危岩体稳定性分析
- 格式:doc
- 大小:208.50 KB
- 文档页数:10
探究崩塌危岩体稳定性评价随着城市化建设的不断推进,对岩体稳定性的评价与监测变得尤为重要。
崩塌危岩体是指在自然条件或人为因素的作用下,岩石发生破坏、塌落或滑动等现象的岩体。
崩塌危岩体的稳定性评价是为了预防和减少因岩体稳定性问题造成的灾害,保障人民生命财产安全。
本文将就崩塌危岩体稳定性评价进行探究,以期提高岩体稳定性的评价与预测能力。
一、岩体稳定性评价的意义和目的崩塌危岩体的稳定性评价是为了全面了解岩体的力学性质和岩体稳定性状况,为岩体的工程治理和灾害防治提供科学依据。
岩体稳定性评价的目的主要有以下几点:1. 评价岩体的整体稳定性,判断岩体的稳定性状况,为岩体的规划设计和工程建设提供依据;2. 预测岩体可能发生的破坏或塌落,为岩体灾害的防治提供科学依据;3. 对岩体稳定性问题进行科学的评价和分析,为岩体的改善和治理提供技术支持;4. 提高岩体稳定性评价的准确性和预测能力,为相关部门提供科学的决策依据,减少岩体灾害对人民生命财产造成的影响。
岩体稳定性评价的关键技术主要包括岩体力学参数测定、稳定性分析方法和技术手段等方面。
1. 岩体力学参数测定技术:包括岩石的取样方法、室内试验和现场试验等方面的技术,为岩体力学参数的准确测定提供技术支持;2. 稳定性分析方法:包括极限平衡法、数值模拟法、监测预警法等方式,为岩体的稳定性分析提供科学依据;3. 技术手段:包括地质雷达、GPS监测、遥感技术等现代科技手段的应用,为岩体稳定性评价提供技术支持。
四、岩体稳定性评价的挑战与对策岩体稳定性评价在实际工程中面临着一些挑战,主要包括技术手段不够完善、评价方法不够科学和评价准确性不够高等问题。
针对这些挑战,我们需要采取以下对策:1. 加强技术研发,提高岩体力学参数测定技术的准确性和稳定性分析方法的科学性;2. 推广现代科技手段,如地质雷达、GPS监测和遥感技术等,提高岩体稳定性评价的技术水平;3. 加强对岩体稳定性评价的研究和实践,提高岩体稳定性评价的准确性和预测能力。
探究崩塌危岩体稳定性评价岩体稳定性是岩石力学研究的基础之一,其在地质灾害防治中具有重要意义。
崩塌危岩体是指存在稳定性问题、可能发生崩塌的岩体,对人民生命财产安全造成威胁。
因此,对崩塌危岩体的稳定性评价至关重要。
崩塌危岩体的稳定性评价方法多种多样,常用的方法有定量评价和定性评价。
定量评价一般采用数值模拟方法,如有限元法、界面元法等,它能够获得相对准确的结果,但需要较高的技术水平和大量的数据支持。
定性评价则主要采用工程经验法、地质工程判断法、现场观察法等,其对技术要求较低,但存在肉眼主观因素干扰的问题。
评价岩体稳定性时,应考虑以下因素:岩体力学性质、裂隙状态、岩体形态、水文地质条件等。
岩体力学性质是稳定性评价的基础,它涉及到岩石强度、岩石韧性、岩石刚度等。
裂隙状态则反映了岩体内部的剪切、拉伸、压缩等变形状态,从而影响岩体的稳定性。
岩体形态影响了岩体的受力状态和受力边界,是评价岩体稳定性的重要因素。
水文地质条件是指水文地质过程对岩体稳定性的影响,如地下水位升降、降雨等,对加剧岩体稳定性破坏具有重要影响。
定量评价的数值模拟方法应根据具体情况选择,其中有限元法是稳定性评价的主要方法之一。
有限元法能够运用计算机数学模型计算出岩体的应力、应变、位移等参数,通过比较计算结果与实测数据,评价岩体稳定性的可靠性。
界面元法则是将岩体分解为许多小六面体单元,分析每个六面体单元与相邻单元之间的位移、应力情况,从而模拟出岩体的稳定性情况。
由于有限元法和界面元法的计算精度较高,其结果能够为实际的工程中提供准确的信息和指导意见。
定性评价主要是场地观察法和地质工程判断法。
