卫星环境工程和模拟试验上
- 格式:ppt
- 大小:2.40 MB
- 文档页数:46
北京中质卓越质量咨询中心京质咨询字[2011]048号关于举办“空间环境工程及试验技术”专题讲座的邀请函各有关单位:本课程由国内著名空间环境工程专家、原航天医学工程研究所的“应急生保试验舱(主舱)”研制负责人和508所“动态热真空试验设备”的设计和顾问组组长、航天五院511所原三室(真空室)主任、511所科技委原常务副主任、1985年8月作为国家公派赴美访问学者、1986年9月至1988年2月被聘为美国阿克隆(AKRON)大学机械工程系研究员、终身享受国务院政府特殊津贴专家刘锋研究员主讲,具体内容安排如下:主办单位:北京中质联合卓越质量咨询中心授课时间:2011年11月23日——25日(23日报到地点:北京)教学方式:采用交流、讨论、案例分析等互动式模式。
为学员与专家、学员与学员之间建立广阔的交流平台,使学员在学习后也可以与专家共同解决在自己工作实践中遇到的技术难题。
授课对象:型号/项目主管、型号/产品设计师、可靠性工程管理及技术人员,大中院校从事空间环境研究的课题组研制人员,环境试验工程师及其他对本专题感兴趣的相关人员。
【授课内容】第一讲航天器环境可靠性试验技术1、航天器区别其他产品的特点2、航天器研制阶段3、航天器的空间环境及其效应4、对空间环境及其效应的设计对策5、航天器空间环境地面环境可靠性试验原理6、空间环境地面环境可靠性试验项目7、地面环境可靠性试验在航天器各研制阶段的任务8、试验规范及试验标准第二讲热平衡试验技术一、热平衡试验模拟理论1、真空气体传导与对流可忽略,1.33exp -3, 6.65exp -2, 1.33exp-2真空泵,扩散泵,分子泵2、冷黑热沉与航天器间辐射换热与温室辐射换热相比小于0,01、100K,吸收率不小于0.9的黑漆,朝向航天器的表面涂黑漆的液氮3、太阳辐射太阳模拟器到达热流法,吸收热流法二、热控模型热平衡试验1.目的:验证热设计的正确性A、获取验证热数学模型需要的试验数据B、验证热控产品的功能和性能C、为确定正样航天器热平衡试验验证方法提供依据2.试验对热控模型的要求A、按初样航天器或舱段的设计(尺度,材料,布局,位置……)制造B、组件可利用模拟件(表面性质,热功率,热容与初样一致)C、各组件,重要位置布置温度传感器,布置模拟热功率的元件和内引线3.试验对试验设备的要求A、空间模拟器B、测量设备C、净化4.试验工况与步骤A、低温工况B、高温工况三、正样航天器的热平衡试验1.目的:A、验证热设计的正确性B、获取验证热数学模型需要的试验数据C、验证热控产品的功能和性能2.试验对正样航天器技术的要求A、尽可能用正样产品B、个别模拟件必须热接口与正样一致3.试验对试验设备的要求A、空间模拟器B、测量设备四、组件试验热平衡试验1.目的:A、验证热设计的正确性B、获取验证热数学模型需要的试验数据C、获取在工作温度上,下限时元器件的温度D、检验机光电组件温度范围,温度梯度,温度均匀2.那一类组件需要作热平衡试验A、元器件功率大与0.3 瓦B、接触传热大于200瓦/平米C、辐射传热大于50瓦/平米3.试验对送试产品的要求A、鉴定组件B、模拟在航天器上的热边界条件4.试验对试验设备的要求A、真空热试验设备B、至少能使受试组件达到其温度上下限五、热平衡试验结束的判据A、传统方法B、外推方法:航天器温度场瞬时温度与极限温度预报理论(AIAA-81 1141)在地面和天上的应用第三讲热真空试验及热循环试验技术一、热真空试验A、航天器热真空试验B、组件热真空试验C、温度稳定的判据D、温度测点,温变速率二、热循环试验A、航天器热循环试验B、组建热循环试验C、温度稳定的判据D、温度测点,温变速率三、其他空间环境地面试验A、磁试验:1)、试验设备2)、航天器级3)、有磁性组建B、微放电与二次放电与热真空试验结合C、充放电试验D、检漏试验E、材料级试验:1)、紫外试验2)、原子氧试验3)、空间综合辐照试验【培训费用】2200元(以上费用包括培训费、教材费、场地费、证书费、二日中餐等费用;食宿统一安排,费用自理。
基于LabVIEW的冲击响应谱试验测量系统研制罗纪; 沈志强; 焦安超; 王磊【期刊名称】《《环境技术》》【年(卷),期】2019(000)0z2【总页数】5页(P47-51)【关键词】冲击响应谱环境试验; LabVIEW【作者】罗纪; 沈志强; 焦安超; 王磊【作者单位】北京卫星环境工程研究所北京 100094【正文语种】中文【中图分类】V416.2引言冲击试验是环境与可靠性试验的一种,其目的是验证受试产品在运行过程中耐受冲击作用的能力。
传统的冲击试验,是以简单脉冲产生的冲击效果进行实际冲击环境的模拟。
这种方法很大的局限性,与真实的冲击环境存在较大差异,同时会损坏试验设备的减震装置。
冲击响应谱试验技术采用冲击载荷作用在系统上的响应来衡量冲击作用的效果,可以十分科学,合理的描述试验条件[1-2]。
本文在对冲击响应谱试验的原理及算法充分研究的基础上,以NI数据采集系统硬件为基础,利用Lab-VIEW编程语言开发了一套基于LabVIEW的冲击响应谱测试系统。
1 冲击响应谱的原理及计算方法冲击响应谱(SRS)通常又称“冲击谱”,是指将实际的物理系统分解成一系列线性的、相互独立的、单自由度的质量弹簧系统,当其公共基础受到冲击激励时,对每个单自由度系统进行冲击响应分析计算,得到响应最大值,和其对应的固有频率组成函数响应曲线[3-5]。
