调谐质量阻尼器的结构组成
- 格式:pdf
- 大小:104.70 KB
- 文档页数:2
桥梁TMD和MTMD减振控制及参数优化摘要:tmd(tuned mass damper,调谐质量阻尼器)减振系统在土木工程领域最初被应用于高层建筑与高耸结构振动控制,后来被引入到桥梁结构减振控制。
tmd减振系统系统通常由质量块、弹簧、阻尼器组成。
本文介绍了桥梁工程tmd和mtmd减振控制原理及参数优化方法。
关键词:调谐质量阻尼器,参数优化方法abstract:tmd (tuned mass damper, tuned mass damper) vibration isolation system was used in high-rise buildings and high-rise structure vibration control originally in the field of civil engineering, and was introduced to the bridge structure vibration control later. tmd vibration systems usually consist of mass, springs, dampers. tmd and mtmd vibration control principle and parameter optimization method of bridge engineering are introduced in this paper. key words:tuned mass damper, vibration control, parameter optimization method中图分类号:k826.16 文献标识码:a 文章编号:tmd(tuned mass damper,调谐质量阻尼器)减振系统在土木工程领域最初被应用于高层建筑与高耸结构振动控制,后来被引入到桥梁结构减振控制。
调谐质量阻尼器工作原理调谐质量阻尼器,这个名字听起来像是高大上的科技产品,其实它的工作原理并不复杂,嘿,让我们一起拆解一下吧。
想象一下你在一条颠簸的路上开车,车子一颠一颤的,仿佛在跟地面进行一场“斗牛”。
这时候,如果你有个神奇的装置,可以把这种颠簸感减少,那就是调谐质量阻尼器的魅力所在。
它的目标就是让一切变得更平稳,简直就像给车子装上了一个“减震器”。
好,咱们聊聊它是怎么工作的。
调谐质量阻尼器就像个聪明的小助手,能及时感应到周围的震动。
想象一下,你在家里听到楼上邻居的“舞会”,一开始你可能还忍着笑,但随着声音越来越大,你忍不住了。
这时候,调谐质量阻尼器就会启动,发挥它的“超级力量”,通过调整内部的质量和弹簧,让这些震动被吸收,或者说“消灭”掉,简直就像给你装上了个耳塞。
再来讲讲它的构造。
调谐质量阻尼器通常由一个质量块和一些弹簧组成。
质量块就像个大肚子,负责承载震动,而弹簧则是它的“助手”,帮助吸收和反弹。
两个好伙伴一搭档,碰到问题就来个“合力”,让周围的震动不再那么难受。
就好比你和朋友一起去搬重物,一个人扛着,另一个人扶着,配合得当,轻松多了。
很多时候,咱们会觉得生活就是一场“摇滚音乐会”,尤其是在一些高楼大厦里,风一吹,墙壁就开始轻轻颤动,这可让人心里没底。
不过,调谐质量阻尼器就像个小小的守护者,默默无闻地在为你“保驾护航”。
就算外面刮风下雨,它也能让你在家里安静得像个小猫咪,舒服得很。
在建筑领域,调谐质量阻尼器的应用可谓是“如鱼得水”。
高楼大厦在风中摇曳,就像那“沙滩上的小船”,如果不加以控制,很容易就会出问题。
这时候,调谐质量阻尼器就是建筑师们的秘密武器。
它可以有效地减少震动,让建筑物更稳固,真的是为“高空生活”加了一道保险。
如果你觉得这个设备只对建筑有帮助,那就错了。
汽车、桥梁,甚至一些大型机械设备,调谐质量阻尼器都能大展身手。
比如,汽车在行驶过程中,路面的小坑洼就像是在给车子“放大招”,而调谐质量阻尼器则像个防守队员,帮助车子稳住,让你在旅途中不再“惊心动魄”。
在这篇文章中,我们主要介绍调谐质量阻尼器(Tuned Mass Damper)的设计准理上来讲,其实这类阻尼器的目的就是将会造成结构破坏的振动转移到阻尼器本身上(动力吸振)。
相比于增加大楼本身的能量耗散(阻尼),增加阻尼器自身的阻尼更容易控制且成本较低。
