纳米材料的制备方法微乳液法
- 格式:ppt
- 大小:1.16 MB
- 文档页数:19
纳米粒子的合成方法纳米粒子是一种具有特殊尺寸和形态的微小颗粒,其尺寸通常在1到100纳米之间。
由于其独特的性质和广泛的应用前景,纳米粒子的合成方法成为了研究的热点之一。
下面将介绍几种常见的纳米粒子合成方法。
1. 化学合成法化学合成法是最常见也是最广泛使用的纳米粒子合成方法之一。
通过化学反应,在溶液中合成纳米粒子。
常见的化学合成方法包括溶胶-凝胶法、微乳液法、共沉淀法等。
其中,溶胶-凝胶法是通过溶胶和凝胶相互转化来合成纳米粒子,微乳液法是利用微乳液作为反应介质来合成纳米粒子,共沉淀法是通过共沉淀反应来合成纳米粒子。
2. 热分解法热分解法是一种通过高温热解反应来合成纳米粒子的方法。
通常是将金属有机化合物或金属盐在高温条件下分解,生成纳米粒子。
这种方法合成的纳米粒子尺寸均一、形态良好,常用于制备金属纳米粒子。
3. 水热合成法水热合成法是一种在高温高压水环境下合成纳米粒子的方法。
通过调控反应温度、压力和反应时间等条件,可以得到不同尺寸和形态的纳米粒子。
这种方法合成的纳米粒子具有较高的结晶度和较好的分散性,广泛应用于金属氧化物、碳纳米管等的合成。
4. 气相合成法气相合成法是一种通过气相反应来合成纳米粒子的方法。
通常是将金属有机化合物或金属气体在高温条件下分解或氧化,生成纳米粒子。
这种方法合成的纳米粒子具有较高的纯度和较好的控制性,常用于制备金属、合金、半导体等纳米粒子。
5. 生物合成法生物合成法是一种利用生物体或其代谢产物来合成纳米粒子的方法。
这种方法的优势在于可以利用生物体的特殊性质和调控机制来合成纳米粒子,如利用细菌的代谢产物来合成金属纳米粒子、利用植物的提取物来合成金属氧化物纳米粒子等。
生物合成法不仅环境友好,而且合成的纳米粒子具有生物相容性和生物活性,具有广泛的应用前景。
总结起来,纳米粒子的合成方法多种多样,选择合适的合成方法可以得到不同尺寸、形态和性质的纳米粒子。
不同的合成方法适用于不同的纳米材料,需要根据具体需求和研究目的选择合适的方法。
目录摘要 (1)引言 (2)1 纳米材料的概述 (3)1.1纳米材料的定义 (3)1.2纳米材料的制备方法 (4)1.2.1机械法 (4)1.2.2化学制备方法 (5)2 微乳反应器原理 (6)2.1微乳液 (6)2.2微乳反应器原理 (7)2.2.1分别增溶有反应物A、B的微乳液混合 (8)2.2.2反应物A的微乳液与反应物B水溶液混合 (9)2.2.3反应物A的微乳液与反应物B气体 (9)2.3微乳反应器的形成及结构 (10)2.3.1微乳液的形成机理 (10)2.3.2微乳液的结构 (11)3 微乳反应器的应用——纳米颗粒材料的制备 (12)3.1纳米催化材料的制备 (12)3.2聚合物纳粒的制备 (12)3.3金属单质和合金的制备 (13)3.4无机化合物纳粒的制备 (13)3.5磁性氧化物颗粒的制备 (13)结论 (14)致谢 (16)参考文献 (17)摘要本文从纳米粒子制备的角度出发,论述了微乳反应器的原理、形成与结构,并对微乳液在纳米材料制备领域中的应用状况进行了阐述。
并简单的对什么是纳米材料,纳米材料的一系列制备方法做了介绍,从而了解到微乳化法相对于其它制备方法的优缺点。
关键词:纳米粒子;微乳液;微乳反应器;纳米材料制备引言纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。
早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。
1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。
纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。
当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。
1982年,Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合胼或者氢气还原在W/O型微乳液水核中的贵金属盐,得到了单分散的Pt,Pd,Ru,Ir金属颗粒(3~10nm)。
纳米的制作方法什么是纳米?纳米(Nanometer)指的是长度或尺寸在1到100纳米之间的物质。
纳米级别的物质往往具有特殊的性质和行为,与其在大尺寸下的情况有着显著的差异。
纳米科学和纳米技术是研究和应用纳米级别物质的学科和技术领域,已经在各个领域展现出巨大的潜力。
纳米的制备方法纳米材料的制备方法多种多样,常见的制备方法包括物理方法、化学方法和生物方法等。
1. 物理方法物理方法是一种经典的纳米制备方法,包括以下几种:1.1 球磨法球磨法是一种通过机械碾磨将大颗粒物质转化为纳米颗粒的方法。
其原理是通过高能的碰撞和摩擦使粒子尺寸逐渐减小,最终达到纳米级别。
球磨法具有简单、经济的优点,适用于制备晶体材料、陶瓷材料等。
1.2 溅射法溅射法是一种利用高能粒子轰击靶材表面,使靶材表面原子迅速挥发形成纳米颗粒的方法。
这种方法能够制备出均匀、纯净的纳米材料,适用于制备金属、合金和氧化物纳米材料等。
1.3 热蒸发法热蒸发法是一种利用热源将物质蒸发后在冷凝器上沉积成薄膜或纳米颗粒的方法。
这种方法制备的纳米材料具有均匀性好、结晶度高的特点,适用于制备金属纳米材料和薄膜材料。
2. 化学方法化学方法是制备纳米材料的常用方法之一,常见的化学方法有以下几种:2.1 水热法水热法是将反应体系加热至高温高压条件下进行反应,以形成纳米材料的方法。
水热法具有反应温度低、反应时间短的优点,适用于制备金属氧化物、碳纳米管等材料。
