超声波换能器工作原理
- 格式:doc
- 大小:17.00 KB
- 文档页数:4
超声换能器的原理及设计超声波换能器是超声波焊接机的高频机械振动源及作用,就是将超声波发生器输出的电能或者磁能转换成相同频率的机械振动,超声焊接机用的换能器,目前有两种,一种是,磁致伸缩型换能器,另一种是压电陶瓷换能器磁致伸缩式换能器,由于效率低,性价比低,还需外加直流极化磁场,因此目前超声焊接机已经很少使用。
压电陶瓷换能器基本原理是建立在晶体材料的压电效应基础上的,这种材料为压电晶体材料,在超声焊接机主要用的是压电陶瓷产量,这种材料在成熟外地发生形变时,在压电陶瓷晶体表面,会出现电荷,晶体内部产生电场,反之,当晶体呈受外电场作用时,金片会发生形变,这种现状称之为压电效应,前者称正电效应,或者称逆电效应。
超声波换能器是超声振动系统的核心部件,超声波换能器设计的好坏,关系到焊接机工作的效率,稳定性及寿命等,在市场上采用大部分的压电陶瓷换能器,按照振动形式区别种类很多,如径向振动模式,纵向复合式振动模式,剪切振动模式,厚度振动模式等。
超声波塑料焊接机工作时加工塑料工件,需要的是高频率的纵向振动。
使得工件的上下模上下高频振动融化焊接层得到焊接效果。
压电换能器的结构:压电陶瓷换能器的结构,由压电陶瓷晶片,电极片,前后盖等组成。
后盖板一般用质量较大的钢制成前盖板由质量轻的,高强度铝合金或者钛合金制造而成,它是利用了压电陶瓷的纵向效应器,陶瓷元件的极化方向,电场方向,机械振动方向,三者一致。
这种换能器称纵向复合振动换能器,它的长度方向尺寸远大于它们的宽度。
图3-1为国内外焊接机常用的政治使用图与结构图,图中两端是两块金属盖板,中间是压电陶瓷元件堆,压电陶瓷一般是纵向极化的带孔圆片,一根应立螺杆,将这三部分紧固在一起着,称为预应力螺杆。
他只陶瓷元件,具有较大的抗压强度,同时在大功率驱动下,陶瓷元件取压缩状态,从而避免膨胀所造成的破裂这种换能器通过改变前后盖的材料尺寸来控制换能器的频率带宽,前后增速比和有效机电耦合系数等性能参数。
超声波换能器电压
超声波换能器是将电能转化为机械振动能量的设备,其核心部件是陶瓷压电晶体。
当在换能器内加上电压时,晶体会发生机械弯曲变形并且产生高频振动,从而产生超声波。
因此,电压是超声波换能器最重要的工作参数之一。
超声波换能器的电压影响着换能器的输出能量、振动频率和寿命等关键指标。
在一定范围内,随着电压的增加,输出能量和振动频率也会逐渐增加。
但是当电压超过一定范围时,晶体可能会受到损坏,导致换能器的寿命缩短。
因此,在使用超声波换能器时,需要根据具体应用需求,选择合适的电压以达到最佳效果。
一般来说,厂家会在产品说明书中提供建议的电压范围,并在使用时遵循相关的操作规范,以确保换能器的正常使用和延长使用寿命。
总的来说,电压是超声波换能器非常重要的参数之一,它与换能器的换能效率、振动频率和寿命等关键指标紧密相关。
需要在使用过程中合理选择电压,并遵循相关的使用规范以确保换能器的正常使用和稳定性能。
超声波换能器的参数及工作方式类型超声波换能器是一种能够将电能转换为超声波能量的装置。
它由压电材料组成,通过电场的作用使材料发生压缩和膨胀,从而产生超声波。
本文将从超声波换能器的参数和工作方式类型两个方面对其进行详细介绍。
一、超声波换能器的参数超声波换能器的参数对其性能和应用有着重要影响,主要包括频率、振幅、工作电压和灵敏度等。
1. 频率:超声波换能器的频率通常指的是压电材料的固有频率,即在不加电场的情况下,材料自身振动的频率。
超声波换能器的频率范围很广,从几十千赫兹到几百兆赫兹不等,可以根据具体应用需求选择适当的频率。
2. 振幅:超声波换能器的振幅是指材料在电场刺激下产生的最大机械振幅。
