最新模电功率放大电路
- 格式:ppt
- 大小:1.08 MB
- 文档页数:42
实验目的和要求:① 了解运放调零和相位补偿的基本概念。
② 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。
③ 熟练掌握运算放大电路的故障检查和排除方法,以及增益、传输特性曲线的测量方法。
实验原理:预习思考:1、 设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,将设计过程记录在预习报告上; 电路图如P20页5-1所示,电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ2、 设计一个同相比例放大器,要求:|A V|=11,Ri>100KΩ,将设计过程记录在预习报告上;R F R LVo电源电压为±15V ,R 1=10kΩ,R F =100 kΩ,R L =100 kΩ 3、 设计一个电路满足运算关系 VO= -2Vi1 + 3Vi2减法运算电路:1123213111113232)()()(i f i f i f i i O V R R V R R R R R R V R R R V R R R V V -++=++-+=3)()(32131=++R R R R R R f ,0,22211==⇒=R R R R R f f取Ω=Ω=Ω=Ω=K R K R K R K R f 100,0,20,10321实验电路如实验内容:1、反相输入比例运算电路(I ) 按图连接电路,其中电源电压为±15V ,R 1=10 kΩ, R F =100 kΩ, R L =100 kΩ, R P =10 kΩ//100 kΩAR1R F Rp=R F //R1R LVoVi+Vcc-Vcc输入端接地,用万用表测量并记录输出端电压值,此时测出失调电压0.016 V 分析:失调电压是直流电压,将会直接影响直流放大器的放大精度。
直流信号测量:Vi/V V O /V Avf测量值 理论值 -2 14.25 -7.125 -10 -0.5 4.98 -9.96 -10 0.5 -5.02 -10.04 -10 2-12.87-6.435-10实验结果分析:运算放大器的输出电压摆幅受器件特性的限制,当输入直流信号较大时,经过运放放大后的输出电压如果超过V OM ,则只能输出V OM 的值。
100w功率放大电路100w功率放大电路是一种用于放大电信号的电路,它可以将输入信号的功率放大到100瓦特。
这种放大电路通常用于音频放大器、无线电发射机等应用中。
在100w功率放大电路中,通常会使用功率放大器来实现信号的放大。
功率放大器是一种特殊的放大器,它的主要功能是将输入信号的功率放大到设定的水平。
在放大器电路中,有两个关键参数需要考虑,一个是增益,即输入信号经过放大后的输出信号与输入信号之间的比例关系;另一个是功率,即输入信号的功率和输出信号的功率之间的关系。
在设计100w功率放大电路时,需要考虑以下几个方面:1. 电源供应:100w功率放大电路需要足够的电源供应来支持放大器的工作。
通常会使用高功率的电源模块来提供稳定的直流电压。
2. 散热设计:由于功率放大器会产生大量的热量,散热设计是非常重要的。
通常会使用散热片、风扇等散热设备来保持电路的温度在合理范围内。
3. 电路保护:为了保护放大器和其他电路免受过载、短路等情况的损害,通常会在电路中添加过载保护、短路保护等功能模块。
4. 输入输出匹配:为了获得最佳的信号放大效果,输入输出之间的阻抗匹配非常重要。
通常会使用阻抗转换器、匹配网络等来实现。
5. 调整和校准:在电路设计完成后,需要对电路进行调整和校准,以确保电路的性能和稳定性。
100w功率放大电路的应用非常广泛。
在音频领域,它可以用于音响系统、演播室设备等;在通信领域,它可以用于无线电发射机、基站设备等。
通过使用100w功率放大电路,可以将输入信号的功率放大到足够高的水平,以满足各种应用的需求。
100w功率放大电路是一种用于放大电信号的电路,它可以将输入信号的功率放大到100瓦特。
在设计和应用该电路时,需要考虑电源供应、散热设计、电路保护、输入输出匹配等因素。
通过使用100w功率放大电路,可以实现各种应用中对信号放大的需求。
NE5532构成的电子二分频功率放大器电路图
图1是电子二分频功率放大器。
众所周知,高保真音箱是由低音和高音扬声器单元组成的(三分频音箱还有中音单元),必须使用分频器,使它们各放其声。