图1 冲击响应谱计算模型从对冲击响应谱的定义中不难发现,在冲击响应谱的计算过程中首先要进行冲击响应的计算,来自外界的输入施加到系统上时必将会产生相应的输出即系统的响应,在输入已知或事先给定的情况下,计算系统的输出首先需要知道的就是系统的模型,也就是结构动力学方程。
设单自由度系统的物理模型如图2所示。
单自由度系统的数学方程为:其中m、c、k分别为系统的质量、阻尼和刚度。
设代入式(1)可得:其中和分别表示系统的固有频率和阻尼比。
方程的通解为:上式为位移响应与时间t和固有频率fn的关系式,表示为X(t,fn),一般的冲击响应谱用加速度响应和频率的关系式进行表示,对上面的式求二阶导数后表示为冲击响应谱计算过程如下:假设冲击脉冲的持续时间为t∈(ta,tb),其中ta,tb分别是系统受到冲击激振作用的起始和结束时刻;分析的固有频率fn∈(fn,fm),其中fn、fm分别表示分析频率的上下限。
万方数据 万方数据 万方数据航天器环境工程2007年第24卷254cm,工作区域为15.2cm×25.4cm。
如果试验安装板大于25.4cm×25.4cm,则板不能旋转,但也能使用。
一般试验最多可安装20个器件。
束流密度范围一般是Ioz~10cm。
·s~,注量一般是103~10”cm|2,所以试验时间为10~103s。
束斑直径西2~30mm。
样品板安装机构照片如图1。
图1BsEuTF设各样品板安装机构图Fi91Mound“gsampIestotlle鲫plehoIderintheBsEu耶Facn崎(2)LBL(LawrellceBerkeleyLaboratory)的回旋加速重离子单粒子效应辐照设备LBL的2.24m回旋加速设备把回旋加速器与EcR离子源组合起来。
EcR离子源提供荷质比相近的混合离子;回旋加速器本身作为质量分析器分离各种离子,从而实现不同离子的切换,使被辐照器件在几分钟内改变LET值。
束流强度改变主要通过在ECR源出口加各种散射板获得,变化范围达9个数量级。
辐照束斑可调范围毋1~10cm。
提供重离子的LET值范围0.0l~98M“,·cm2/mg,质子能量变化范围1~55Mev。
Aemspace公司在该设备终端建立了一个专门做SEE试验的靶室。
(3)TAMIJ(TexasA&MUIlivers时)回旋加速器重离子单粒子效应试验设备TAMu的SEE试验设备提供重离子的LET值范围是0.0l~93.4Mev·cm2/mg。
离子切换时间一般小于lh。
通过磁散焦、薄膜散射磁扫描技术,器件得到很均匀的辐照,束流调节范围达几个数量级。
设备配备较精密的束性能测试系统。
辐照过程可实现程序化全自动控制。
设备提供各种计算机接口,并且提供用户单粒子效应监测软件包。
3.1.2高能质子辐照试验设备最近,高能质子在复杂器件中产生的单粒子翻转和锁定日益引起研究关注。
《环境工程学实验》指导书杨红刚刘艳丽武汉理工大学资环学院2007年2月目录实验一曝气设备充氧性能测定实验┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅3实验二混凝实验┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅3实验三有害固体废物固化实验┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅9实验四可燃固体废物热值的测定┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅11实验五天然及污染水体综合处理分析技术┅┅┅┅┅┅┅┅┅┅┅┅13实验六空气中总悬浮微粒测定┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅15 实验七碱液吸收气体中SO2实验┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅19 实验八环境噪声测试(由杨红刚老师提供)实验一曝气设备充氧性能测定实验一、实验目的1.加强理解曝气充氧的原理及影响因素;2.了解掌握曝气设备清水充氧性能的测定方法;3.测定曝气设备氧的总转移系数Kl a。
计算充氧能力Q s。
二、实验原理曝气是人为地通过一些设备,加速向水中传递氧的过程。
常用的曝气设备分为机械曝气和鼓风曝气两大类。
无论哪一种曝气设备,其充氧过程均属传质过程。
空气中的氧向水中转移的机理为双膜理论。
当气液两相作相对运动时,其接触面(界面)的两侧分别存在着气体边界层(气膜)和液膜边界层(液膜)。
氧在气相主体内以对流扩散方式通过气膜,最后以对流扩散方式转移到液相主体—水中,由于对流扩散的阻力比分子扩散的阻力小得多,所以氧的转移阻力集中在双膜上(主要来自液膜)。
根据传质原理,氧向水中转移的速率与水中亏氧量及气液接触面面积呈正比。
其基本方程式为:dc/dt=-KL a(C s-C)变量分离积分整理后,得曝气设备总转移系数:KL a=-2.303/(t-t0)*lg(C s-C0)/(C s-C t)式中:KL a—氧总转移系数(1/分或1/时)t、t0—曝气时间(分)C0—曝气初时池内溶解氧浓度实验时使C=0C s—曝气池内液体饱和溶解氧值(mg/l)C t—曝气某一时刻t时,池内溶解氧浓度(mg/l)由上式可看出,影响氧速度KL a的因素很多,除了曝气设备本身结构尺寸、运行条件之外,还与水质、水温有关。