D n -2 2n -2 + ⋅⋅⋅ + D 1 21 + D 0 20 输出模拟电压 u O = D △ = (D n -1 2n -1 + D n -2 2n -2 + ⋅⋅⋅ + D 1 21 + D 0 20)△△ 是 DAC 能输出的最小电压值,称为 DAC 的单位量化电压,它等于 D 最低位(LSB)为 1、其余各位均为 0 时的模拟输出电压(用 U LSB 表示)。
2.倒T 型网络D/A 转换器,基本原理如图示:D D n 输模D A CD 01D n -2n -1¡-u O位二进制数入拟电压输出u O2R模拟开关 S i 打向“1”侧时,相应 2R 支路接虚地;打向“0”侧时,相应 2R 支路接地。
故无论开关打向哪一侧,倒 T 型电阻网络均可等效为下图:从 A 、B 、C 节点向左看去,各节点对地的等效电阻均为 2R 。
即I 3 = 23 I 0, I 2 = 22 I 0, I 1 = 21 I 0, I 0 = 20 I 0可见,支路电流值 Ii 正好代表了二进制数位 D i 的权值 2i。
模拟开关 S i 受相应数字位 Di 控制。
当 Di = 1 时,开关合向“1”侧,相应支路电流 Ii 输出;Di = 0 时,开关合向“0”侧, Ii 流入地而不能输出。
i Σ = D 3 I 3 + D 2 I 2 + D 1 I 1 + D 0 I 0= ( D 3 23 + D 2 22 + D 1 21 + D 0 20) I 0 = D I 03.D/A 转换器主要指标常用 DAC 主要有权电阻网络 DAC 、 R - 2R 、T 形电阻网络 DAC 、R - 2R 倒 T 形电阻网络 DAC 和权电流网络 DAC 。
第13章数/栈与栈/数转换森成都理工丸学工程技术学隐自动化工程糸雷永铎2013电子技术基础 _____(电工季II )第13章数/模与模/数转换器13.1数/模(D/A)转换器13.2模/数(A/D)转换器引言模拟信号n字信号:A/D转换器(ADC—Analog To Digital Converter) 数字信号逹拟信号:D/A转换器(DAC— Digital To Analog Converter)传感器模拟控制匸DAC 数字信号数字计算亂数字控制A/D 转换器、D/A 转换器的应用计算机进行各种 数字处理(如滤 波、计算)、数 据保存、打印等传感器(温度、压 力、流量、 应力等)符图 字、 示形 显图示显示器计算机13・1数/模(D/A)转换器常用在电阻网络D/A 转换器和T 形电阻网络D/A 转换器13.1.1权电阻网络D/A 转换器权电阻网琢基 准电压源 和运算放J Rfu 02[R2oIIiti-\ dn-213-2权电阻网络D/A 转换器II加di)(LSB)A ++大器価成。
1.电子开关的作用及其组成双向电子开关S,』S”_2,A , So分别受输入二进制数码S,A d0的控制68rlo ——O(L13-3 5位二逬制数1101OD/A转换示意图权电阻网络的电阻取值也符合二进制规律。
由于电 阻阻值和每一位的"权"相对应,所以称为权电阻 13-4晶体管双向电子开关电子开关由晶体管或场效应晶体管构成2.权电阻网络:3・运算放大器运算放大器输入端的权电耳络构成反相加法运算电路。
这样,就可以将权电阻网络所转换得的各位模拟量相加,最后获得D/A转换。
D/A的组成电阻网络求和运算放大器2R 2R 2R 2R 2R^I-^3R/2So \ Si \ s2 j ]汀H,S3 II ----- S°~S3:V REF 模拟电子开关精密参D=0,S倒向地D° D] D2 D?考电压输入4位二进制数_____ / D=l, S倒向V REFD/A转换原理-当D3D2D1D O=OOOO时RJ2RH 2R0!D。
数模转换与模数转换数模转换(Digital-to-Analog Conversion,简称DAC)和模数转换(Analog-to-Digital Conversion,简称ADC)是数字信号处理中常用的两种信号转换方法。
数模转换将数字信号转换为模拟信号,而模数转换则将模拟信号转换为数字信号。
本文将就数模转换和模数转换的原理、应用以及未来发展进行探讨。
一、数模转换(DAC)数模转换是将数字信号转换为模拟信号的过程。
在数字系统中,所有信号都以离散的形式存在,如二进制码。
为了能够将数字信号用于模拟系统中,需要将其转换为模拟信号,从而使得数字系统与模拟系统能够进行有效的接口连接。
数模转换的原理是根据数字信号的离散性质,在模拟信号上建立相似的离散形式。