2.2 沉淀法沉淀法是通过控制反应条件,在溶液中形成沉淀,进而得到纳米颗粒的方法。
这种方法制备材料的尺寸和形貌可以通过调节反应条件得到,可用于制备金属、合金、非金属氧化物等纳米材料。
2.3 微乳液法微乳液法是利用乳化剂将两种互不溶的液体通过乳化作用形成微乳液,从而得到纳米颗粒的方法。
这种方法具有水溶液中制备纳米颗粒的优势,适用于制备金属、合金和多组分纳米材料。
3. 生物方法生物方法是一种利用生物体或其衍生物合成纳米材料的方法,包括以下几种:3.1 微生物法微生物法是利用微生物合成纳米材料的方法。
纳米粒子的制备方法及应用纳米粒子的制备方法分为物理方法和化学方法。
物理方法主要包括雾化法、机械合金法、燃烧法等,化学方法主要包括溶胀法、微乳液法、共沉淀法、水热法等。
以下是关于纳米粒子的常见制备方法及其应用的详细介绍。
1. 雾化法:将物质通过高温、高压的气体和固液混合物的喷雾,使其迅速冷却固化,形成纳米粒子。
这种方法的特点是造粒速度快、控制性好,应用广泛。
例如,铜纳米粒子制备后可以应用于导电涂料、导电油墨等领域。
2. 机械合金法:通过机械能强化作用,将材料在高能物理场中研磨、冲击或研磨脱臭,使其形成纳米粒子。
这种方法能够制备高纯度的纳米材料,并且可以控制纳米颗粒的形貌和粒度。
例如,铁-铁氧化物纳米复合粒子可以应用于催化剂、磁性材料等领域。
3. 燃烧法:通过在适当的氧气中燃烧金属颗粒或金属盐溶液,使其生成纳米颗粒。
这种方法具有操作简单、制备快速的优点。
例如,钛纳米颗粒可以应用于太阳能电池、生物材料等领域。
4. 溶胀法:利用高分子溶胀、凝胶与干燥法,通过控制溶胀度和架链密度,形成纳米颗粒。
这种方法制备的纳米粒子具有较大的比表面积和较高的孔隙度,适用于吸附、分离等领域。
5. 微乳液法:利用表面活性剂和油水体系,通过溶胶-凝胶转化或乳化反应制备纳米颗粒。
这种方法具有制备精密、单分散的纳米颗粒的优点,例如,二氧化钛纳米颗粒可以应用于催化剂、阳光防护剂等领域。
6. 共沉淀法:将溶液中的金属离子还原后,通过慢慢加热和搅拌,使其形成纳米颗粒。
这种方法的优点是制备过程简单、成本低廉,适用于大批量生产。
例如,氧化铁纳米颗粒可以应用于医学成像、磁性流体等领域。
7. 水热法:将溶液放入高温高压设备中,在水的超临界状态下进行溶解、析出和固化,形成纳米颗粒。
这种方法制备的纳米材料具有优异的结晶度和热稳定性,广泛应用于催化剂、电池材料等领域。
纳米粒子具有特殊的物理、化学和光学性质,因此在众多领域中有重要的应用。
以下是几个典型的应用领域:1. 生物医学:纳米粒子在生物医学领域中具有广泛的应用,如药物载体、分子成像、肿瘤治疗等。
硼酸盐-锌盐法3.5ZnSO4+3.5Na2B4O7+0.5ZnO+10H2O=2(2ZnO·3B2O3·3.5H2O)+3.5 Na2SO4+2H3BO31 材料与方法1.1 材料甲苯(油相,简写作O)、十二烷基苯磺酸钠(表面活性剂S)无水乙醇(助表面活性剂,简写作A)、氧化锌,硫酸锌,集热式恒温加热磁力搅拌器。
1.2 实验方法1.2.1 反相微乳的制备把有机溶剂、表面活性剂、助表面活性剂混合为乳化体系,再加入水,体系会在某一瞬间变得透明(或有浮光),则形成纳米微乳,若为分层或混浊,则不是。
1.2.1.1 纳米硼酸锌的制备将一定浓氧化锌和硫酸锌度按比例配制混匀,以此混合液为水相配制W/O型微乳液A;硼砂按同样的方法制得微乳液B。
向定量的微乳B中逐渐加入微乳A,反应一段时间。
先配制表面活性剂十二烷基苯磺酸钠(S)和甲苯(O)的混合液,按比例配3份,S∶0=2∶1,1∶1,1∶2,然后向其中加入氧化锌和硫酸锌混合溶液搅拌,滴加无水乙醇至体系由白色乳状液转为无色透明稳定微乳液为止 1.2.1.2 根据油、水、表面活性剂所占百分比作出对应的拟三元相图,确定微乳液区域。
2.1 反相微乳的制备2.1.1 拟三角相图在乳化剂和助乳化3种比值下(S∶A=2∶1,1∶1,1∶2)得到3张伪三元相图(图1)。
图中阴影部分为微乳区。
根据微乳区的大小,选择具有较大微乳区的图以下实验。
2.1.2 适宜的O/(S+A)比例固定S∶A=2∶1,在微乳区域中,根据以下几个不同的油相与表面活性比例[O/(S+A):1/9,2/8,3/7,4/6,5/5,6/4,7/3],观察形成微乳的过程情况来选择最佳O/(S+A)的比例。
2.1.3 微乳液类型的判断2.1.3.2 染色法检测反相微乳特征油溶性染料苏丹红能在微乳液中扩散,而水溶性染料亚甲基蓝在微乳液中几乎不扩散,表明在该配比下的微乳为油包水(W/O)型微乳液。
纳米材料的制备方法摘要 本文介绍了纳米材料的几种常用制备方法,并指出各种方法的特点本文介绍了纳米材料的几种常用制备方法,并指出各种方法的特点.. 关键词 纳米材料纳米材料制备方法制备方法 p reparation methods of nanomaterialsAbstract This article describes several commonly used p reparation reparation methodsmethods of nanomaterials and pointed out that the characteristics of various methods.Key words nanomaterials , preparation methods 1、引言纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。