场地观察法是根据场地现状和地质特征,通过观察内部的裂隙、节理、岩性等因素,判断岩体的破坏程度和稳定性。
地质工程判断法较为主观,其根据观察岩体的地质、力学、水文地质特征,结合类似岩体结构破坏的现象及实测资料,用专家判断经验的方式判断岩体的稳定情况。
总之,对崩塌危岩体的稳定性评价需要结合实际地质条件及其他因素综合评价,应根据实际情况采取合理的评价方法,提高评价的准确性和可靠性,有效地保障人民的生命财产安全。
滑塌类危岩体的稳定性分析摘要院危岩体崩塌往往导致重大的生命财产损失。
针对白云质灰岩的特定产状,应用相关理论建立了滑塌式崩塌模型。
在三种不同的荷载组合下计算了危岩体的稳定性,分别得出稳定性系数。
对危岩的安全性进行了定性和定量的分析评价,并提出了防治的原则性建议。
分析过程和结论可供类似的地质和岩体治理参考。
Abstract院Rockfall of dangerous rock mass always leads to a significant loss oflife and property. Aming at specific occurrence ofdolomitic limestone,the slide collapse model is built by using relevant theory. The stability of dangerous rock mass is caculated in threedifferent load combinations, and the stability coefficients were obtained respectively. Security of dangerous rock is evaluated in qualitativeand quantitative ways, and principled suggestion of control is proposed. Similar geologyand rock management can refer the process ofanalysis and conclusion.关键词:地质灾害;危岩体;滑塌;稳定分析Key words院geological disaster;dangerous rock mass;slump;stability analysis中图分类号院P642.21 文献标识码院A 文章编号院1006-4311(2014)23-0026-020 引言随着社会经济的飞速发展,山区建设进程加快。
探究崩塌危岩体稳定性评价崩塌危岩体是指具有一定规模和危害性的岩体,在地下水、工程施工、地震等外力作用下,可能发生崩塌或滑动的岩体。
在地质灾害防治工作中,对于崩塌危岩体的稳定性评价是非常重要的一个环节。
只有通过科学的评价方法,及时发现和评估岩体稳定性的危险性,才能采取有效的治理措施,减轻地质灾害造成的损失。
一、崩塌危岩体稳定性评价的目的及意义1. 目的崩塌危岩体稳定性评价的目的是为了研究该岩体的结构、工程地质特征和稳定性,确定危险性等级,预测可能发生的崩塌或滑动形式,为防灾减灾提供科学依据。
2. 意义崩塌危岩体稳定性评价的意义在于可以及时发现潜在的灾害隐患,从而采取有效的措施进行防治。
这样可以避免或减少地质灾害对生命和财产造成的损失,同时为工程施工提供安全的环境。
二、崩塌危岩体稳定性评价的方法崩塌危岩体稳定性评价的方法主要包括定性评价和定量评价两种。
1. 定性评价定性评价是通过对岩体的地质构造、岩性、节理、裂隙、地下水等进行观测和分析,结合岩体体积、倾向、坡度、地震烈度等因素,判断岩体的稳定性程度。
2. 定量评价定量评价是在定性评价的基础上,通过测量和实验分析,利用力学和数学方法,计算和评估岩体的稳定性,包括岩体的受力特性、变形特性、破坏特性等。
