高光谱遥感图像目标检测概要
- 格式:ppt
- 大小:3.27 MB
- 文档页数:78
遥感影像变化检测简述摘要:遥感影像变化检测一直是国际遥感领域研究的热点和难点,随着遥感对地观测技术的快速发展和应用,变化检测技术体系也在不断地发展和演化,已广泛应用于国土资源管理、地物变化、农林业的监测等领域。
现有的遥感变化检测技术方法很多,分类方式也很多,目前的研究表明,没有任何一种变化检测方法具有绝对的优势。
在实际的应用中,要根据具体的应用目的选取合适的变化检测方法。
本文将对遥感影像变化检测的基本概念、主要检测流程以及不同分类体系下的检测方法及各方法的优缺点进行简要阐述。
关键词:遥感影像;变化检测;检测方法中图分类号:文献标志码:文章编号:遥感影像变化检测是利用不同时期覆盖在同一地表区域的多源遥感影像和相关地理空间数据,结合相应地物特性和遥感成像机理,采用图像、图形处理理论及数理模型方法,确定和分析该地域地物的变化[1],包括地物位置、范围的变化和地物性质、状态的变化。
它的最终目标就是提取出变化信息并确定变化的类型。
近年来,随着航天技术和信息科学技术的飞速发展,遥感影像获取技术呈现出多平台、多角度多传感器和高时间分辨率、高空间分辨率、高光谱分辨率、高辐射分辨率的特点[2],海量的遥感数据为遥感应用提供了坚实的数据基础。
怎样从海量的遥感影像数据中提取和检测出变化信息已成为当前遥感数据处理技术的主要发展方向[3]。
国内外学者从不同角度针对不同应用研究了大量的变化检测方法和理论模型,但目前还没有发现一种适合所有场景的方法[4],还需根据具体情况,选择合适的变化检测方法。
论文简述了遥感变化检测的主要流程,简单介绍了几种目前主要使用的变化检测方法及其优缺点。
1 遥感变化检测的主要流程目前,各学者对遥感影像的变化检测过程提出了不同的划分步骤。
本文将遥感影像的变化检测过程总结为数据源选取、数据预处理、变化信息提取、变化信息后处理、检测精度评价五个部分。
数据源选取。
现在变化检测可以利用的数据源有很多,单波段、多波段、单时相、多时相等影像都有。
高光谱图像特征提取方法的研究与应用一、引言高光谱图像是一种具有连续光谱信息的遥感图像,其特点是波段数量多且连续。
高光谱图像的分析和处理旨在提取图像中的有效特征,以实现对地物分类、目标检测和环境监测等应用。
本文旨在综述当前高光谱图像特征提取方法的研究进展,并探讨其在实际应用中的潜力。
二、高光谱图像特征提取方法1. 光谱特征提取方法光谱特征提取是高光谱图像分析的基础,通过利用图像中不同波段的光谱信息来揭示地物的特征。
常见的光谱特征提取方法包括像元光谱特征、平均光谱特征和主成分分析等。
像元光谱特征是指通过对图像中单个像素的光谱进行分析,来获取地物光谱特征的方法。
平均光谱特征则是对图像中某一区域内的像素光谱进行求平均,以得到该区域的光谱特征。
2. 空间特征提取方法除了光谱信息外,高光谱图像还包含丰富的空间信息。
因此,空间特征提取方法在高光谱图像处理中也起着重要的作用。
常见的空间特征提取方法包括纹理特征提取和形状特征提取。
纹理特征提取通过分析地物的纹理分布来揭示其特征。
常用的纹理特征提取方法包括灰度共生矩阵(GLCM)和小波变换等。
形状特征提取则通过对地物的外形进行分析,以提取地物的形状特征。
3. 混合特征提取方法为了更准确地描述地物的特征,研究者们也提出了混合特征提取方法,将光谱特征和空间特征相结合。
例如,光谱–空间特征提取方法可以通过光谱相似性和空间相似性来同时描述地物的特征。
此外,也有研究者提出了基于深度学习的特征提取方法,通过深度神经网络模型自动学习并提取高光谱图像中的特征。
三、高光谱图像特征提取方法的应用高光谱图像特征提取方法在许多领域中都有广泛的应用,下面分别介绍其中的几个应用场景。
1. 地物分类地物分类是高光谱图像处理中的重要应用之一。
通过提取地物的光谱特征、纹理特征和形状特征,可以将高光谱图像中的地物按照类别进行分类。