通常所说的纳米材料是指超微粒—即尺寸在Inm~10Onm Inm~10Onm之间的金属、合金、氧化物及各种化合物的颗粒及由超微之间的金属、合金、氧化物及各种化合物的颗粒及由超微粒经高真空压缩技术获得的纳米固体材料,由于纳米粒子具有量子尺寸效应、小尺寸效应、宏观量子隧道效应和库伦阻塞效应[1][1]。
也因为纳米粒子小,具有化学反应不知性高、化学催活性大、光学吸附性强。
纳米材料所具有的不寻常的性质,使纳米材料在光学材料、电子材料、磁性材料以及高强度、高密度材料的烧结、催化、传感等方面有广阔 的应用前景。
被认为是二十一世纪新材料的基础纳米材料的研究与应用引起了各国科学家和政府的兴趣和高度重视。
在本文中介绍了目前纳米材料合成与制备常用的几种方法,并指出了各种方法的特点。
纳米材料合成与制备常用的几种方法,并指出了各种方法的特点。
2、纳米材料的合成与制备方法纳米材料的合成主要问题是纳米微粒的纯度、粒度的均匀程度、粒度的可控性及产量等。
一种好的制备方法应能产生纯度高、粒度均匀的纳米微粒匀的纳米微粒. .2.1固相法固相法是通过从固相到固相的变化来制备纳米粉体。
简述纳米材料的制备方法嘿,朋友们!今天咱就来唠唠纳米材料的制备方法。
你说纳米材料,那可真是神奇得很呐!就好像是微观世界里的小精灵,有着各种各样奇妙的特性。
那怎么把这些小精灵给召唤出来呢?有一种方法就像是搭积木一样,一点一点地把材料堆积起来,这就是气相沉积法。
想象一下,在一个神奇的实验室里,各种物质的小颗粒在空中飘着,然后慢慢地聚集在一起,形成了纳米材料。
是不是很有意思?这不就跟我们盖房子似的,一砖一瓦地盖起来嘛!还有溶胶-凝胶法,这就像是做一碗特别的胶水汤。
把各种材料溶解在里面,然后经过一系列的反应和处理,最后就变成了纳米材料。
就好像是把各种食材放进锅里煮,煮出来一锅美味又独特的汤一样。
水热法呢,就像是在给纳米材料们洗一个特别的热水澡。
把材料放在一个特殊的容器里,加上合适的条件,让它们在热水里好好地成长、变化,最后就变成了我们想要的纳米材料啦。
另外,微乳液法也挺好玩的。
就好像是在调制一种神奇的乳液,让各种材料在里面混合、反应,然后就诞生出了纳米材料。
这些制备方法各有各的奇妙之处,各有各的用处。
那你可能会问了,这些方法难不难呢?其实啊,就和我们学一门新技能一样,刚开始可能会觉得有点陌生、有点难,但只要我们多去尝试、多去探索,慢慢地就会掌握啦!比如说气相沉积法,需要我们精确地控制各种条件,就像厨师要掌握好火候和调料的用量一样。
溶胶-凝胶法呢,要细心地调配那些“胶水汤”的成分和比例。
水热法就需要我们给纳米材料们提供一个舒适的“热水澡环境”。
微乳液法也要我们像个优秀的调香师一样,把各种成分调配得恰到好处。
总之,制备纳米材料就像是一场奇妙的冒险,每一种方法都像是一个独特的关卡,等着我们去挑战、去突破。
只要我们有兴趣、有耐心,就一定能在这个微观世界里创造出属于我们自己的奇迹!纳米材料的未来可是充满了无限可能,让我们一起去探索吧!。
第30卷 第6期2007年12月电子器件Ch inese Jou r nal Of Elect ro n DevicesVol.30 No.6D ec.2007Resear ch Pr ogr ess of Micr oemulsion 2Assisted Solvother malMethod f or Pr epar ing N a noma ter ials 3C H E N G H ai 2ou ,CU I B i n3,YU Peng 2f ei ,C H E N G H u a 2l ei ,C H A N G Zh u 2g uo(Depart ment of Chemis t ry ,Nort hwest Uni versi t y/S haanxi Key Laborator y o f P hysi co 2Inor ganic Chemist ry ,Xi ’an 710069,Chi na)Abstract :Na nomat erial s becomes one of t he current researc h focuses owi ng to excellent physical and chemi 2cal p roperti es.Microemul sion 2assi st ed sol vot her mal met hod i s an effective means for prepareing well mor 2phology and monodisperse nanomate rials ,whic h has t he vi rt ue of bot h microemul sion and sol vot hermal met hod.The conception and principle of t he preparat ion of microemul sion 2assist ed sol vot her mal met hod isi nt roduced.The applica tion stat us of t he met hod in t he preparation of numerous mondi sper se nanost r uc 2t rued mat erial s ,such a s semi conductor materials ,magnet ic mat eri al s ,bioacti ve mat erial s ,photol umi nes 2ce nt mat erial s ,elect rode mat erial s ,t he abiomaterials of BaCO 3and Sr CO 3,a nd so on ,a re summarized.Fi 2nall y ,t he problem a nd