振幅的大小与换能器的尺寸、材料性质和工作电压等因素相关,通常通过调节工作电压来控制振幅的大小。
3. 工作电压:工作电压是指施加在超声波换能器上的电压,通过改变电压的大小和频率可以控制超声波的产生和输出。
工作电压的选择要考虑到换能器的耐受能力和应用需求。
4. 灵敏度:超声波换能器的灵敏度是指它对输入信号的敏感程度。
灵敏度越高,换能器对输入信号的响应越快速、准确。
灵敏度的大小与换能器的材料性质和结构设计等因素密切相关。
二、超声波换能器的工作方式类型根据超声波换能器的工作方式不同,可以将其分为压电式、磁电式和电动力式三种类型。
1. 压电式超声波换能器:压电式超声波换能器是应用最广泛的一种类型。
它利用压电效应将电能转化为机械能,通过电场的作用使压电材料发生压缩和膨胀,从而产生超声波。
压电式超声波换能器具有频率范围广、振幅大、能量转换效率高等优势,被广泛应用于医学成像、无损检测、清洗和声纳等领域。
2. 磁电式超声波换能器:磁电式超声波换能器利用磁电效应将电能转化为机械能。
它通过电磁场的作用使磁电材料发生形变,从而产生超声波。
磁电式超声波换能器具有振幅大、频率稳定等特点,适用于高功率和高频率的应用。
3. 电动力式超声波换能器:电动力式超声波换能器是一种利用电动力效应将电能转化为机械能的装置。
超声波换能器原理知识大普及在对超声波焊接机、超声波清洗机等设备的了解过程中,都会看到超声波换能器的身影,那么超声波换能器究竟是个什么设备呢?它主要完成哪些功能呢?又是利用什么原理来完成的呢?接下来就让小编带您一探究竟!一、超声波换能器简介超声波换能器,英文名称为Ultrasonictransducer,是一种将高频电能转换为机械能的能量转换器件。
其常被用于超声波清洗机、超声波焊接机、三氯机、气相机等设备中,在农业、工业、生活、交通运输、军事、医疗等领域内都得到了广泛的应用。
超声波换能器二、超声波换能器结构超声波换能器主要包括外壳、声窗(匹配层)、压电陶瓷圆盘换能器、背衬、引出电缆、Cymbal阵列接收器等几大部分构成。
其中,压电陶瓷圆盘换能器起到的作用和一般的换能器相同,主要用于发射并接受超声波;而在压电陶瓷圆盘换能器的上面是Cymbal阵列接收器,主要由引出电缆、Cymbal换能器、金属圆环和橡胶垫圈组成,用作超声波接收器,接受压电陶瓷圆盘换能器频带外产生的多普勒回拨信号。
超声波换能器结构三、超声波换能器原理超声波换能器,其实就是频率与其谐振频率相同的压电陶瓷,利用的是材料的压电效应将电能转换为机械振动。
一般情况下,先由超声波发生器产生超声波,经超声波换能器将其转换为机械振动,再经超声波导出装置、超声波接收装置便可产生超声波。
超声波换能器原理四、超声波换能器应用(1)超声波清洗机利用超声波在清洗液中不断地进行传播来清洗物体上的污垢,其超声波振动频率便是由超声波换能器决定的,可根据清洗物来设定不同的频率以达到清洗的目的。
(2)超声波焊接机利用超声波换能器产生超声波振动,振动产生摩擦使得焊区局部熔化进而接合在一起。
(3)超声波马达中并不含有超声波换能器,只是将其定子近似为换能器,利用逆压电效应产生超声波振动,通过定子与转子的摩擦进而带动转子转动。
(4)超声波减肥利用超声波换能器产生机械振动,将脂肪细胞振碎并排出体外,进而达到减肥的效果。
超声波清洗机的换能器原理超声波清洗机是一种利用超声波技术进行清洗的设备,其核心部件是换能器。
换能器是将电能转化为机械振动能的装置,它在超声波清洗机中起到了至关重要的作用。
换能器的原理是基于压电效应。
压电效应是指某些晶体在受到机械应力作用时,会产生电荷分离,从而形成电压。
根据这个原理,换能器利用压电材料的特性,将电能转化为机械振动能。
换能器一般由压电陶瓷材料和金属材料组成。