这在土地利用监测、环境保护和农业管理等领域中都有重要的作用。
2. 目标检测高光谱图像中的目标检测是指通过提取图像中目标的特征,以实现对目标的自动识别和检测。
高光谱影像特征选择与提取高光谱遥感影像是指通过遥感技术获取的光谱波段范围较宽的遥感影像,相比于普通遥感影像,具有更多的光谱信息。
高光谱影像的特征选择与提取是指从大量的光谱波段中选择出最能表达影像特征的波段,并对这些波段进行特征提取,以达到降维、去冗余和突出关键信息的目的。
本文将介绍高光谱影像特征选择与提取的方法和应用。
高光谱影像特征选择主要有两个目标:一是减少维度,将原始光谱数据降维为较低维度的特征向量,以方便后续处理;二是挖掘出与分类或回归任务相关的关键特征波段,以提高分类或回归的准确性。
常用的特征选择方法包括相关系数法、信息增益法、主成分分析法等。
相关系数法通过计算每个波段与所研究对象的相关程度,选择与目标变量相关性较强的波段作为特征波段。
信息增益法则根据每个波段对目标变量的贡献度选择特征波段,贡献度高的波段被认为是最有价值的特征波段。
主成分分析法则通过对原始光谱数据进行线性变换,将原始变量转换成一组互不相关的主成分,从而实现降维的目的。
在特征选择的基础上,还需要进行特征提取,以提取出更具有鉴别能力的特征。
常用的特征提取方法包括谱角法、植被指数法、特征空间法等。
谱角法是基于波段直接组合获取鉴别能力强的特征,通过计算不同波段之间的角度,来提取出能够鉴别不同地物的特征。
植被指数法是基于植被光谱反射率特点的一种特征提取方法,通过计算植被指数,如归一化植被指数(NDVI)、差值植被指数(DVI)等,来提取出与植被相关的特征。
特征空间法是基于光谱波段组合的一种特征提取方法,通过对多个波段进行线性或非线性组合,生成新的特征空间,从而提取出不同地物的特征。
除了上述方法,还可以通过机器学习算法,如支持向量机、决策树等,来进行特征选择与提取。
这些算法能够在训练模型的过程中自动选择最具有鉴别能力的特征,并对其进行提取。
高光谱影像特征选择与提取在农业、环境监测、地质勘探等领域有着广泛的应用。
例如,在农业领域,可以通过对农作物的高光谱影像进行特征选择与提取,来实现病虫害的自动检测与预警;在环境监测领域,可以通过高光谱影像进行景观类型分类与变化监测;在地质勘探领域,可以通过高光谱影像提取地质矿产信息,实现资源勘探与开发。
高光谱图像处理技术的使用教程研究高光谱图像处理技术是一种在应用领域广泛的图像处理技术,可以通过获取物体在不同波段的反射光谱信息,提供更加详细和全面的图像数据。
本文将针对高光谱图像处理技术的使用进行研究,并提供相应的教程。
一、高光谱图像处理技术简介高光谱图像处理技术是一种通过获取物体在可见光和红外波段的多个窄波段反射光谱信息,将其转化为多波段图像的技术。
与传统的彩色图像相比,高光谱图像能够提供更加详细和准确的物体信息,有利于物体分类、目标探测和环境监测等领域的研究。
二、高光谱图像处理的主要方法1. 高光谱图像获取:高光谱图像主要通过高光谱成像设备获取,该设备能够同时获取多个波段的光谱信息。
获取的图像需要进行前期的预处理,包括校准、去噪等,以减少后续处理的误差。
2. 高光谱图像的特征提取:获取到高光谱图像后,下一步是提取图像的特征。
常见的特征提取方法包括:主成分分析(Principal Component Analysis, PCA)、线性判别分析(Linear Discriminant Analysis, LDA)、离散小波变换等。
这些方法能够从高光谱图像中提取到代表图像信息的特征。
3. 高光谱图像分类:通过对提取的特征进行分类,可以实现对高光谱图像中的目标物体进行识别。
常见的分类方法包括:支持向量机(Support Vector Machines, SVM)、人工神经网络(Artificial Neural Networks, ANN)、决策树等。
4. 高光谱图像的目标检测:目标检测是高光谱图像处理的一个重要应用,可以通过识别图像中的目标物体来实现。