t he pot ent ial applicat ion of t he met hod are di sc ussed.K ey w or ds :Mi croe mul sion 2assi st ed solvot hermal met hod ;Nanomaterial s;Progress EEACC :0550微乳液2溶剂热法制备纳米材料的研究进展3成海鸥,崔 斌3,俞鹏飞,程花蕾,畅柱国(西北大学化学系/陕西省物理无机化学重点实验室,西安710069)收稿日期2823基金项目陕西省重点实验室重点科研基金课题资助(S ,5S5);陕西省自然科学基金资助(5B );陕西省"35"科技创新工程重大科技专项(Z D KG 6)资助作者简介崔 斌(62),男,博士,副教授,研究方向为材料化学及无机功能材料,@摘 要:微乳液-溶剂热法是近年来发展起来的能够制备具有一定形貌和分散性较好的纳米材料的有效方法,它在制备纳米材料方面具有微乳液法和溶剂热法的双优点.介绍了微乳液-溶剂热法的含义和制备原理,综述了此方法在单分散纳米半导体材料、磁性材料、生物活性材料、光功能材料、电极材料、BaCO 3和Sr CO 3等其它无机材料的制备领域中的应用,并对此方法存在的问题和应用前景进行了探讨.关键词:微乳液2溶剂热法;纳米材料;进展中图分类号:TN 304.052 文献标识码:A 文章编号:100529490(2007)0622011204 纳米材料是20世纪80年代早期发展起来的一种新型材料.纳米材料指的是在三维空间中至少由一维处于纳米尺度范围,或由它们作为基本单元构成的材料[1].由于纳米微粒的小尺寸效应、表面界面效应、量子尺寸效应和宏观量子隧道效应等,使它们在磁、光、电、敏感、热等方面呈现出常规材料所不具备的优越性能,有着广泛而诱人的应用前景.因而,世界各国材料工作者竞相把纳米材料列为国家主要技术之一.纳米颗粒由于其粒径小,比表面积大使得纳米粒子在高能状态下表现得很不稳定,从而使尺寸和形貌难以控制,这一直是纳米材料科学研究中的难点问题.寻找一种设备简单易行的制备方法,且要求制备出的纳米粒子粒径小、可控制且分布均匀,纳米颗粒之间不团聚或具有很好的分散性,是人们关注的问题.微乳液法和溶剂热法可以满足这方面的要求,这两种方法的联合兼具了两种方法的优越性,因此产生了新的软化学法:微乳液2溶剂热法.鉴于此,8:200700:04J 040J 0200191112007-1:197c uibin n w u.ed .本文介绍了微乳液2溶剂热法的含义和制备原理,概述该方法在纳米材料制备领域中的应用,并对此方法存在问题和应用前景进行探讨.1 微乳液2溶剂热法的含义及其制备原理微乳液(Microemul sion processes)最早是由英国科学家Schul man和Hoar在1943年提出的[2].它是由油、水(盐水)和表面活性剂、助表面活性剂在适当的比例下自发形成的透明或半透明、各向同性的热力学体系[3].溶剂热法是指在密闭体系中,以水或有机物为溶剂,在一定的温度下,溶剂自生的压力下,反应物进行混合、反应生成通常条件下难以合成的化合物的一种方法.微乳液2溶剂热法实质上是将微乳液进行热处理的一种方法,整个过程是经历了一个成核、自组装和结晶长大的过程[425](如图1所示).该方法是结合了微乳液法易控制粒径尺寸和溶剂热法的低温特点,成为近年来广为研究的纳米材料制备方法,此方法为纳米粒子的形成和生长方面提供了一个良好的环境,通过改变反应温度、水和表面活性剂的摩尔比(W)、助表面活性剂的浓度、反应物的种类和浓度等可以控制合成不同形貌的纳米晶,如图1所示.图1 不同形貌纳米晶形成示意图在采用微乳液2溶剂热法制备纳米材料的过程中,多采用双乳体系[6].双乳型体系是将两种或多种反应物分别增溶于相同的微乳体系,然后将两种组分在一定条件下进行混合,由于胶团间的碰撞,发生了水核内物质交换或物质传递,发生化学反应并在水核内成核[7];然后,在表面活性剂和助表面活性剂的作用下,微乳胶团按一定方向发生自组装,形成不同形貌的晶核;加热和延长反应时间,促进了粒子的结晶和生长[8211].其中在微乳体系中成核这一过程中,水核的大小影响粒子的形貌和尺寸[12].2 微乳液2溶剂热法在材料制备中的应用2.1 半导体材料半导体纳米材料因为具有特有的物理化学、光学和电学性能而引起人们的重视,控制半导体材料的尺寸和形貌是材料科学家关注的问题采用微乳液2溶剂热法可以控制合成合成不同形貌的CdS[13]、ZnS[14]、PbS[15]、SnO2[16]、ZnS/ TiO2[17]和ZnS/CdS[18]等常见的半导体材料,图2仅给出了棒状CdS、多面体PbS和线状ZnS纳米晶的图片.例如,在十六烷基三甲基溴化胺(C TAB)/水/己烷/戊烷微乳体系中130℃/15h条件下可以控制得到新型的CdS纳米棒,如图2(a)所示.采用不同的硫源可以合成了具有线状和立方体形貌的纳米PbS(图2b).在相同的温度和时间下,通过调节W 可以有效的控制粒子ZnS的形貌,如图2c所示,形成了线状的ZnS.通过调节微乳体系中调节NaO H: SnCl4的比例,可以合成结晶度很高的SnO2纳米棒,该形貌的SnO2有望成为小型化和超敏感气敏材料[19].采用微乳液2溶剂热法合成粒径尺寸较小的ZnS/TiO2和ZnS/CdS纳米复合材料,这种材料相对于ZnS、TiO2或者CdS纳米材料有较高的催化活性.图2 棒状CdS、多面体PbS和线状ZnS纳米晶2.2 磁性材料磁性材料具有广泛的应用前景,如信息存储、磁流液、彩色成像、生物技术以及磁共振成像等,需要制备出粒径均匀和形状规则的磁性纳米颗粒.