压电陶瓷材料具有良好的压电效应,而金属材料则用于支撑和导电。
在换能器中,压电陶瓷材料被夹在两个金属片之间,形成一个夹层结构。
当外加交流电源施加在夹层结构上时,电场的变化会导致压电陶瓷材料的体积发生微小的变化。
由于夹层结构的限制,这种微小的变化只能以机械振动的形式传递出来。
换能器的振动频率与外加交流电源的频率相同,一般为20kHz至100kHz。
在超声波清洗机中,换能器的振动能够产生超声波。
当交流电源施加在换能器上时,压电陶瓷材料的振动会传导到清洗液中,产生一系列的压力波。
这些压力波会在清洗液中形成高频振动,产生微小的气泡。
这些微小气泡在清洗液中迅速生长和破裂,产生大量的冲击波和涡流。
这些冲击波和涡流能够将污垢和污染物从清洗物体的表面剥离,并将其悬浮在清洗液中。
同时,超声波的震荡作用还可以通过物理和化学效应去除污垢和杀灭微生物。
超声波清洗机的换能器原理使其具有很多优点。
首先,超声波清洗机可以在不使用化学溶剂的情况下实现高效的清洗效果。
其次,超声波可以穿透到微小孔隙和角落,清洗效果更加全面。
此外,超声波清洗机可以在不损坏清洗物体的情况下去除顽固的污垢和油脂。
然而,超声波清洗机的换能器原理也存在一些限制。
首先,超声波的传播距离有限,因此清洗物体的尺寸和形状需要适应清洗机的规格。
其次,超声波的能量密度较高,对某些材料可能会产生损伤。
此外,超声波的清洗效果也受到清洗液的影响,不同的清洗液对不同的污染物有不同的清洗效果。
超声波清洗机的换能器原理是利用压电效应将电能转化为机械振动能,从而产生超声波进行清洗。
超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗很少一部分功率(小于10%)。
所以,使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。
超声波换能器分类:1、柱型2、倒喇叭型3、钢后盖型4、中间夹铝片型主要适用于超声波塑料焊接机、超声波切割刀、超声波金属焊接机,超声波清洗机,超声波声化学设备等。
超声波换能器在合适的电场激励下能发生有规律的振动,其振幅一般10μm左右,这样的振幅要直接完成焊接和加工工序是不够的。
连上通过合理设计的变幅杆后,超声波的振幅可以在很大的范围内变化,只要材料强度足够,振幅可以超过100μm。
因加工方式和要求不同,换能器的工作方式大致可分为连续工作(如花边机,CD机,清洗机,拉链机)和脉冲工作(如塑料焊机),不同的工作方式对换能器的要求是不同的。
一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇的,有停顿,但瞬间电流很大。
平均而言,二种状态的功率都是很大的。
使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。
换能器的频率相对而言还比较直观些。
该频率是指用频率(函数)发生器,毫伏表,示波器等通过传输线路法测得的频率,或用网络阻抗分析仪等类似仪表测得的频率。
一般通称小信号频率。
与它相对应的是上机频率,即客户将换能器通过电缆连到机箱上,通电后空载或有载时测得的实际工作频率。
因客户匹配电路各不相同,同样的换能器在不同的驱动电源(电箱)表现出来的频率是不同的,这样的频率不能作为交流讨论的依据。
让换能器和驱动电源、模具良好配合以形成一台完整的超声波设备可以简称为匹配。
由于匹配对整机性能的影响是决定性的,无论怎样强调匹配的重要性都不为过。
匹配最主要考虑的因素是换能器的电容量,其次是换能器的频率。
换能器与驱动电源的匹配主要有4个方面,即阻抗匹配、频率匹配、功率匹配、容抗匹配。