常见的目标检测方法包括:基于像素的方法、基于形状的方法和基于光谱的方法等。
三、高光谱图像处理技术的应用案例高光谱图像处理技术在许多领域有着广泛的应用。
以下是几个示例:1. 农业领域:高光谱图像处理技术可以用于农作物的生长监测和病虫害的检测。
通过获取植物在不同波段的光谱信息,可以分析植物的健康状况和生长情况。
光学遥感图像目标检测技术综述李晓斌; 江碧涛; 杨渊博; 傅雨泽; 岳文振【期刊名称】《《航天返回与遥感》》【年(卷),期】2019(040)004【总页数】10页(P95-104)【关键词】目标检测方法; 飞机检测; 舰船检测; 分类; 遥感图像【作者】李晓斌; 江碧涛; 杨渊博; 傅雨泽; 岳文振【作者单位】北京市遥感信息研究所北京100192; 清华大学电子工程系北京100084【正文语种】中文【中图分类】TP407.8按成像谱段不同,光学遥感图像可分为可见光、红外和高光谱图像。
光学遥感图像目标检测是指利用特定的算法从图像中搜索并标记出感兴趣的目标,包括建筑物、道路、飞机、舰船和车辆等。
目标检测是光学遥感图像分析的重要内容,是城市规划、土地利用、机场和港口监测等应用的重要基础。
近年来,光学遥感成像技术迅猛发展,Pleiades、WorldView-3、“高分二号”、“高景一号”等光学遥感卫星相继发射,源源不断地提供着海量高分辨率图像,为目标检测技术的发展带来了新的机遇和挑战。
所谓机遇是指海量图像为目标检测技术的发展提供了重要的数据源;挑战是指图像分辨率越来越高,需要检测的目标越来越多,同时图像背景也越来越复杂,使得检测难度变大。
得益于应用前景的推动和海量数据的支持,近年来涌现了大量有关光学遥感图像目标检测技术的研究成果。
其中不乏综述性的文献[1-5],但这些文献多是十年前的且主要针对单一目标。
例如,文献[1]、[2]聚焦于建筑物目标,文献[3]、[4]则只针对道路目标。
文献[5]是比较新的综述性文献,针对建筑物、道路、飞机、舰船和车辆等多类目标,但主要还是建筑物和道路。
文献[5]重点对基于模板匹配、基于知识、基于目标分析和基于机器学习的目标检测方法进行了系统总结,但只将近年来兴起的基于深度学习的方法作为发展方向提出而未作详细介绍。
与以上研究不同的是,本文重点针对飞机、舰船等目标,从目标检测方法、检测性能评价准则和数据集等方面对目标检测技术的最新研究进展进行了系统综述。
高光谱遥感图像的特征提取和分类算法探究遥感技术已经成为了现代地球科学中不可或缺的一部分,这种技术通过对地球表面的各种信息进行多波段、多角度、多时相的采集和处理,可以形成一系列高分辨率遥感图像。
其中,高光谱遥感图像是一种获取地表物质高光谱信息的遥感技术,这种技术可以获取大量的物质光谱信息,为我们研究地球科学和环境变化提供了重要的数据来源。
在高光谱遥感图像中,物质对不同波长的电磁辐射的反射和吸收的不同程度是其与众不同的特性。
由于不同的物质对不同波段的辐射产生的反应不同,固有光谱和在远距离上的高光谱遥感图像可以很好地区分不同物质。
在高光谱遥感图像研究中,特征提取和分类算法是研究的两个重要方面。
因此,本篇文章将探讨高光谱遥感图像的特征提取和分类算法的研究进展和应用现状。
一、特征提取在高光谱遥感图像中,特征提取是一项至关重要的技术。
特征提取的主要任务是将高光谱遥感图像中每个像元的光谱信息转化成低维空间的特征,以减少信息冗余和处理量,同时保留物体空间分布和分类信息。
常用的特征提取方法包括如下几种。
1. 主成分分析(PCA)PCA是一种线性变换的方法,可以将高维空间中的数据降维到低维度的特征空间。
在高光谱遥感图像中,PCA方法可以对数据矩阵进行特征值分解,得到协方差矩阵的主特征向量。
这些主成分可以描述遥感图像的大部分空间信息,对于多波段数据的降维处理非常有效。
2. 独立成分分析(ICA)ICA是一种非线性变换的方法,可以将遥感图像中的光谱信息进行分离和隔离,从而得到更加明确的光谱信息。