在C TAB/SDS/水体系中,进行溶剂热处理获得了粒径为17~20nm的α2Fe2O3纳米颗粒[20],研究发现其穆斯堡尔谱不对称向内加宽,这可能是由于纳米粒子的小尺寸效应产生的结果.磁性纳米线或者纳米棒已应用到电子器件中,这是由于这种结构在应用过程中产生一种新的结构,发挥出特有的物理性能.Wei Li u等[21]采用微乳液2溶剂热法合成了Co 纳米棒,这种纳米棒在没有外磁场的作用下会自发组合成二维结构的四方体结构或层状四方体纳米结构,如图3所示2102电 子 器 件第30卷8..图3 Co纳米棒(a)和纳米棒在外磁场下发生自组装形成纳米四方体的TEM图图4 C a5(S i6O16)(OH)24H2O纳米纤维(a)和HA p纳米棒(b)2.3 生物活性材料Ca5(Si6O16)(O H)24H2O和羟基磷灰石(简写HAp)因具有较高的生物活性而被用在医学领域.K aili Lin[22]等人在C TAB/戊醇/水体系中200℃/18h,获得了粒径为80~120nm,长度为几个微米的纤维状Ca5(Si6O16)(O H)24H2O,如图4(a)所示;研究表明这种纤维状的Ca5(S i6O16)(O H)24H2O具有很好的生物活性、降解性和稳定性.同时,K aili Li n等人[23]又采用微乳液2溶剂热法合成了一维单分散HAp纳米棒,如图4(b)所示,进而制得陶瓷相对密度接近1.不仅大大改善其机械强度,而且还提高了它的生物活性[24].2.4 光功能材料的制备作为光功能材料,具有多样性和有序形貌、较高结晶度的钨酸盐和钼酸盐,有望用于光致发光和光纤维中.Qiang G ong[8]等人在辛烷/C TAB/丁醇/水体系中合成了三维花状结构的亚稳定态的CaMoO4和SrMoO4晶体,如图5(a)所示.调节微乳体系中水和表面活性摩尔比,合成了颗粒状、扁豆状和棒状纳米Sr(WO3)2[9],如图5(b)所示,这是由于表面活性剂自组装引起的.同时还发现不同形貌的Sr(WO3)2具有不同的光学性能,这一发现使得Sr(WO3)2有很大的应用前途.图5 三维花状M O的和扁豆状纳米S(WO3)S M图2.5 纳米电极材料近年来,纳米电极材料备受人们的关注,是因为纳米级电极材料可以提高电池的性能.Ni(O H)2是一种常用的阳极材料,被用于可充电电池中.Min2hua Cao等人[25]在CTAB/环己胺/水/戊醇体系中140℃/12h合成了具有三维结构蒲公英状的纳米α2Ni(O H)2和类似花状的纳米β2Ni(O H)2,如图6所示.以α2Ni(O H)2为电极研究其电池可逆性和充放电寿命,发现具有很的可逆性,提高了电池的性能.图6 3D蒲公英状α2N i(OH)2和花状β2Ni(OH)2SE M图2.6 其他无机材料的合成BaCO3和SrCO3是碳酸盐中热力学稳定的矿物,广泛用于陶瓷和玻璃工业中,还可作为合成磁性材料和铁电材料的原料.Lili Li[10]等人在聚氧化乙烯壬基苯基醚(N P10)/水/环己胺体系中140℃/12h,合成了新型的BaCO3纳米带,如图7(a)所示.Mi nhua Cao[11]等人在C TAB/环己胺/水/戊醇体系中合成了棒状、椭圆状和球状纳米结构Sr CO3,如图7(b)所示;研究发现,随着W增加,其形貌由棒状转变为球状,其过程主要是由于微乳液体系中的Sr2CO3核在加热条件下发生熔融、聚集和组合,引起产生不同形貌的SrCO3.图7 Ba CO3纳米带(a)和SrCO3纳米棒(b)的T EM图3 存在的问题和应用前景微乳液2溶剂热法制备纳米材料具有操作简单,实验设备要求不高,采用这种方法制备出的纳米粒子粒径小,分布窄且易于控制,产物的分散性好、形貌多异,这些优点是其它方法不可比拟的但是,运用微乳液2溶剂热法制备出的纳米微粒的量相对少还局限在实验室,并且微乳液体系的有机成分多、组3102第6期成海鸥,崔 斌等:微乳液2溶剂热法制备纳米材料的研究进展8Ca o4r2E.成配比要求比较严,给环境带来了问题.如何解决以上问题,是微乳液2溶剂热法规模化生产纳米粒子所面临的主要问题.而且,目前关于微乳液2溶剂热法制备纳米粒子方法的研究多集中于对简单无机化合物粒子尺寸和形貌的控制,关于不同形貌的粒子的性能方面的研究还比较少.能否运用此方法制备出具有明确结构和有序排列的复杂纳米物质,也是此种方法的一个潜在应用.目前在微乳液2溶剂热的基础上,已开发出新的纳米材料制备方法.如Pan[26227]和Wa ng[28]等人,分别提出了两相法(t wo2pha se)和液2固2液法(Luqi2 ul d2soli d2solution,简称L SS法),采用这种两种方法,并已制备出单分散纳米晶粒子包括贵金属、磁性/介电、半导体、稀土金属荧光、生物医学、有机光电子半导体和导电聚合物,它们将为纳米尺度的器件制造奠定基础.这两种方法都克服了微乳液体系组成要求严格和有机物使用多的缺点,采用简单的反应体系可制备出粒径较小且分布均匀纳米材料.在电子产业中,纳米钛酸钡和纳米镍分别是贱金属细晶薄层多层陶瓷电容的介质材料和内电极材料[29230].最近,本课题组利用溶剂热2水热法法制得了油酸包覆的单分散纳米钛酸钡[31]以及单分散纳米金属镍.这些研究将在制备贱金属细晶薄层多层陶瓷电容方面具有重要意义.可见微乳液法2溶剂热法的出现,为纳米材料在制备技术上发展有着很重要的作用,同时在各种材料的制备方面有很广阔的应用前景.参考文献:[1] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.[2] Schulman J H,Hoar T p.[J]Nat u re,1943,152:1022103.[3] Pri nce L.Micro2emul sion,Theo ry and Practi ce[M].NewY o rk:Academ ic Press,1978,20227.