同时,阻尼器本身是进行刚体运动(rigid本身,所以,它不太容易产生结构上的疲劳破坏。
一般而言,在调谐质量阻尼器之中,它存在质量元件、弹簧元件以及阻尼元件。
为了说明其工作原理,我们先讨论动力吸振器。
对于动力吸振器而言,它的基本结构与调谐质量阻尼器类似,但是其中不存在阻尼元件。
从振动的能量传递的角度而言,两者的原理几乎一致。
1、动力吸振器基本原理首先,我们用一个简化的系统来说明其基本原理。
在这个系统中,它的激励源是一个偏心转动的质量块。
当动力吸振器没有安装在原始振动系统时,这个转动失衡系统可以表示为:我们可以看到,虽然在主系统的固有频率时,振动被大量减少,但是,在其附近的两个频率,我们创建了两个新的振动峰。
如果振动的主系统只运转在某个固定的频率上,那么动力吸振器是很有效的。
事实上,在大部分情况下,振动的激励频率并不是单一的。
例如,如果一台机器运转在一个固定的频率上,但是在开机或者关机时,其他的频率也会被激励。
再比如说,对于桥或者楼而言,它的振动激励其实是风载。
对于风载而言,振动的激励是宽频激励。
所以,动力吸振器并不能有效地解决其振动问题。
所以,阻尼元件就被添加到了这个动力吸振器中。
它的基本工作原理是,一部分主系统的振动能量被阻尼元件所耗散,另一部分能量被传递到了阻尼器上。
那么,将不会有新的主系统振动峰产生。
在下面一个章节里,我们就来讨论调谐质量阻尼器的基本原理和设计准则。
2、调谐质量阻尼器的基本原理对于调谐质量阻尼器,事实上,对于频率的设计准则和动力吸振器基本一致。
唯一的区别在于,阻尼元件可能会使相位略微偏移。
所以,在设计调谐质量阻尼器时,为了补偿这个相位偏移,阻尼器的自然频率应该为:其中µ是阻尼器与振动结构的质量比。
刀具减震技术:双级调谐阻尼器减振的镗刀杆结构设计简介影响机器加工性能的最关键因素之一就是颤振;颤振的抑制技术是保证工件加工质量,提高机械加工效率的前提,因此显得尤其重要。
其中,深孔的加工技术在现代工业的航空航天,汽车产业,军工制造等领域应用日益广泛,加工质量要求也越来越高。
镗削加工处于半封闭状态,镗杆悬伸较长,刀具的后刀面和内孔磨擦较大,系统易处于不稳定状态,极易发生颤振,由于镗削过程中镗杆是整个加工系统中刚性最薄弱的环节,加工过程极其容易引起颤振。
由镗杆的颤振导致加工表面振纹,加工精度不足,刀具磨损严重,产生的噪声也损害操作者的身心健康。
对于切削加工中颤振的控制,国内外的研究人员已进行了大量的研究。
总的来说,可分为两大类:振动控制方法和调整切削参数的控制方法。
振动控制方法中,又根据控制执行装置性质的不同分为主动控制方法,被动控制方法和半主动控制方法。
被动控制型方法:主要是通过在系统中加入吸振部件来达到减振抑振的效果。
消极的被动控制不需要附加能源,减振器的工作完全取决于主振动系统,其结构简单、工作可靠。
被动控制的方法很多,调谐质量阻尼器 (TMD) 就属于其中一种;调谐质量阻尼器 (TMD) 主要由弹簧、阻尼器和质量块组成,其工作原理是利用质量块的惯性力或主动控制力达到共振吸能、减少结构反应的目的。
调谐质量吸振器在机械振动领域是一个常用的技术。
此概念由 Frahm 首次提出。
之后 Ormondroyd 和 Hartog,Sims,Lei Zuo 等人做了大量研究,并在此基础上提出多重调谐质量阻尼器 (MTMD),即在主结构上并联多个彼此独立的单调谐质量阻尼器 (STMD)。
上述的各装置在颤振抑制上都有一定的效果,但是单调谐质量阻尼器 (STMD) 的主要缺陷就是其对被控结构固有频率十分敏感,优化调整很难达到预期的最优状态且调整效率不高。
在总质量恒定的条件下多重调谐质量阻尼器 (MTMD) 的振动控制效果明显优于单调谐质量阻尼器 (STMD)。
目录0.前言 (1)0.1 结构振动控制研究与应用概况 (1)1.结构振动主动控制、半主动控制 (2)2.结构振动控制分类 (3)3.各类控制系统构造及性能 (4)3.1 结构振动主动控制概述 (4)3.1.1 主动控制控制原理 (5)3.1.2 加力方式及加力位置 (7)3.1.3 控制装置 (8)3.2 结构振动半主动控制概述 (8)4.结构振动主动控制、半主动控制算法 (11)4.1 主动控制算法 (12)4.1.2 几种算法的简单介绍 (13)4.2 半主动控制算法 (21)4.3 智能控制算法 (22)5.