1. 地质构造分析地质构造的分析主要包括岩体的岩层倾向、节理分布、裂隙结构等,通过观测和测量获得数据,并进行定性定量分析。
2. 岩体工程地质特征分析岩体的工程地质特征分析包括岩石的岩性、强度、稠度、滑动面性质等参数的测定和分析。
3. 岩体稳定性分析岩体稳定性分析是根据岩体的工程地质特征和地下水、工程施工、地震等外力作用下的力学响应,研究岩体的稳定性和脆性破坏性。
4. 危岩体评价通过对岩体的稳定性进行评价,划分危岩体的等级,预测可能的危险性,为防治措施的制定提供科学依据。
四、崩塌危岩体稳定性评价的案例分析以某地区的崩塌危岩体稳定性评价为例,通过现场勘察和实验分析,得出了如下结论:1. 地质构造分析该地区岩体的节理发育,裂隙众多,且存在多个节理面交汇,易形成滑动面。
危岩的稳定性评价及治理措施探讨——以长寿区凤城危岩为例摘要:危岩崩塌作为一种主要的山地灾害,危岩崩塌严重威胁着我国山区居民生命财产、城镇建设、矿山及交通运输安全。
本文通过长寿区凤城危岩治理工程为例,对发生危岩崩塌的地质环境条件、危岩破坏模式、稳定性评价及治理措施选择进行了探讨,对类似危岩治理工程设计及施工具有重要指导意义。
关键词:危岩破坏模式稳定性评价治理措施1引言危岩是由多组岩体结构面切割并位于陡崖或陡坡上的稳定性较差的岩石块体组合,是产生崩塌地质灾害的初始物质条件。
危岩崩塌具有突发、快速、强致灾等特性。
作为一种主要的山地灾害,危岩崩塌严重威胁着我国山区居民生命财产、城镇建设、矿山及交通运输安全。
因此对危岩的稳定性评价及治理措施的选择的研究是很必要的。
本文通过长寿区凤城危岩为例,对危岩的稳定性评价及治理措施进行探讨。
2危岩区地质环境概况2.1 地形地貌工程区区域上属四川盆地东南部丘陵~低山区斜坡地带,地形受构造控制明显,山岭走向与构造形迹展布方向一致。
凤城危岩位于桃花溪北岸谷坡,分布两层陡崖合计长4.8km,地势总体上西高东低(桃花溪),标高164.97~356.06m,相对高差191.09m。
为呈近南北走向的河谷岸坡地貌。
2.2地层岩性危岩区区出露的地层由新至老分别为:第四系人工填土层(Q4ml)、残坡积层(Q4el+dl)、崩坡积层(Q4c+dl)、冲洪积层(Q4al+pl)、侏罗系中统上沙溪庙组(J2s)地层。
组成危岩体岩性为侏罗系中统上沙溪庙组(J2s)的紫红色粉砂质泥岩及灰~灰白色砂岩。
2.3地质构造危岩区地质构造位处于梁平向斜近核部附近的南东翼,危岩区地质构造处于梁平向斜近核部的南东翼,岩层产状325~340°∠5~12°,单斜产出,危岩带岩体裂隙普遍发育,区内岩体发育的优势裂隙主要有以下几组:倾向60°~90°倾角70°~75°;倾向90°~110°倾角68°~70°;倾向150°~180°倾角58°~80°;倾向230°~250°倾角47°~58°;2.4水文地质条件区内斜坡岩土层具双层结构,形成以双层为主体的斜坡水文结构特点,即上部坡体结构松散岩类孔隙水和下部基岩裂隙水两种类型。
边坡崩塌危岩体稳定性分析与防治工程设计摘要:崩塌危岩体是常见的地质灾害之一。
以某公路岩质边坡崩塌地质灾害为工程背景,通过地质分析、稳定性分析、影响因素分析三个角度出发,对边坡崩塌危岩体进行评价,并基于评价结论提出以锚杆工程+主动柔性防护网为手段的工程防治措施。
关键词:边坡;崩塌危岩体;防治工程一工程概况1.1 项目概况该公路边坡位于帕米尔高原喀喇昆仑山高山区,地貌类型包括高山和谷地,发育的微地貌有阶地、漫滩,山势陡峭,山体相对高差大,地形复杂,海拔高程在3500-4000 m以上,相对高差大于1000 m。