[4] Lee Seungj u,Daniel F.Shant z,Chem[J].C hem Mat er,2005,17:4092417.[5] Lin Kaili,Chang Ji an g,L u J ianxi,Mat er.Let t.[J],2006,60:300723010.[6] Gan L M,Li u B,Chew C H,et ngmui r[J].1997,13:642726431.[7] 崔正刚,殷福珊.微乳化技术及应用[M].中国轻工业出版[M],1999.[8] G o ng Qiang,Qian Xuefeng,Ma Xiaodong,et al.Cryst.Growt hDes[J].2006,6:182121825.[9] Sun Li ngna,Guo Qingron g,X i nglong Wu,et al.[J]J.Phys.Chem.C,2007,111:5322537.[10] Li Lili,Chu Ying,Li u Yang,et al.Mater[J].Lett.,2006,60:213822142.[11] C ao Mi nhua,Wu Xinglong,He Xiao yan,et ngmui r[J].2005,21:609326096.[12] Zhang Hon gwei,Zhang Xu,Li Ho ngyan,et al.Cryst.G rowt hDes.[J],2007,7:8202824.[13] Zhang Peng,Gao Lian,J.Colloid Int erface Sci.[J],2004,272:992103.[14] X i ang J un hua,Yu Shu Hong,Li u Bianhua,et al.Inorg.Chem.C o mmun[J].,2004,7:5722575.[15] Dong Lihon g,Chu Ying,Zhang Yanpi ng[J].Mat er,Lett,2007,61:465124654.[16] Zhang Do ng2feng,Sun Ling2Don g,Y i n Ji a2Lu,et al.Adv.Mat er.[J],2003,15:102221025.[17] Yu Xi aodan,Wu Qingyi n,Ji ang Shi cheng,et al.Mat er.Char2act.[J],2006,57:3332341.[18] Chen Deli ang,Gao L ian,Solid St at e C om mun.[J],2005,133:145215.[19] Law M,Kin d H,Mes ser B,et al.Angew.Chem.Int.Ed.[J],2002,41:240522409.[20] Giria S,Samant ab S,Majic S,et al.J.Magn.Magn.Mat er.[J],2005,285:2962302.[21] Li u Wei,Zhong Wei,Wu Xiaoling,et al.J.Cryst.G rowt h[J].2005,284:4462452.[22] Li n Kaili,Chang J iang,Cheng Ron gm i ng,Act a Bio mat eri alia[J].2007,3:2712276.[23] Lin Kaili,Chang Jiang,Chen g Ro ngm i ng,et al.Mat er.Let t.[J],2007,61:168321687.[24] Hass na R,Ramay R,Zhang M,Bio mat eri al s[J].2004,25:517125180.[25] C ao Mi nhua,He Xiaoyan,Chen J un,et al.Cryst.Growt h Des[J],2007,7:1702174.[26] Wang Qiang,Pan Daocheng,J iang Shichu n,et al.Chem.Eur.J.[J],2005,11:384323848.[27] Pan Daocheng,Zhao Nana,Wang Qiang,et al.Adv.Mat er.[J],2005,17:199121995.[28] Wang Xun,Zhang Ji ng,Peng Qi ng,et al[J].Nat ure,2005,473:1212124.[29] Cui B,Y u P F,Tian J,Chang Z G[J].Mat.Sci.Eng.B,2006,133:2052208.[30] Shi Q Z,Cui B,Wang H,Tian J,Chang Z G.Sci.China Ser.B[J],2005,48:60264.[31] CUIBin(崔斌),W ANG Xun(王训),LI Y a2dong(李亚栋),C hem.J.Chinese Univers ities(高等学校化学学报)2007,28:125.4102电 子 器 件第30卷8。
工程师园地文章编号:1002-1124(2004)02-0061-02 微乳液的制备及应用王正平,马晓晶,陈兴娟(哈尔滨工程大学,黑龙江哈尔滨150001) 摘 要:本文翔实的介绍了微乳液的结构、性质、制备以及应用。