结构主动、半主动控制系统分析方法及设计方法 (24)5.1 主动控制系统的最优控制力设计与分析 (25)5.1.1 主动控制系统的最优控制力设计 (25)5.1.2 主动最优控制力和受控反应特征分析 (26)5.2 结构主动变阻尼和智能阻尼控制系统的最优控制力设计与分析 (30)5.2.1半主动最优控制力设计 (31)5.2.2系统反应分析 (36)5.3 结构主动变刚度控制系统的最优控制力设计与分析 (37)5.3.1主动变刚度最优控制力设计 (37)5.3.2系统反应分析 (40)6.结构振动主动控制、半主动控制系统的工程应用 (41)6.1 AMD控制系统的工程应用 (41)6.2 结构主动变刚度控制系统的工程应用 (41)6.3 结构主动变阻尼控制系统的工程应用 (42)6.4 其他结构振动控制系统的工程应用 (42)7.研究展望 (43)7.1 结构振动主动控制、半主动控制的研究与发展方向 (43)7.2 结构振动控制的有待研究的问题 (43)8.结语 (43)参考文献 (44)主动控制、半主动控制综述0.前言0.1 结构振动控制研究与应用概况结构振动控制技术与传统的依靠结构自身强度、刚度和延性来抵抗地震作用的做法不同,通过在结构中安装各种控制装置,从而达到减小结构地震反应、保障结构地震安全的目的。
标志塔调谐质量阻尼器TMD减振控制分析与应用一、TMD的减振原理TMD是通过与主体结构耦合,引入额外的质量和阻尼来减振的。
其基本原理是通过改变结构的动态特性,减小结构的振幅和响应。
TMD由两个基本部分组成,即质量和阻尼器,其中质量是由一个或多个质量体构成的,阻尼器则通过改变质量体的运动状态来消耗振动能量。
二、TMD的控制分析在TMD的控制分析中,需要确定质量体的质量、位置和阻尼器的阻尼系数。
而这些参数的选择需要根据主体结构的特性和振动特性进行合理的设计。
1.质量的确定:质量的选择需要考虑主体结构的刚度和自振频率,一般来说,TMD的质量应为主体结构的一小部分,以避免对结构的刚度造成过大的影响。
2.位置的确定:质量体的位置对于TMD的减振效果起着重要的作用。
一般来说,质量体应选择在主体结构的振动节点处,以达到最佳的减振效果。
3.阻尼系数的确定:阻尼器的阻尼系数直接影响着TMD的减振效果,过小的阻尼系数会导致无法有效减振,而过大的阻尼系数则会加大阻尼器的负荷。
因此,需要通过数值模拟或试验来确定最佳的阻尼系数。
三、TMD的应用TMD广泛应用于各种建筑和结构物中,包括高层建筑、桥梁、烟囱、标志塔等。
1.高层建筑标志塔:在高层建筑的标志塔中,由于自身的高度和形状造成的风振效应会引起结构的振动。
通过将TMD安装在标志塔的顶部,可以有效地减小风振引起的振动,提高结构的稳定性。
2.桥梁标志塔:桥梁标志塔常常会因为交通荷载和风荷载等环境激励的作用而产生振动。
应用TMD可以通过改变桥梁标志塔的动态特性,减小振幅和振动频率,提高桥梁的稳定性和舒适性。
3.烟囱标志塔:烟囱标志塔作为一个纤细结构,易受到风荷载的影响而产生振动。
通过在烟囱标志塔的适当位置安装TMD可以减小振幅,提高结构的稳定性,同时减少结构对周围环境的振动影响。
以上是对标志塔调谐质量阻尼器(TMD)减振控制分析与应用的详细介绍,TMD作为一种有效的减振装置,在工程实践中具有广泛的应用前景。
调谐质量阻尼器施工方案1. 引言调谐质量阻尼器(TMD)是一种被广泛应用于结构抗震领域的 passively controlled device。
它通过在结构中引入质量和阻尼来减小结构的振动响应,从而提高结构的抗震性能。
本文将介绍调谐质量阻尼器的施工方案,包括选用材料、设计原理、施工流程等内容。
2. 选用材料在进行调谐质量阻尼器施工前,首先需要选用合适的材料。
常见的调谐质量阻尼器材料包括钢、铅、聚合材料等。
其中,钢材是较为常用的选择,具有较高的密度和强度,能够提供足够的质量以阻尼结构的振动。
此外,钢材还具有良好的可塑性和耐腐蚀性,适用于不同的施工环境。
3. 设计原理调谐质量阻尼器的设计原理是通过将其与结构相连,通过质量和阻尼的作用减小结构的振动幅值。
具体而言,设计原理包括以下几个方面:3.1 质量选择根据结构的特点和需求,在设计过程中需要选择合适的质量。
质量的大小会直接影响调谐质量阻尼器的阻尼效果,一般情况下,质量的选择应保证调谐质量阻尼器的质量足够大,但又不能过大,避免对结构整体产生不必要的影响。
3.2 阻尼选择调谐质量阻尼器的阻尼特性也是设计中需要考虑的重要因素。