传统的分频方法是在功放以后采用LC分频器,由于这种分频器处理的是功放输出的大电流信号,因此体积大、制作成本高、制作和调试困难;分频器插接在功放与扬声器之间,必然带来插入损耗,并且使功放的阻尼特性变差。
在功放前采用电子分频器,则完全避免了功放后LC分频器的缺点,具有体积小、成本低、分频点准确、分频曲线理想、制作和调试简便的优点。
由于功放输出可以直通扬声器,意味着其效率和阻尼特性都有明显提高。
图10电路中,每一声道均采用一块NE5532双运放组成两个巴特沃斯二阶有源滤波器,其中,Icl-1是低通滤波器(LPF),ICl -2是高通滤波器(HPF),分频点为3.7kHz,电压增益A=1.6倍(3.9dB),品质因数Q=0.7,电路输入阻抗10k),输出阻抗<lk。
电位器RPl、RF2分别用于调节送往功放电路的低、高音的电平,应根据放音效果细心调节,使低、高音达到合适的比例,取得平衡的放音效果。
RPl、RP2不可当作音量电位器用,其一经调好,即应固定不动。
在电路总输
入端前应设有音量电位器。
otl功率放大电路OTL功率放大电路摘要:OTL功率放大电路(Output Transformerless Power Amplifier)是一种常用于音频放大器设计中的电路。
与传统的功率放大电路相比,OTL功率放大电路不需要使用输出变压器,因此具有结构简单、成本低廉等优点。
本文将介绍OTL功率放大电路的基本原理、电路结构与应用特点,并对其性能进行评估。
1. 引言OTL功率放大电路是一种在音频放大器设计中常用的电路,其主要特点是不需要使用输出变压器,因此具有结构简单、成本低廉等优点。
在音响设备、电视、收音机等领域广泛应用。
本文将详细介绍OTL功率放大电路的原理和设计要点。
2. OTL功率放大电路的原理OTL功率放大电路的基本原理是利用晶体管的功率放大特性,将音频信号放大到足够大的电压和电流,以驱动扬声器工作。
传统的功率放大电路通常使用输出变压器实现电压与电流的升压与降压变换,而OTL功率放大电路则使用晶体管的特性直接进行功率放大。
这样的设计不仅简化了电路结构,而且提高了效率和稳定性。
3. OTL功率放大电路的电路结构OTL功率放大电路的典型电路结构包括输入级、放大级和输出级。
输入级用来将输入电源转化为准备放大的信号;放大级用来放大信号到足够大的电压和电流;输出级将放大后的信号输出到扬声器。
其中,放大级是OTL功率放大电路的核心,其设计和选用的晶体管对性能有很大影响。
常见的OTL功率放大电路有单端式和双端式两种。
单端式OTL功率放大电路使用单个晶体管进行放大,结构简单,适合于小功率放大;双端式OTL功率放大电路使用两个晶体管相互驱动,能够提供较大的功率输出。
4. OTL功率放大电路的设计要点在设计OTL功率放大电路时,需要注意以下几个要点:4.1 晶体管的选用:晶体管是OTL功率放大电路的核心元件,其性能对电路的稳定性和放大效果有重要影响。
选用时应考虑参数包括工作频率、功率承受能力、线性度等。
4.2 回路设计:合适的回路设计可以提高OTL功率放大电路的稳定性和音质。
模电放大器知识点总结一、模拟电子放大器的基本原理模拟电子放大器的基本原理是根据输入信号的变化而控制输出信号的幅度。
在模拟电子放大器中,输入信号一般由电压或电流表示,输出信号也是同样的类型。
模拟电子放大器的工作原理主要涉及两个重要的组成部分:放大器电路和驱动电路。
1. 放大器电路放大器电路是模拟电子放大器的主要组成部分,通常由晶体管、场效应管或集成电路等器件组成。
这些器件通过将小信号输入转换为大信号输出来实现放大器的功能。
在放大器电路中,信号通常经过多级放大,以达到所需的放大倍数。
同时,放大器电路还需要具有低失真、高带宽、低噪声和稳定的工作状态等特点。
2. 驱动电路驱动电路是模拟电子放大器的另一个重要组成部分,它通常用于提供输入信号和控制放大器工作状态。
在驱动电路中,会使用一些传感器检测输入信号,并通过一些特定的算法来计算输出信号。
驱动电路还负责为放大器提供必要的电源和保护电路。
驱动电路还需要具有低功耗、高精度和高速度等特点。
二、模拟电子放大器的分类根据放大器电路的结构和工作原理,模拟电子放大器可以分为很多种类,其中包括:A 类放大器、B 类放大器、AB 类放大器、C 类放大器、D 类放大器和E 类放大器等。
下面分别介绍这些放大器的特点和应用。
1. A 类放大器A 类放大器通常具有高增益和低失真的特点,适用于音频放大器、通用放大器和低功率应用等。
2. B 类放大器B 类放大器通常具有较高的效率和低功耗的特点,适用于音频放大器、功率放大器和低频应用等。