关键词:微乳液;性质;制备;应用中图分类号:T Q423192 文献标识码:APrep aration and application of microemulsion M A X iao -jing ,W ANG Zheng -ping ,CHE N X ing -juan(Harbin Engineering University ,Harbin 150001,China ) Abstract :In this article ,the conception ,structure ,properties ,preparation and application of micromeulsion havebeen summarized.K ey w ords :microemulsion ;property ;preparation ;application收稿日期:2003-12-16作者简介:王正平(1958-),男,教授,1982年毕业于浙江大学,硕士生导师,主要从事精细化学品的研究开发工作。
1 前言微乳液最初是1943年由H oar 和Schulman [1]提出的,目前,公认的最好的定义是由Danielss on 和Lindman [2]提出的,即“微乳液是一个由水、油和两亲性物质(分子)组成的、光学上各向同性、热力学上稳定的溶液体系”。
微乳液能够自发的形成,液滴被表面活性剂和助表面活性剂组成的混合界面膜所稳定,直径一般在10~100nm 范围内。
微乳液的结构有三种:水包油型(O/W )、油包水型(W/O )和油水双连续型。
O/W 型微乳液由油连续相、水核及界面膜三相组成。
96液相纳米材料的制备方法及其优缺点吕雪梅,刘亚凯(河北师范大学 化学与材料科学学院,河北 石家庄 050024)[摘 要]综述了液相法制备纳米材料的几种常用方法,主要介绍了溶胶-凝胶法、沉淀法、水热法、微乳液法。
分别讨论了这些制备方法中影响纳米材料结构和性能的因素及其优缺点。
[关键词]纳米材料;制备;液相法纳米材料是指三维空间尺寸至少有一维处于纳米量级(1-100nm)的材料,包括纳米微粒(零维材料),直径为纳米量级的纤维(一维材料),厚度为纳米量级的薄膜与多层膜(二维材料)以及基于上述低维材料所构成的致密或非致密固体[1]。
纳米材料由于其粒子的纳米级尺寸,使其本身所具有量子尺寸效应、表面效应、宏观量子效应等多种特殊的性质,这引起众多学科领域的专家和学者浓厚的兴趣,被誉为21世纪的新材料[2]。
液相法是目前实验室和工业上应用最广泛的制备纳米材料的方法。
与其他方法相比,液相法具有反应条件温和,易控制,制得的纳米材料组成均匀、纯度高等优点。
液相法的主要特征包括:可精确控制化学组成;容易添加微量有效成分,制成多种成分均一的纳米粉体;纳米粉体材料表面活性高;容易控制颗粒的尺寸和形状;工业化生产成本低,等等。
本文着重介绍利用液相法制备纳米材料的主要方法及其优缺点。
1、溶胶-凝胶法溶胶-凝胶法是利用金属醇盐或金属非醇盐的水解和聚合反应制备金属氧化物或金属氢氧化物的均匀溶胶,再浓缩成透明凝胶,凝胶经干燥、热处理便可得到纳米产物[3]。
溶胶-凝胶法的主要优缺点为:(1)化学均匀性好:由于溶胶-凝胶过程中,溶胶由溶液制得,故胶粒内及胶粒间化学成分完全一致;(2)高纯度:粉料制备过程中无需机械混合;(3)颗粒细:胶粒尺寸小于0.1µm;(4)该法可容纳不溶性组分或不沉淀组分;(5)烘干后的球形凝胶颗粒自身烧结温度低,但材料烧结性不好;(6)干燥时收缩大。
2、沉淀法沉淀法是把沉淀剂加入金属盐溶液中进行沉淀处理,再将沉淀物加热分解,得到所需的最终化合物的方法,该方法反应成本低、过程简单、便于推广,是液相化学反应合成纳米颗粒较为常用的方法。
纳米科技中的制备方法科技的进步推动着社会的发展,纳米科技就是其中的一部分。
作为现代材料科学的热点领域,纳米科技在很多领域都有不可替代的地位。
那么,纳米科技中制备方法是怎样的呢?一、化学制备法化学制备法是纳米材料制备中最常见、最成熟的一种方法。
其基本原理是控制化学反应条件,使反应中生成的物质处于纳米级别。
常见的化学制备法包括:溶胶-凝胶法、水热合成法、微波合成法、反相微乳液法、高温气相合成法等。
1、溶胶-凝胶法溶胶-凝胶法又称为凝胶化学法,是将溶胶逐渐凝胶化而形成纳米材料的制备方法。
该方法的基本原理是先将半晶态或胶态的溶胶制备出来,然后通过脱水、煅烧等方式,使溶胶形成固体凝胶。
该法制得的材料晶粒度小,结构均匀。
2、水热合成法水热合成法是指利用高压高温条件下热水溶液的化学反应原理,制备纳米粒子的方法。
该方法操作简单、工艺成熟,制备的纳米材料晶粒度小、结构均匀、单分散度高。
3、微波合成法微波合成法是指利用微波炉的功率和频率进行化学反应,制备纳米材料的方法。
该方法能够快速制备高纯度的纳米材料,操作简便,但是难以控制反应温度和过程。
4、反相微乳液法反相微乳液法是指通过两种互不相溶的液体相互作用,形成微乳液,然后通过化学反应制备纳米材料的方法。
该方法反应速度快,实验条件控制容易,能够制备高纯度的纳米材料,但是造成公害的可能性大。
二、物理制备法物理制备法是指通过物理力学或表面物理化学的方法制备纳米材料的方法。
常见的物理制备法有:物质磨碎法、溅射法、电化学沉积法、负载法等。
1、物质磨碎法物质磨碎法是指用高能量物理学的方法,通过调节磨杆、磨盘或磨球等制备出颗粒粒径在纳米级别的材料。
2、溅射法溅射法是指将金属或化合物溅射到基片上后制备形成的材料。
溅射法制备纳米材料的途径较广,可通过改变工艺参数与条件来调控制备纳米材料的形态、尺寸及晶格结构等。
3、电化学沉积法电化学沉积法是指通过电化学反应,在电极表面沉积纳米材料的方法。
氧化铁纳米材料的制备一、溶液法制备氧化铁纳米材料溶液法是一种常见且简单的合成氧化铁纳米材料的方法。
通常,通过配制适当的草酸铁溶液和氨溶液,可以在室温下反应产生氧化铁纳米颗粒。
该方法的优点是操作简单、成本低廉,且能够得到具有可控形貌和尺寸的氧化铁纳米材料。