1.2 地质情况该边坡为岩质边坡,出露的地层主要为下元古界(Pt1)和第四系(Q),岩性主要为黑云母斜长片麻岩为主,透辉石斜长变粒岩等,以及第四系中下更新统冰碛物(Q1-2gl)、上更新统风积物(Q3eol)、上更新统冲洪积物(Q3apl)、上更新统-全新统残坡积层(Q3-4del)和全新统冲积物(Q4al)。
1.3 区域构造与地震该区域内新构造运动强烈,新构造运动形式主要表现为差异性升降运动侵蚀和剥蚀作用未曾停止,冰期、间冰期交替出现,古地理环境不断变迁从而形成了现今的构造-剥蚀地貌形态。
该区地震动峰值加速度不小于0.4g,地震基本烈度不低于9度,为地壳不稳定区。
1.4 地下水情况该区域内赋存的地下水类型为基岩裂隙水和第四系松散岩类孔隙潜水。
二边坡地质灾害特征2.1 地质灾害特征该边坡发育的地质灾害主要为岩质崩塌。
坡向为38°,坡度约90°,岩性为片麻岩,岩层层厚0.5-1.5m,呈中厚-巨厚层状。
危岩体高约18.7m,长18.7米,宽约20m,体积约2244m3,为小型崩塌。
地层产状为55°∠65°,为顺向坡(见照片4-6)。
主要发育3组节理裂隙,第一组裂隙产状315°∠79°,裂隙延伸长度10m,间距1-3m,裂隙张开无充填。
第二组裂隙产状283°∠16°,裂隙延伸长度8米,间距1.5m,裂隙张开无充填。
城市地理082地理研究·GEOGRAPHY浅谈危岩体-崩塌形成机制分析与稳定性评价樊兴朝(四川省地质矿产勘查开发局化探队,四川 德阳 618000)摘要:危岩体-崩塌形成机制分析与稳定性评价,是危岩、崩塌勘查的核心任务,也是危岩、崩塌防治工程设计的基础和依据,因此,本文以工程案例为基础资料对上述两个问题谈一点自己的工作体会。
关键词:形成机制;稳定性;危岩体;崩塌引言:参考国内相关文献[1][2][3][4],可以给出崩塌和危岩体的定义,地质体在重力作用或其它外力作用下,从高陡坡突然加速崩落、滚落或跳跃的现象叫做崩塌,崩塌具有明显的拉断或倾覆特征,崩塌引起人类生命财产和生态环境的损失称为崩塌灾害;危岩体是被多组结构面切割分离,稳定性差,可能以倾倒、坠落或塌滑等形式崩塌的地质体。
从上述定义可知,崩塌是一种外动力地质作用,是地质体破坏的一种形式,而危岩体则是一种地质体,是崩塌发生的物质基础。
危岩体-崩塌的形成和发展是一个由量变到质变的过程,一般情况下,崩塌的发生都要经历长时间的危岩体的孕育过程。
危岩、崩塌勘查的首要任务是危岩体的稳定性评价,包括定性分析和定量计算,定性分析居于主导地位,是定量计算的基础。
危岩体是在各种地质作用下形成的地质体,崩塌是一种地质作用,要想科学的预测危岩体可能发生的崩塌模式,对其稳定性作出科学的评价,就必须对危岩体-崩塌的发展演变过程、形成条件、影响因素进行分析,即危岩体-崩塌形成机制分析。
本文以笔者参与的四川省屏山县屏山镇大桥村黄金组危岩排危除险实施方案编制项目为例,对危岩体-崩塌形成机制分析与稳定性评价谈一点自己的工作体会。
1.概述黄金组危岩于20世纪80年代发生过崩塌,最大的落石体积约13m3,落石曾将1户村民房屋毁坏,主要威胁其下方18户村民共76口人的生命及财产安全,因此,有必要对其进行防治。
2.危岩区自然地理及地质环境条件黄金组危岩位于屏山县西南方向直距约5km 处,行政区划隶属四川省屏山县屏山镇大桥村黄金组;地处四川东部中亚热带湿润气候区,多年平均气温17.5℃,多年平均降水量911.7mm,属岷江水系,地表水系不发育。
浅析危岩稳定性方法一、我国危岩研究现状危岩崩塌、山体滑坡、泥石流等地质灾害时有发生,灾害多发地区集中分布在15个地区,受灾面积达173万平方公里,尤其是公路、铁路等线状工程受害最为严重。
由于灾害发生具有隐蔽性强、受灾面广、受灾点多等特点,给公路、铁路沿线沿线带来严重的生命及财产安全威胁[1]。