超声换能器是一种能够将电能转换成机械能或反之的装置,它是超声成像和超声检测技术中的核心部件。
超声换能器通常由压电陶瓷材料制成,这种材料具有压电效应,即在施加电场的作用下会产生形变,反之,当材料受到机械力的作用时也会产生电荷分布,这种效应可以用来实现超声波的产生和传播。
超声换能器一般由一个压电陶瓷晶片和一个金属电极组成。
在晶片的两端加上交变电压时,晶片就会产生机械振动,这种振动可以通过机械结构传递到待加工的材料中,从而实现加工的目的。
同时,超声波也可以通过晶片的振动传播到待检测的材料中,通过检测超声波的传播和反射情况,可以获得材料的声学特性和结构信息。
超声换能器具有频率高、能量密度大、加工速度快、加工精度高等优点,广泛应用于医学、材料科学、机械制造等领域。
相控阵超声换能器原理
超声相控阵换能器的工作原理是基于惠更斯菲涅耳原理。
当各阵元被同一频率的脉冲信号激励时,它们发出的声波是相干波,即空间中一些点的声压幅度因为声波同相叠加而得到增强,另一些点的声压幅度由于声波的反相抵消而减弱,从而在空间中形成稳定的超声场。
超声相控阵是超声探头晶片的组合,由多个压电晶片按一定的规律分布排列,然后逐次按预先规定的延迟时间激发各个晶片,所有晶片发射的超声波形成一个整体波阵面,能有效地控制发射超声束(波阵面)的形状和方向,能实现超声波的波束扫描、偏转和聚焦。
通过控制换能器阵列中各阵元发射(或接收)脉冲的不同延迟时间,改变声波到达(或来自)物体内某点时的相位关系,实现焦点和声束方向的变化,从而实现超声波的波束扫描、偏转和聚焦。
通常使用的是一维线形阵列探头,压电晶片呈直线状排列,聚焦声场为片状,能够得到缺陷的二维图像,在工业中得到广泛的应用。
简述超声探头的基本结构、材质和基本原理超声探头是超声波检测仪的关键组成部分,是将超声波从物体表面反射到探头内部,然后将超声波信号转换成电信号传输给接收机的装置。
它的基本结构由换能器、声材料和探头电缆组成。
一、换能器换能器由声发射源和声接收元件组成,其中声发射源可以是电声换能器,也可以是非电声换能器。
换能器具有换能、聚焦和抑制反射等作用。
1、电声换能器电声换能器是通过在一个容积内放置一个电磁振荡器,并能够产生振荡的振幅和频率的条件下,把电能转换为声能的器件。
它的工作原理是电声变换:在固定频率下,振荡的电压产生磁场,磁力和电力一起产生振动,然后将振动转换成声能,从而把变化的电能转换成声能。
2、非电声换能器非电声换能器不需要电磁振荡器,也不需要进行变换,可以直接将输入的能量转换为声波。
它的工作原理是:利用液体、固体或气体的压缩或膨胀将外界的能量转换为声能。
二、声材料声材料的主要作用是改变超声频率和改善超声波传播效果,一般来说,声材料有以下几种:1、润滑剂:润滑剂可以减少换能器表面的摩擦,增加换能器的灵敏度,延长换能器的使用寿命。
2、填充剂:填充剂是用来改变声音传播方向和调节声音的传播效果的特殊材料,一般是用于改变换能器的振动方式,以获得更好的测量结果。
3、保护材料:保护材料的功能是防止换能器表面的水分,避免换能器的振动和密封。
三、探头电缆探头电缆用于将换能器和接收机连接起来,一般由五个部分组成:屏蔽层、散热层、数据传输层、聚合层和接线层。
另外,超声探头材质一般为不锈钢、铝合金、硅胶等,材质选择合理可以延长探头的使用寿命。
超声探头的基本原理是利用换能器将外部的能量转换为声能,声能再通过探头电缆传输到接收机,接收机将声能转换为电能,然后再转换成显示图像。
第三章医⽤超声换能器第三章医⽤超声换能器应⽤超声波进⾏诊断时,⾸先要解决的问题是如何发射和接收超声波,通过使⽤超声换能器可以解决这个问题。
⽬前医学超声设备⼤多采⽤声电换能器来实现超声波的发射与接收。
声电换能器按⼯作原理分为两⼤类,即电场式和磁场式。