在高光谱遥感图像中,ICA可以对数据矩阵进行特征值分解,找到可以独立分离的成分。
这些成分可以帮助我们更好地理解高光谱遥感图像中的光谱结构,并提高物体检测和分类的准确率。
3. 小波变换(WT)WT是一种非平稳信号的频域分析方法,可以用于多尺度分析和特征提取。
在高光谱遥感图像中,WT可以将数据矩阵分解为一组小波系数,这些系数可以反映不同尺度下的物体信息。
第1部分绪论1.1 课题背景及研究的目的意义高光谱遥感(Hyperspectral Remote Sensing)是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术[1]。
随着遥感技术的发展,高光谱图像已经越来越广泛地被应用到海洋、植被、地质、大气、环境、军事和医学等方面[2]。
高光谱图像信息系统中重要的参数之一是空间分辨率,高光谱图像的光谱分辨率很高,但其空间分辨率较低。
例如机载可见光、红外成像光谱仪(AVIRIS)所成图像一般分辨率只达到20m*20m。
较低的空间分辨率给数据处理如目标检测与识别、混合像素解译、精准匹配等技术带来了巨大的困难。
可以说,空间分辨率已经成为高光谱图像应用效果的主要制约因素。
提高空间分辨率势必能够加强图像中目标的探测能力和识别能力。
在遥感技术快速发展的今天,对遥感图像的分辨率有着越来越高的要求,但对于现有的成像设备,由于其制作工艺和现有技术的制约,还远远不能满足各方面的要求,所以采用图像处理技术来提高空间分辨率有很大的研究价值和意义。
随着对遥感图像处理技术的提高,高光谱图像的分析从像素级发展到子像素级[3]已成为必然,由此带来的许多技术难点急待改进或解决。
高光谱图像的低空间分辨率导致了混合像素的广泛存在,即一个像素可能是几种类别的混合[4]。
对于这类像素,将其按照传统的硬分类方法归属为任一类都是不准确的。
在实际应用中,分析者常常需要更为精确的信息:混合像素内包含哪些类别,各类别所占的比例是多少,这些类别在混合像素内的空间分布是怎样的等等。
如图1.1所示。
它们各自对应的技术为光谱端元选择技术[5],光谱解混(又称光谱解译)技术[6]和子像素制图技术(子像素制图又称为亚像元定位)[7]。
图1.1 高光谱图像混合像素处理中主要问题及对应技术本文主要研究对混合像素进行光谱解混后的子像素制图技术(Subpixel Mapping, SM)。
高光谱图像处理算法的使用教程与特征提取近年来,随着高光谱技术的快速发展,高光谱图像处理算法在各个领域得到了广泛应用,尤其在地球观测、农业、遥感和医学影像等领域发挥着重要作用。
本文旨在介绍高光谱图像处理算法的使用教程,并重点讨论其中的特征提取方法。
高光谱图像是一种具有连续的光谱信息的多光谱图像,它在不同的波段中可以提供更加详细的信息,因此可以更准确地描述和识别目标。
在进行高光谱图像处理之前,首先需要了解图像处理的基本概念和技术。
一、高光谱图像处理基础知识1. 高光谱图像的表示与获取高光谱图像可以通过散射光谱仪或成像光谱仪获取。
它通常由一系列的波段组成,每个波段对应着特定的频率范围。
具体表示方法可以是一个三维数据集,其中两个维度代表图像的行和列,第三个维度表示不同的波段。
2. 高光谱图像的预处理在进行特征提取之前,通常需要对高光谱图像进行预处理,以消除噪声、纠正伪迹和增强图像的对比度等。
预处理的具体方法包括平滑滤波、去噪、边缘增强等。
3. 高光谱图像的分割与分类图像分割是指将图像分为具有相似特征的不同区域,而图像分类是指将像素或区域分别分配给不同的类别。
分割和分类是高光谱图像处理中常用的方法,它们可以帮助我们理解图像中的对象和区域。
二、高光谱图像处理算法的使用教程1. 特征提取特征提取是高光谱图像处理的核心任务之一,它旨在从高光谱数据中提取出能够最好地描述目标的特征。
特征可以是单波段的或多波段的,常用的特征包括光谱特征、空间特征和统计特征等。
光谱特征是指从每个像素的波段值中提取的特征,包括平均值、最大值、最小值、方差等。