铁道部门自上世纪中期加大对铁路沿线危岩的重视,危岩研究也成为重点研究对象,国内专家在这方面的研究也取得十分显著的成果,结合危岩特性,根据地质情况、路面情况对危岩风险水平作出评估。
当然,由于危岩体属于边坡工程研究的范畴,遵循边坡工程的学科体系,所以对危岩体的研究必须要按边坡工程研究的套路进行,对多种学科进行渗透、结合,除了数学、岩土力学、工程力学、工程地质学等学科以外,还要结合岩土工程测试技术、计算机仿真等技术,我们虽然取得令人瞩目的丰硕成果,但还有很多实际的问题急需解决。
危岩体工程的地质条件复杂、裂缝多、软弱夹层相互交割,其破坏形式多种多样,失稳原因复杂性、隐蔽性给稳定评估工作带来极大困难,因此,对于危岩研究的力度和重视不容懈怠。
我国对危岩和崩塌地质灾害稳定性的研究主要分三个阶段:定性分析阶段、理性认识阶段、成熟稳定阶段。
定性分析阶段是指七十年代以前,对其研究仅仅停留在对危岩崩塌及其他地质灾害的定描述与识别的层面。
第二个阶段是七十年代到八十年代,对其认识从感性上升到理性,分类研究危岩、崩塌形成機制的主要特点,积极开展数值模拟和物理模拟,将重大地质灾害的变形破坏机制再现;第三个阶段是指八十年代以后,随着计算机技术的飞速发展,实现了边坡数值的模拟技术,利用计算机对边坡开挖至破坏过程进行定量或者半定量地模拟,这已成为危岩、崩塌研究的新方向。
另外,诸如信息论方法、系统论方法、模糊数学等理论也为半坡稳定性研究注入新的生命力,开辟了更为广阔的前景[2]。
二、危岩类型结合实际调查,根据危岩的几何特征、边界结构面特征、岩体结构特征、组合关系和特性,把危岩分为砌块式、孤立式、软弱基座式、楔块式、倾倒式、悬挂式和贴坡式等七种基本的类型。
Value Engineering0引言桂林作为典型岩溶区,山峰林立,直立、反倾斜山体甚为常见,山体易发生危岩崩塌等自然灾害。
岩溶区地下水作用对危岩的影响较大,在暴雨等因素作用下,水进入岩体孔隙或裂隙,使岩体沿斥力超过引力最大面产生崩落[1,2]。
碧莲洞位于广西壮族自治区桂林市阳朔县碧莲巷,属于西南地区典型的钟乳石地貌,岩石节理、裂隙发育,溶蚀作用下岩体相互切割[3]。
该危岩带潜在威胁较大,所处山体危岩形状不规则,岩石较破碎,在暴雨等各种不利因素作用下,将引发较大崩塌,对山体下部过往游客及景区工作人员生命财产安全将造成无可挽回的损失。
危岩具有随机性大、突发性高、冲击能量强及破坏后果难预测等特点,危岩稳定性分析是危岩计算及评价中必不可少的环节,解决潜在的危岩稳定性带来的地质灾害是危岩治理的关键[4~6]。
许强基于蒙特卡洛法的基本原理,分析了单体危岩的稳定性可靠度[7]。
谢秀栋在考虑土体材料特性的随机性的基础上,根据对比分析探讨了极限平衡分析法、可靠度分析法、数值分析法的优点及不足,以及其各自的稳定性分析中的发展趋势[8]。
陈洪凯等指出危岩发育机理是危岩研究的关键,而主控结构面的破坏扩展是危岩失稳的根本原因,主控结构面的失稳扩展源于裂缝端的损伤发育[9]。
罗东生等采用赤平投影法和极限平衡法对岩溶区胀裂式危岩进行稳定性分析[10]。
现阶段对危岩的研究大多以宏观稳定性分析为主,本文结合桂林岩溶区危岩成因机制及微观地貌的特点,对碧莲洞危岩体进行稳定性评价,对桂林地区钟乳石洞穴的开发和管理及西南地区危岩的防治有着重要的科学与社会意义。
1危岩带地质背景1.1地貌及地层岩性碧莲洞处于峰林谷地地貌区,群峰拔立,谷地较平坦,山顶标高252.3m ,地面标高122m ,相对高差约130m ,进洞口处山体坡向约为225°,出洞口处山体坡向约为63°,危岩带所处山体坡度30~80°。
山体中上部生长有灌木丛,下部岩石较裸露。
探究崩塌危岩体稳定性评价
崩塌危岩体稳定性评价是指对岩体进行综合分析和评价,以确定其在自然力作用下是
否存在崩塌危险以及崩塌的可能性和程度的一种方法。
崩塌危岩体的评价是岩体工程稳定