电场式中,利⽤电场所产⽣的各种⼒效应来实现声电能量的相互转换,其内部储能元件是电容,它⼜分为压电式、电致伸缩式、电容式。
磁场式中,是借助磁场的⼒效应实现声电能量的互相转换,内部储能元件是电感,它⼜分为电动式、电磁式、磁致伸缩式。
在医学超声⼯程中,使⽤的最多的是压电式超声换能器。
§3.1 压电效应与压电材料特性⼀、压电效应压电效应是法国物理学家Pierre Curie 和Jacqnes Curie 兄弟于1880年发现的。
图3-1 压电效应⽰意图对某些单晶体或多晶体电介质,如⽯英晶体、陶瓷、⾼分⼦聚合材料等,当沿着⼀定⽅向对其施加机械⼒⽽使它变形时,内部就产⽣极化现象,同时在它的两个对应表⾯上便产⽣符号相反的等量电荷,并且电荷密度与机械⼒⼤⼩成⽐例;⽽且当外⼒取消后,电荷也消失,⼜重新恢复不带电状态,这种现象称为正压电效应,如图3-1。
当作⽤⼒的⽅向改变时,电荷的极性也随着改变。
相反,当在电介质的极化⽅向上施加电场(加电压)作⽤时,这些电介质晶体会在⼀定的晶轴⽅向产⽣机械变形;外加电场消失,变形也随之消失,这种现象称为逆压电效应(电致伸缩)。
如果在电介质的两⾯外加交变电场时,电介质产⽣压缩及伸张,即产⽣振动,此振动加到弹性介质上,介质亦将振动,产⽣机械波。
如外加交变电场频率⾼于20KHz,则这种波即是超声波。
超声接收换能器采⽤了正压电效应,将来⾃⼈体中的声压转变为电压。
超声波发射换能器采⽤了逆压电效应,将电压转变为声压,并向⼈体发射。
压电效应是可逆的,压电材料既具有正压电效应,⼜具有逆压电效应。
医学超声设备中,常采⽤同⼀压电换能器作为发射和接收探头,但发射与接收必须分时⼯作。
(1)超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压电陶瓷式。
电源输出到超声波发生器,再到超声波换能器,一般还要经过超声波导出、接收装置就可以产生超声波了。
(2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出电缆,其特征在于它还包括阵列接收器,它由引出电缆、换能器、金属圆环、橡胶垫圈组成。
(3)超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料的压电效应将电信号转换为机械振动.超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。
超声波换能器的种类:可分为压电换能器、夹心换能器、柱型换能器、倒喇叭型换能器等等。
40kHZ超声波发射/接收电路综述
40kHZ超声波发射电路(1)
40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。
F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。
电容C3、C2平衡F3和F4的输出,使波形稳定。
电路中反向器F1~F4用CC4069
六反向器中的四个反向器,剩余两个不用(输入端应接地)。
电源用9V叠层电池。
测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。
发射超声波信号大于8m。
40kHZ超声波发射电路(2)
40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。
T40-16是反馈耦合元件,对于电路来说又是输出换能器。
T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。
S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。