常用的数模转换方法有脉冲幅度调制(Pulse Amplitude Modulation,简称PAM),脉冲宽度调制(Pulse Width Modulation,简称PWM)和脉冲位置调制(Pulse Position Modulation,简称PPM)等。
这些方法根据传输信号的不同特点,在转换过程中产生连续的模拟信号。
数模转换在很多领域有广泛应用。
例如,在音频领域,将数字音频信号转换为模拟音频信号,使得数字音频可以通过扬声器播放出来。
另外,在电信领域,将数字信号转换为模拟信号后,可以用于传输、调制解调、功率放大等过程。
二、模数转换(ADC)模数转换是将模拟信号转换为数字信号的过程。
模拟信号具有连续的特点,而数字系统只能处理离散的信号。
因此,当需要将模拟信号用于数字系统时,就需要将其转换为数字形式。
模数转换的原理是通过采样和量化来实现。
采样是将模拟信号在时间上进行离散化,而量化是将采样信号在幅度上进行离散化。
通过这两个过程,可以将连续的模拟信号转换为离散的数字信号。
模数转换在很多领域都有应用。
例如,在音频领域,将模拟音频信号转换为数字音频信号,使得音频信号可以被数字设备处理和存储。
【关键字】精品第7章数-模转换与模-数转换第1讲数-模转换一、教学目的:1、数模转换的基本原理。
2、理解常见的数模转换电路。
3、掌握数模转换电路的主要性能指标。
二、主要内容:1、数模转换的定义及基本原理2、权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数3、DAC主要性能指标三、重点难点:权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数。
四、课时安排:2学时五、教学方式:课堂讲授六、教学过程设计复习并导入新课:新课讲解:[重点难点]权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数,逐次逼近型A/D转换器、双积分型A/D转换器的电路结构特点、工作原理及其主要技术参数。
[内容提要]本章介绍数字信号和模拟信号相互转换的基本原理和常见转换电路。
必要性与意义:自然界中,许多物理量是模拟量,电子系统中的输入、输出信号多数也是模拟信号。
而数字系统处理的数字信号却具有抗干扰能力强、易处理等优点;利用数字系统处理模拟信号的情况也越来越普遍。
由于数字系统只能对数字信号进行处理,因此要根据实际情况对模拟信号和数字信号进行相互转换。
随着计算机技术和数字信号处理技术的快速发展,在通信、自动控制等许多领域,常常需要将输入到电子系统的模拟信号转换成数字信号后,再由系统进行相应的处理,而数字系统输出的数字信号,还要再转换为模拟信号后,才能控制相关的执行机构。
这样,就需要在模拟信号与数字信号之间建立一个转换接口电路—模数转换器和数模转换器。
A/D转换定义:将模拟信号转换为数字信号的过程称为模数转换(Analog to Digital),或A/D转换。
能够完成这种转换的电路称为模数转换器(Analog Digital Converter),简称ADC。
D/A转换定义:将数字信号转换为模拟信号的过程称为数模转换(Digital to Analog),或D/A转换。
什么是数模转换和模数转换1. 引言在现代科技和通信领域中,数模转换(Digital-to-Analog Conversion)和模数转换(Analog-to-Digital Conversion)是非常重要的概念。
它们在各种应用中起着至关重要的作用,如音频处理、图像处理、数据转换等。
本文将介绍数模转换和模数转换的定义、原理和应用。
2. 数模转换数模转换是将数字信号转换为模拟信号的过程。
数字信号是以离散的二进制形式表示的信号,而模拟信号是连续变化的信号。
通过数模转换,我们可以将数字信号转换为模拟信号,以便于在模拟领域进行进一步的处理和分析。
数模转换的原理是通过采样和保持、量化和编码三个步骤实现的。
首先,采样和保持将连续的模拟信号转换为离散的采样信号。
然后,量化将采样信号的幅度离散化为一系列的取值。
最后,编码将离散化后的采样信号转换为二进制代码,以便进行数字信号处理。
数模转换广泛应用于音频和视频领域。
例如,在音频播放器中,数模转换器将数字音频信号转换为模拟信号,使得我们可以聆听到高质量的音乐。
同时,在数字电视中,数模转换器将数字视频信号转换为模拟视频信号,使得我们可以观看高清晰度的电视节目。
3. 模数转换模数转换是将模拟信号转换为数字信号的过程。
模拟信号是连续变化的信号,而数字信号是以离散的二进制形式表示的信号。