性评价的一项重要内容,能够为危岩防治提供科学依据和技术支持。
崩塌危岩体稳定性评价的基本思路是综合考虑岩体岩性、结构、节理、断裂、地下水位、坡度等相关因素,通过对各种因素的分析和综合判断,评估岩体的稳定性。
其具体步
骤如下:
1. 收集岩体相关资料:包括岩石性质、构造节理、地质地貌、地下水位等相关信息,为后续评价提供参考。
2. 选择评价方法:根据岩体的特点和工程要求,选择适合的评价方法。
常用的评价
方法包括定性评价和定量评价等。
3. 定性评价:根据岩体的岩性、构造节理、地貌地质等特点,进行岩体稳定性的初
步评估,评估结果为“稳定”、“可能不稳定”、“不稳定”等。
4. 定量评价:对评价结果为“可能不稳定”、“不稳定”的岩体,进行进一步的定
量评价。
常用的定量评价方法包括稳定系数法、单元法、衰减法等。
5. 分析评价结果:根据定量评价的结果,对岩体的稳定性进行综合分析和判断。
根
据岩体的崩塌危险性,确定相应的防治措施和监测措施。
崩塌危岩体稳定性评价需要综合考虑多种因素,其中最关键的是岩体的岩性和节理。
岩性是指岩石的物理和力学性质,包括岩石的抗压强度、弹性模量、断裂韧度等。
节理是
指岩石中存在的裂缝或断层,在岩体稳定性评价中起着重要作用。
节理的特性包括节理的
数量、长度、间距、倾角、面状度等。
探究崩塌危岩体稳定性评价崩塌危岩体稳定性评价是地质灾害防治工作中的重要环节,通过对崩塌危岩体的稳定性进行全面的评价,可以为地质灾害防治工作提供科学依据和技术支持。
本文将对崩塌危岩体稳定性评价的相关内容进行探究,以期加深对该领域的理解。
一、评价目的与意义崩塌是指岩体或土体在地下水和重力作用下,由原状岩体或土体失稳而向下滑移、碎裂或滚落,并由此引起的地质灾害。
崩塌危岩体稳定性评价的目的是为了了解危岩体的稳定状况,评估其发生崩塌的可能性和危险程度,为地质灾害防治提供科学依据。
而对崩塌危岩体稳定性进行评价的意义在于:1. 为地质灾害防治提供科学依据。
通过对危岩体的稳定性进行评价,可以为地质灾害的发生提供预警,并为地质灾害防治提供科学依据和技术支持。
2. 为工程建设提供重要参考。
在工程建设中,崩塌危岩体的稳定性评价可以帮助工程师了解工程地质条件,规划合理的工程布局,减少地质灾害对工程建设的影响。
3. 为地质环境保护提供依据。
崩塌危岩体稳定性评价可以帮助人们更好地评估岩体稳定性对周边环境的影响,为地质环境保护提供依据,保护自然生态环境。
二、评价方法崩塌危岩体稳定性评价是一项复杂的工作,需要系统地进行岩体力学参数测试、工程地质勘察、现场调查等多种手段的综合运用。
一般来说,崩塌危岩体稳定性评价主要包括以下几个方面的内容:1. 岩体力学参数测试。
通过对危岩体的岩石抗压强度、岩石抗拉强度、岩石抗剪强度等力学参数进行测试,了解危岩体的力学性质。
2. 工程地质勘察。
通过地质钻探、野外地质调查等手段,了解危岩体的地质构造、岩性分布、构造断裂带等情况。
3. 现场调查。
对危岩体的现场情况进行细致的调查,了解危岩体的裂缝、滑坡体、滑坡界限等情况。
4. 数值模拟分析。
采用数值模拟软件如 FLAC、PHASES等,对危岩体的稳定性进行数值模拟分析,评估危岩体的稳定状况。
5. 综合评价。
综合以上多种手段的结果,进行危岩体稳定性的综合评价,给出稳定性评价报告并提出针对性的防治措施建议。
危岩体稳定性分析 附件2 危岩体稳定性分析 1、WY-01危岩体稳定性定量评价 1 计算模型 从工程防治的角度按照危岩失稳类型进行分类,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。WY-01危岩体为滑移式危岩;其软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力、地震和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图3-1)。