二、热分解法制备氧化铁纳米材料热分解法是一种通过热分解金属有机化合物来合成氧化铁纳米材料的方法。
通常,通过将金属有机化合物(如铁酸酯)加热至较高温度,可以使其分解产生金属氧化物纳米颗粒。
这种方法的优点是能够得到较高纯度的氧化铁纳米材料,且纳米颗粒的形貌和尺寸可通过控制反应条件得到调节。
三、溶胶-凝胶法制备氧化铁纳米材料溶胶-凝胶法是一种通过溶胶的凝胶化反应制备纳米材料的方法。
通常,通过将适量的金属盐加入合适的溶剂中,然后通过一系列的反应和加热等过程,可以得到含有金属离子的溶胶。
通过进一步的干燥和煅烧,可以得到具有一定尺寸和形貌的氧化铁纳米材料。
溶胶-凝胶法具有可控性强、制备灵活等优点,但过程相对复杂。
四、水热法制备氧化铁纳米材料水热法是一种在高温高压条件下合成纳米材料的方法。
通过溶剂热稳定性好的特性,可以使金属离子在高温高压的条件下合成成纳米材料。
在水热法中,一般选用水作为溶剂,金属盐溶解在水中,通过加热并保持一定的压力,可以得到具有一定尺寸和形貌的氧化铁纳米材料。
水热法制备氧化铁纳米材料具有简单易行、反应时间短、适用范围广等优点。
五、微乳液法制备氧化铁纳米材料微乳液法是一种在两相微乳液体系中合成纳米材料的方法。
通过选择适当的表面活性剂、溶剂以及氧化铁源,可以在微乳液中合成具有一定尺寸和形貌的氧化铁纳米材料。
该方法的优点是可以得到具有较好分散性和较小粒径的纳米材料。
在以上几种制备氧化铁纳米材料的方法中,每种方法都有其特点和适用范围。
根据需要,选择合适的方法进行制备,可以获得具有良好性能的氧化铁纳米材料。
同时,为了进一步改善氧化铁纳米材料的性能,在制备过程中也可以采用表面修饰和掺杂等方法进行改性。
【摘要】目的通过反相微乳液法制备纳米四氧化三铁(Fe3O4)。
方法通过拟三角相图,确定环已烷、Triton X 100、正丁醇及水4组分体系的油包水型微乳液,电导率测定及染料扩散法判断体系为油包水(W/O)型反相微乳。
利用该微乳液的“微型水池”制备了纳米级Fe3O4黑色颗粒,优化各反应物量的比例。
通过红外谱图、电子扫描电镜、元素分析对所制备的Fe3O4纳米颗粒进行了表征。
结果确定拟三角相图中微乳液的区域,得到最适组分比例。
当各反应物物质的量的比例n(Fe3+)∶n(Fe2+)∶n(OH-)=3∶2∶24时得到纯的Fe3O4黑色粉末。
扫描电镜图显示实验结果的Fe3O4粒径<100 nm。
结论本实验配制了正已烷、Triton X 100、正丁醇、水组分体系反相微乳,并通过该体系制备了纳米Fe3O4。
【关键词】迟效制剂;乳状剂;磁力学;纳米技术;药物载体;四氧化三铁由于Fe3O4纳米粒子具有良好的磁性和表面活性,纳米磁性Fe3O4的制备方法及性质的研究受到重视。
磁性Fe3O4纳米粒子有广泛的用途。
在生物、医药领域,由于纳米磁性Fe3O4的磁响应性,使其在细胞分离、固定化酶、免疫诊断及肿瘤靶向治疗、DNA分离及核酸杂交等方面均有应用[1 2]。
微乳液是指由热力学稳定分散的互不相溶的两相液体组成的宏观上均一而微观上不均匀的液体混合物,通常是由表面活性剂、助表面活性剂(醇类)、油(碳氢化合物)和水(电解质水溶液)组成的透明、各相同性的热力学稳定体系。
微乳液的分散相质点为球形,半径通常为10~100 nm[3]。
微乳液有2种基本类型,即水包油型(O/W)和油包水型(W/O,也叫反相微乳),前者是以油为分散相,水为分散介质,后者反之。
该方法优点是以水相作为合成纳米级颗粒的“纳米微反应器”,且高度分散、大小均一,在纳米微粒的制备领域具有潜在的优势。
在制备微乳前要利用拟三元相图来寻找形成W/O型微乳液体系的最佳条件,以确定微乳的存在区域及微乳区面积大小。
纳米材料的制备方法纳米材料的制备方法主要包括:物理法和化学法两大类。
(1)物理法:放电爆炸法、机械合金化法、严重塑性变形法、惰性气体蒸发法、等离子蒸发法、电子束法、激光束法等。
(2)化学法:气相燃烧合成法、气相还原法、等离子化学气相沉积法、溶胶一凝胶法、共沉淀法、碳化法、微乳液法、络合物分解法等。
纳米微粒和纳米材料具有广阔的应用前景,它的应用领域包括化工、机械、生物工程、电子、航天、陶瓷等方面。
(1)纳米微粒用作催化剂。
聚合型马来酰亚胺树脂材料在军工、民用行业得到广泛应用,它性能优良,被认为是最有发展前途的树脂基体。
纳米TiO2可作为N—苯基马来酰亚胺聚合反应的催化剂。
(2)纳米微粒可提高陶瓷塑性。
纳米TiO2与其它金属氧化物纳米晶一起可组成具有优良力学性能的各种新型复合陶瓷材料,在开发超塑性陶瓷材料方面具有诱人的前景。
(3)纳米微粒用作润滑油添加剂,可大大减轻摩擦件之间的磨损。
把平均粒径小于10nm的金刚石微粒(NMD)均匀加入Cu10Sn合金基体中,干滑动摩擦试验结果表明:在载荷78N、滑动速率低于1.6m/s时,Cu10Sn2NMD复合材料的摩擦因数稳定在0.19左右,远低于基体Cu10Sn合金(μ=0.31~0.38)。
而且Cu10Sn合金在摩擦过程中产生较大的噪音,摩擦过程不平稳,而Cu10Sn2NMD复合材料摩擦过程非常平稳,噪音很低,并且在摩擦副的表面形成了部分连续的固体润滑膜。
(4)纳米颗粒用于生物传感器。
葡萄糖生物传感器在临床医学、食品工业等方面都有重要的用途。
将金、银、铜等纳米颗粒引入葡萄糖氧化酶膜层中,由此制得的生物传感器体积小,电极响应快、灵敏度高。
(5)纳米复合材料。
采用溶胶—凝胶法可制备出聚酰亚胺/二氧化硅纳米复合材料。
(6)纳米微晶应用于磁性材料中,可制备出高效电子元件和高密度信息贮存器。
纳米材料人们将晶体区域或其它特征长度在纳米量级范围(小于100nm)的材料广义定义为"纳米材料"或"纳米结构材料"(nanostructured materials)。