通过模数转换,我们可以将模拟信号转换为数字信号,以便于在数字领域进行处理和存储。
模数转换的原理是通过采样和量化两个步骤实现的。
首先,采样将连续的模拟信号转换为离散的采样信号。
然后,量化将采样信号的幅度离散化为一系列的取值。
最终,将离散化后的采样信号转换为二进制代码,以表示数字信号。
模数转换在通信领域和数据存储领域得到广泛应用。
例如,在手机通信中,模数转换器将人的声音转换为数字信号,以便于在网络中传输。
同样地,在数字存储设备中,模数转换器将模拟数据(如声音、图像等)转换为数字数据,以便于存储和处理。
数电和模电的基础知识概述及解释说明1. 引言1.1 概述数电和模电是电子工程的两个重要分支,它们分别研究数字信号与模拟信号的处理和传输。
在现代科技中,数电和模电的应用广泛且不可或缺,涉及到许多领域包括通信、计算机、控制系统等。
通过对数字与模拟信号的理解和掌握,我们可以设计和构建各种功能强大且高效的电子设备。
1.2 文章结构本文将以如下结构进行介绍数电和模电的基础知识及其联系与区别:- 引言部分将给出关于数电和模电的概述,并明确文章的目标。
- 数电基础知识部分将详细介绍逻辑门与布尔代数、数字信号与模拟信号以及时序逻辑与组合逻辑等内容。
- 模电基础知识部分将深入讨论各种电路元件及其特性、放大器与滤波器以及反馈与稳定性分析等主题。
- 数电和模电的联系与区别部分将探究它们在实际应用中的关系,比较数字化处理与模拟处理的优缺点,并提供一个数模混合系统的案例解析。
- 结论部分将对数电和模电的基础知识进行总结,并对未来的发展趋势进行展望或说明其重要意义。
1.3 目的本文旨在向读者介绍数电和模电的基础知识和原理,帮助读者全面了解数字信号处理与模拟信号处理的核心概念。
通过深入剖析它们在实际应用中的联系与区别,我们可以更好地理解数电和模电所涉及领域的基本原则,并为今后设计和应用相关电子设备提供指导。
同时,我们也将探究数电和模电未来的发展趋势,以期激发更多关于这两个领域研究和创新的兴趣。
2. 数电的基础知识:2.1 逻辑门与布尔代数:在数电领域中,逻辑门是一种基本的电路元件,用于处理和操作数字信号。
常见的逻辑门包括与门、或门和非门等。
逻辑门根据输入信号的组合产生相应的输出信号,其操作遵循布尔代数的规则。
布尔代数是一种用于描述数字信号和逻辑运算的代数系统。
它使用0和1来表示逻辑值,0表示假或低电平,1表示真或高电平。
布尔代数中定义了一系列运算符,常见的有与、或、非等。
这些运算符可用于连接不同的输入信号,并通过逻辑门实现特定逻辑功能。
数字电路基础知识数字电路基础知识(上)数字电路是由数字元器件和数字信号构成的电路系统,广泛应用于计算机、通信、控制、仪器仪表等一系列领域中。
一、数字信号技术数字信号是由一系列数字样本组成的信号,具有以下特点:1.离散性:数字信号是由一系列离散时间的数字样本构成的,而模拟信号是连续时间的。
2.有限性:数字信号一般是由有限个数字样本构成的,而模拟信号是无限的。
3.不受干扰:数字信号通过差错检测和纠错技术可以有效地消除噪声和干扰。
数字信号的转换有两种方式:1.模数转换(ADC):把模拟信号转换成数字信号的过程。
2.数模转换(DAC):把数字信号转换成模拟信号的过程。
二、数字电路的基本概念数字电路由两种基本元器件组成:逻辑门和触发器。
1.逻辑门逻辑门是数字电路的基本元器件,它可以从一个或多个输入信号产生一个输出信号。
逻辑门有以下几种类型:1.与门(AND):当且仅当所有输入信号都为1时,输出信号才为1。
2.或门(OR):当且仅当至少有一个输入信号为1时,输出信号才为1。
3.非门(NOT):输入信号为1时,输出信号为0;输入信号为0时,输出信号为1。
4.异或门(XOR):当且仅当两个输入信号互不相同时,输出信号才为1。
5.与非门(NAND):当且仅当所有输入信号都为1时,输出信号为0。
6.或非门(NOR):当且仅当至少有一个输入信号为1时,输出信号为0。
2.触发器触发器是一种由逻辑门组成的元器件,用于实现存储和延时等功能。
常用的触发器有以下两种类型:1.D触发器:具有输入数据存储、时序控制等功能,常用于计数器、移位寄存器等电路中。
2.JK触发器:具有异步复位功能,可用于计数器、计时器、序列器等电路中。
三、组合逻辑电路组合逻辑电路是指由逻辑门组成的电路,在这种电路中输入和输出信号之间没有任何反馈。
组合逻辑电路的特点是:1.输出信号只取决于输入信号,与先前的输入和输出信号无关。
2.电路中只包含逻辑门。
3.电路中没有存储元器件。