图3-1 滑移式危岩示意图 危岩体
危岩前缘扬压力U静水压力V
地下水位后缘裂隙危岩后缘
软弱结构面
Wcosθ
W
Wsinθh
w
θ 图3-2 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙) 2 计算公式 ①后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算: (cossinsin)sincoscosWQVVtgclKWQV
22
1
wwhV
式中:V——裂隙水压力(kN/m),;
wh——裂隙充水高度(m),取裂隙深度的1/3。
w——取10kN/m。
Q——地震力(kN/m),按公式e
QW确定,式中地震水平作用系
数七级烈度地区e取0.075; K——危岩稳定性系数;
c——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和
未贯通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍; ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段
和未贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍; ——软弱结构面倾角(°),外倾取正,内倾取负;
W——危岩体自重(kN/m3)。
3 危岩稳定性计算结果 根据危岩结构特征和形态特征,②区危岩破坏模式主要为滑移式。 (1)计算参数: 崩塌区出露地层为第四系崩坡积物和石炭系太原组,根据附近工程岩体参数及工程类比得出物理力学参数见表: 表3-2 岩体物理力学参数表 岩石 名称 密度 g/cm3 抗压强度σ MPa 抗剪强度 抗拉强度 (KPa) 软化 系数 C(MPa) ф(°)
灰岩 2. 70 32 0.110~0.271 30.3~40.2 698.5 0.53 结构面 灰岩结构面 0.03-0.10 23-29
注:由于坡表白云岩、灰岩多为强~弱风化强卸荷岩体,其参数均参考类比相似强~弱风化强卸荷岩体参数。 (2) 计算工况 共取四种工况进行计算分析:1、天然状态(自重);2、暴雨状态(饱和自重+ 裂隙水压);3、地震状态;4、地震+暴雨状态(自重+裂隙水压力+ 地震力)。 (3)计算结果 危岩稳定性计算结果见下表(评价结果依据表3-3): 表3-3 WY-01危岩体稳定系数计算表 危岩体 编失稳 模式
稳定系数 备注 天然 暴雨 地
震
地
震 暴 号 雨 WY-01
滑
移式
1.65 1.37 1.36 1.13 未贯通
1.39 1.14 1.18 0.94 后缘切割面贯通40%,暴雨时完全充水 1.33 1.09 1.13 0.90 后缘切割面贯通50%,暴雨时完全充水 1.38 1.12 1.17 0.93 后缘切割面贯通60%,暴雨时完全充水 1.21 0.98 1.03 0.81 后缘切割面贯通70%,暴雨时完全充水 1.15 0.93 0.98 0.77 后缘切割面贯通80%,暴雨时完全充水 1.09 0.88 0.93 0.73 后缘切割面贯通90%,暴雨时完全充水
1.03 0.83 0.88 0.69
后缘切割面贯通
100%,暴雨时完全充水
根据《滑坡防治工程勘查规范》(DZ/T0218-2006),防治工程等级二级,滑塌式危岩稳定安全系数取值为1.3,可建立下列评价标准: 表3-4 危岩稳定性评价标准 危岩类型 危岩稳定状态 不稳定 欠稳定 基本稳定 稳定 滑塌式危岩 K<1.0 1.0≤K<1.2 1.2≤K<1.3 K≥1.3
