C.书的单价
D.书的总价
(6)在一定的时间内,工作效率和工作总量( A )。
A.成正比例关系 B.成反比例关系
C.不成比例关系 D.无法确定
(7)右表中,如果A与B成反比例,则x=( A )。
A.3.6
B.2.5
C.1.5
D.5
0.5:x=0.1:2.4 解:0.1x=0.5×2.4
0.1x=1.2 x=1.2÷0.1 x=12
3
A.15
B.10
C.5
D.6
(4)姐姐和弟弟周末在虎英公园骑自行车游玩,右边的图象表 示他们骑车的路程和时间的关系,弟弟骑车行驶的路程和时 间( A )。 A.成正比例关系 B.成反比例关系 C.不成比例关系 D.无法确定
(5)买同样的书,所花的钱数与( B )成正比例。
A.书的页数
B.书的本数
正比例关系。
关系式 y=k(一定)
x
x×y=k(一定)
图像 正比例图象是一条直线
反比例图象是一条曲线
不同点 两种量变化的方向相同
两种量变化的方向相反
相同点 两种相关联的量。一种量发生变化,另一种量也发生变化。
判断 方法
(1)分析数量关系,确定哪两个量是相关联的量。 (2)分析这两个相关联的量,它们是比值一定,还是乘积一定。 (3)如果比值一定就成正比例,如果乘积一定就成反比例。
1.判断下面各题中的两种量是否成比例;若成比例,成什么比 例。 (1)圆的半径与面积。( 不成比例 ) (2)汽油的数量一定,使用天数与每天的平均消耗汽油量。 ( 反比例 ) (3)在一花坛上种的玫瑰与郁金香的面积。( 不成比例 )
(4)正方形的周长与边长。( 正比例 ) (5)香蕉的单价一定,香蕉的千克数与总价。( 正比例 ) (6)梨的总个数一定,按每袋个数相等的规格捆绑销售,袋数与 每袋的个数。( 反比例 )