3. AB 类放大器AB 类放大器综合了 A 类放大器和 B 类放大器的优点,通常具有高增益和高效率的特点,适用于音频放大器、功率放大器和通用放大器等。
4. C 类放大器C 类放大器通常具有高效率和高功率的特点,适用于功率放大器、射频放大器和频率多重器等。
5. D 类放大器D 类放大器通常具有较高的效率和低功耗的特点,适用于音频放大器、功率放大器和数字信号处理器等。
《功率放大电路设计》摘要:本文总结了电子设计实验中常用的几种功率放大电路的设计方案,针对不同的设计要求和设计条件从电路搭建、注意事项及测试结果进行了说明,能满足大多数实验电路设计的需要。
关键词:功率放大;推挽输出;丙类功放一.前言在电子电路设计中,很多系统需要对输出信号进行放大,以提高其带负载能力,驱动后级电路,因此就要对信号进行功率放大。
功率放大器的主要性能指标有输出功率及效率,其按照电流导通角的不同,可分为甲、乙、丙三类工作状态。
甲类放大器电流的通角为180度,适用于小信号低频放大,效率最低;乙类放大器的通角约为90度,适于宽带大功率工作,大多数集成运放的末级输出都采用乙类推挽形式;丙类放大器的电流的通角则小于90度,电流波形失真太大,只适于以调谐回路为负载的窄带放大,但效率较甲、乙类高。
【1】二.电路设计(一)大电流高摆幅运放若不考虑成本限制,可直接采用大输出电流、高摆幅运算放大器作为输出级。
设计重点在于运放的选择及电路连接。
市面上有各种性能的Buffer以及可用以驱动的运放,它们能满足大多数设计的要求。
专门的驱动芯片如BUF634,其输出电流达250mA,摆率为2000V/us。
美国德州仪器公司也有许多相关产品,如THS3121,输出电流可达450mA,摆率达1500V/us。
设计的关键在于芯片的正确使用,由于大多数为电流型运放,故反馈电阻的选取很重要,另外由于处理的是高频信号,所以电源去耦,电路布线方面也须十分注意。
经实验测试,THS3121在反馈电阻取470Ω、增益为2时在50Ω负载时小信号-3dB带宽达100MHz,-0.1dB带宽达30MHz,并且在电压峰-峰值为10V的输出状态下,频率大于10MHz时仍无失真现象。
(二)互补对管推挽输出若对功率放大要求不高,可采用分立元件搭建,以互补对管推挽电路作为输出级。
设计的关键在于根据系统要求选择合适的互补对管。
互补对管采用2SD667和2SB647,其特征频率为140MHz,集电极功率耗散为0.9W,适合低频功率放大。
模电共射放大电路实验报告一、实验目的1.了解共射放大电路的基本原理。
2.学习使用示波器和函数信号发生器进行实验测量。
3.通过实验观察和分析,掌握共射放大电路的输入输出特性及放大倍数。
二、实验原理共射放大电路是一种常用的B级放大电路,其基本原理如下:1.输入信号加在基极上,输出信号从集电极获取。
2.NPN型晶体管工作于放大区,理想状态下其输入电流为零。
3.放大因子(放大倍数)由以下公式表示:β=ΔIC/ΔIB,其中,IC 表示集电极电流,IB表示基极电流。
三、实验器材和器件1.功率放大电路板2.BJT型晶体管(1个)3.示波器(1台)4.函数信号发生器(1台)5.变阻器(1个)6.电阻(若干)7.电压表(1个)8.电流表(1个)四、实验步骤1.按照电路图连接好实验电路。
2.设置示波器,将函数信号发生器的正弦波输出连接到电路的输入端,并调整信号发生器输出幅度和频率。
3.通过示波器测量电路的输入和输出电压,并记录数据。
4.设计合适的电路参数,并计算出放大倍数。
5.测量电路中晶体管的电流,包括基极电流和集电极电流,并记录数据。
6.分析并比较不同参数下的输入输出特性及放大倍数。
五、实验结果1.随着输入信号幅度的增加,输出信号也相应地增加,但增长速率逐渐减小,最终达到饱和状态。
2.随着输入信号频率的增加,放大倍数逐渐下降,输出信号失真。
3.实验测得的放大倍数与理论计算值基本吻合。
六、实验讨论1.分析造成实验测得的放大倍数与理论值存在差异的原因,如电路元件的参数、电压、电流等。
2.探讨共射放大电路在实际应用中的优缺点,并比较不同类型放大电路的特点。
七、实验结论通过共射放大电路实验,我们了解了共射放大电路的基本原理和特性,掌握了使用示波器和函数信号发生器进行实验测量的方法。
实验中,我们观察了输入输出特性及放大倍数,并进行了数据分析和比较。
此外,我们还对共射放大电路的优缺点进行了探讨。
通过本次实验,我们对模拟电路的工作原理有了更深入的理解,并掌握了一定的实验技能。