电路工作电压9V,工作电流约25mA。
发射超声波信号大于8m。
电路不需调试即可工作。
40kHZ超声波发射电路(3)
40kHZ超声波发射电路之三,由VT1、VT2组成正反馈回授振荡器。
电路的振荡频率决定于反馈元件的T40-16,其谐振频率为40kHZ±2kHZ。
频率稳定性好,不需作任何调整,并由T40-16作为换能器发出40kHZ的超声波信号。
电感L1与电容C2调谐在40kHZ起作谐振作用。
本电路适应电压较宽(3~12V),且频率不变。
电感采用固定式,电感量。
整机工作电流约25mA。
发射超声波信号大于8m。
40kHZ超声波发射电路(4)
40kHZ超声波发射电路之四,它主要由四与非门电路CC4011完成振荡及驱动功能,通过超声换能器T40-16辐射出超声波去控制接收机。
其中门YF1与门YF2组成可控振荡器,当S 按下时,振荡器起振,调整RP改变振荡频率,应为40kHZ。
振荡信号分别控制由YF4、YF3组成的差相驱动器工作,当YF3输出高电平时,YF4一定输出低电平;YF3输出低电平时,YF4输出高电平。
此电平控制T40-16换能器发出40kHZ超声波。
电路中YF1~YF4采用高速CMOS电路74HC00四与非门电路,该电路特点是输出驱动电流大(大于15mA),效率高等。
电路工作电压9V,工作电流大于35mA,发射超声波信号大于10m。
40kHZ超声波发射电路(5)
40kHZ超声波发射电路之五,由LM555时基电路及外围元件构成40kHZ多谐振荡器电路,调节电阻器RP阻值,可以改变振荡频率。
由LM555第3脚输出端驱动超声波换能器T40-16,
使之发射出超声波信号。
电路简单易制。
电路工作电压9V,工作电流40~50mA。
发射超声波信号大于8m。
LM555可用NE555直接替代,效果一样。
双稳态超声波接收机电路
由于单稳态接收机无记忆功能,所以不能用在家用电器的开与关中,适用面不宽。
是一种双稳态超声波接收机电路,它的前级电路同图2-186电路完全一样,只是执行电路不同。
电路中,由VT5、VT6及相关辅助元件构成双稳态电路,当VT4每导通一次(发射机工作一次),触发信号经C7、C8向双稳电路送进一个触发脉冲,VT5、VT6状态翻转一次,当VT6从截止状态转变成导通状态时,VD5截止,VT7截止,继电器K释放;当再来一个触发信号时,VT6由导通转变为截止状态,VD5导通,VT7导通,继电器K吸合......由于增加了双稳电路,使之用于电灯、电扇、电视等电器遥控成为现实。
调试时,在a点与+6V(电源)之间用导线快速短路一下后松开,继电器应吸合(或释放),再短路一下松开,继电器应释放(或吸合),如果继电器无反应,请检查双稳电路元件焊接质量和元件参数。
一般情况下一次即可成功。
单稳式超声波接收器电路
单稳式超声波接收器电路原理图,超声波换能器R40-16谐振频率为40kHZ,经R40-16选频后,将40kHZ以外的干扰信号衰减,只有谐振于40kHZ的有用信号(发射机信号)送入VT1~VT3组成的高通放大器放大,经C5、VD1检出直流分量,控制VT4、VT5组成的电子开关带动继电器K工作。
由于该电路仅作单路信号放大,当发射机每发射一次超声波信号时,接收机的继电器吸合一次(吸合时间同发射机发射信号时间相同),无记忆保持功能。
可用作无线遥控摄象机快门控制、儿童玩具控制、窗帘控制等。
电路中VT1β≥200,VT2β≥150,其他元件自定。
电路不需调试即可工作。
如灵敏度和抗干扰不够,可检查三极管的β值与电容
C4的容量是否偏差太大。
经实测,配合相应的发射机,遥控距离可达8m以上。
在室内因墙壁反射,故没有方向性。
电路工作电压3V,静态电流小于10mA。