空间特征是指在空间维度上从图像中提取的特征,常用的方法包括纹理特征、边缘特征等。
统计特征是指从整个图像或图像区域中提取的统计信息,如均值、标准差、直方图等。
2. 高光谱图像处理工具与库为了方便进行高光谱图像处理,有许多开源的工具和库可供使用。
其中,常用的包括ENVI、IDL、MATLAB等。
光学卫星遥感影像质量检验技术规程
光学卫星遥感影像质量检验技术规程是指对通过光学卫星获取的遥感影像进行质量检验的具体规定和要求。
其主要目的是确保光学卫星遥感影像的质量符合国家和行业相关标准,以提高其在各领域的应用价值。
以下为光学卫星遥感影像质量检验技术规程的一般内容:
1. 质量目标和指标:明确光学卫星遥感影像的质量目标和基本指标,包括空间分辨率、光谱性能、辐射定标精度等。
2. 校正和预处理:说明光学卫星遥感影像的校正和预处理方法,包括几何校正、辐射定标、大气校正等,确保影像数据的准确性和一致性。
3. 像元质量评估:确定光学卫星遥感影像中每个像元的质量评估方法,包括噪声评估、图像质量指标计算等,以保证各像元的可靠性。
4. 出错检测和修复:制定出错检测和修复方法,对光学卫星遥感影像中的错误、欠曝光、过曝光等问题进行自动化检测和修复,提高影像的质量。
5. 质量控制:设计光学卫星遥感影像质量控制制度,包括对影像采集、处理、存储等全过程进行质量控制,确保影像的质量符合要求。
6. 针对特定影像类型的检验要求:针对不同类型的光学卫星遥感影像,制定相应的检验要求和评估方法,包括高分辨率影像、多光谱影像、高光谱影像等。
7. 数据格式和元数据:规范光学卫星遥感影像的数据格式和元数据标准,确保数据的交互和共享的一致性和可靠性。
8. 质量评估报告:要求对光学卫星遥感影像进行质量评估报告的编制和提交,包括质量评估结果、问题反馈和改进建议等。
总之,光学卫星遥感影像质量检验技术规程是对光学卫星遥感影像质量进行检验的指导文件,旨在规范光学卫星遥感影像的质量控制和评估,提高遥感影像的应用效果和价值。
高光谱遥感的应用及原理引言高光谱遥感是一种非常重要的遥感技术,它可以获取地球表面广泛频谱分辨率的遥感图像。
它的应用范围非常广泛,涉及到农业、环境保护、地质勘察等领域。
本文将介绍高光谱遥感的应用以及其原理。
高光谱遥感的应用高光谱遥感技术在许多领域都有广泛的应用。
以下是一些常见的应用领域:农业•作物监测:通过高光谱遥感图像可以对农作物进行快速监测和评估,帮助农民掌握作物的生长状况和健康状况,从而采取相应的措施。
•土壤分析:高光谱遥感图像可以获取土壤的光谱特征,从而帮助农民了解土壤的质地、湿度等参数,为农作物的种植提供参考。
•病虫害监测:高光谱遥感可以检测农作物上的病虫害,帮助农民及时采取控制措施,减少损失。
环境保护•水质监测:高光谱遥感可以通过检测水体的光谱特征来评估水质的好坏,监测污染源,为环境保护部门提供有效的数据支持。
•植被监测:高光谱遥感可以检测植被的健康状况和类型,对植被的分布、变化进行及时监测。
这对于森林资源管理和生态环境保护非常重要。
地质勘察•矿产资源调查:高光谱遥感可以通过检测地表岩矿的光谱特征来定量和定性分析地质信息,为矿产资源的勘察提供重要的数据支持。
•地形测量:高光谱遥感可以获取地表的高程和形态特征,可以用于地形测量、地形分析和地质灾害评估等方面。
•矿山环境监测:高光谱遥感可以监测矿山的环境变化,帮助矿产公司进行环境保护和可持续发展。
高光谱遥感的原理高光谱遥感是利用地表物体对不同波段的光谱反射或辐射进行测量,然后利用这种反射或辐射的光谱信息来提取地表物体的特征和参数。
其原理可以简单描述如下:1.光谱测量:高光谱遥感使用一台高光谱遥感仪器,能够同时获取多个波段的光谱数据。
这些波段的范围通常覆盖了整个可见光和近红外光谱区域。
2.光谱分析:通过对获取的光谱数据进行分析,可以得到地表物体在不同波段上的反射或辐射信息。
这些信息可以反映地表物体的不同特征,如植被的健康状况、土壤的含水量等。