从表3-3可知:后缘的切割拉裂缝(后缘边界)一般为全部贯通,通过计算只要后缘切割裂缝贯通率在70%以下,WY1危岩体天然状态下都处于基本稳定~欠稳定状态;暴雨或连续降雨、地震、地震+降雨条件下处于欠稳定~不稳定状态。即是边坡后缘的拉裂结构面的贯通性在50%左右,危岩体的稳定性储备也不够。 2、危岩体破坏后运动轨迹分析计算 根据R·M·Spang(1978)的研究成果,崩落体只有坡度角小于一定临界值(约27°)时,才停积于崖脚,随坡度角增大,可分别表现为滑动、滚动、跳跃和自由崩落等方式(图4-7)。勘查区内受岩体破坏影响的斜坡坡度平均坡角大于40°,因此岩体在产生变形破坏后,大部分以滚动、跳跃或自由崩落的方式向坡脚运动,最后堆积于坡脚缓坡地带,直接影响坡下公路的安全,目前坡体上零星分布有危石。
危岩
34° 滚动45° 滚动、跳跃
76° 自由崩落63° 跳跃
27° 滚动12° 停止于崖脚
图3-3 危岩崩塌破坏运动图示 根据落石的运动情况,可以分为两种状态:启动阶段、运动阶段。 1 启动阶段 滑移(错断)式危岩体附着于母岩上,以一定角度的裂隙面相接,在危岩体自重和地表水渗入裂隙等因素的作用下,裂隙面锁固部位被贯通,危岩体沿母岩(或基岩) 发生剪切滑移破坏。如图3-4所示。
α 图3-4 滑移式破坏初始运动状态 破坏后危岩沿着破坏面运动,可以得到它初始状态的运动参数,如下所示: 下滑力:coscosmgGT下 阻滑力:clmgclGTcostansin阻
由牛顿第二运动定律得:mTTa阻下式中:a 为加速度。 质心运动定理可得:
altatl2212
alatu20 u0 在x 、y 方向上的分速度分别为: cos00uux
,sin00uuy
2 运动阶段 落石启动后,在坡面上的运动模式有滑动、滚动、碰撞弹跳三种。 (1)滑动 当块体的自重下滑分力大于摩擦力时,即mg sinα>T时,块体将发生向下 的滑动。根据功能原理,落石速度为: )cos1(202fgHvv 式中:v0为块体滑动运动初速度(m/ s); H为滑动起点至计算点垂直高度(m); f为滑动摩擦系数; α为坡角。 (2)滚动 块体在初速度和加速度的作用下,会发生滚动。理想的刚体运动学中,滚动不考虑接触面的弹塑性变形。而在实际的工程中往往要考虑弹塑性问题,边坡坡面会在接触点处产生弹塑性变形,从而阻碍块体的运动。考虑弹塑性变形时,根据机械能守恒定律,得块体的速度:
cos1222202akrahagvv
式中:r 为块体惯性半径(m); a为球体或柱体的半径(m); k为滑动摩阻系数(m),一般认为,坡面角α与摩擦系数μ可按图3-5所示线解图求解; h为滑动开始点至计算点的垂直距离(m)。
图3-5 根据台阶坡面α确定摩擦系数μ值的线 解示意图 (3)碰撞弹跳 弹跳时,块体做斜抛运动,运动曲线如图3-6所示:
αβ
图4-11 块体斜抛运动计算图 设β为块石开始弹跳时的初速度方向与边坡坡面的夹角。由运动学基本原理,块石做斜抛运动时的速度为: sincos0gtvvx
sincos0gtvvy
式中:v0 为落石的初速度(m/s); vx为任一时间沿x方向的速度分量(m/ s) ; vy 为任一时间沿y 方向的速度分量(m/ s) ; β为初速度方向与斜坡坡面的夹角; t 为碰撞发生开始至计算点的时间(s) 。 发生碰撞前的运动轨迹方程为 sin21cos20gttvx
sin21sin20gttvy
式中:x为沿x方向的位移分量(s);y为沿y方向的位移分量(s)。 在下一次碰撞发生前的瞬间,块体速度为:
cossin2sincos001g
vgtvvx
cossin2sinsin001g
vgtvvy