阻尼的选择应根据结构的振动特性和设计要求进行。
一般地,阻尼器可以选择线性阻尼或非线性阻尼,具体情况可以进行仿真分析或实验研究。
3.3 安装位置选择调谐质量阻尼器的安装位置选择也是设计中的重要考虑因素。
一般情况下,调谐质量阻尼器可以安装在结构的关键部位,如梁、柱等。
通过合理选择安装位置可以最大限度地减小结构的振动响应。
4. 施工流程调谐质量阻尼器的施工流程主要包括材料准备、安装和调试等步骤。
4.1 材料准备在施工前,需要进行材料准备工作。
首先,根据设计要求选购符合规格要求的调谐质量阻尼器材料。
其次,对选购材料进行仔细检查,确保材料无损伤和质量问题。
4.2 安装安装调谐质量阻尼器时,首先需要进行结构的准备工作,如清理施工面、确定安装位置等。
调谐质量阻尼器(TMD)在高层抗震中的应用摘要:随着经济的发展,高层建筑大量涌现,TMD系统被广泛应用。
越来越多的学者对TMD系统进行研究和改进。
本文介绍了TMD系统的基本工作原理,总结了其各种新形式,分析了它的研究现状,并指出了两个新的研究方向等。
关键词:TMD系统高层建筑抗震原理发展应用The use of the tuned mass damper in the seismic resistanceof the high-rise buildingAbstract:With the economic development, the high-rise buildings spring up, then, the tuned mass dampers are extensively used. More and more scholars research and improve the tuned mass damper. This thesis introduces the operating principle of the tuned mass damper,summarizes many new forms of the tuned mass damper, analyzes its research status and even points out two new research directions.Keyword: the tuned mass damper the high-rise building seismic resistance principle development use1.引言随着社会经济的快速发展,城市人口密度不断增长,城市建筑用地日益紧张,高层建筑成为城市化发展的必然趋势[1-3]。
高层及超高层建筑的不断涌现,加上建筑物的高度和高宽比的增加以及轻质高强材料的应用,导致结构刚度和阻尼不断下降。
一、消能减震结构的发展与应用:利用阻尼器来消能减震并不是什么新技术,在航天航空、军工枪炮等行业中早已得到应用。
从20世纪70年代后,人们开始逐步地把这些技术专用到建筑、桥梁、铁路等工程中。
在美国,20世纪80年代开始,美国东西两个地震研究中心等单位做了大量试验研究,发表了几十篇有关论文。
90年代美国科学基金会和土木工程协会组织了两次大型联合,给出了权威性的试验报告,供工程师参考。
在我国,1997年,沈阳市政府大楼的抗震加固中首次采用了摩擦耗能装置,其后北京饭店、北京火车站和北京展览馆等多座建筑中应用消能减震技术。
在日本,目前已有超过100多栋的建筑物采用消能减震技术。
现代高层建筑日益增多,结构受地震和风振影响十分明显,减小结构所受的地震和风振反应,成为结构设计的一个重要方面。
消能减震阻尼器,通过增加结构阻尼,耗散结构的振动能量来达到减小结构所受振动。
(1)“阻尼”是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性,以此一特性的量化表征。
(2)《高层建筑混凝土结构技术规程》JGJ3-2010中:2.1.1 高层建筑:10层及10层以上或房屋高度大于28m的住宅建筑和房屋高度大于24米的其他高层民用建筑。
(3)《民用建筑设计通则》GB50352-2005中:3.1.2建筑高度大于1OOm的民用建筑为超高层建筑。
二、阻尼器耗能减震原理:耗能减震的原理可以从能量的角度来描述。
传统结构:Ei =Er+Ed+Es耗能结构:Ei =Er+Ed+Es+EaEi为地震时输入结构的总能量;Er为结构在地震过程中存储的动能和弹性应变能;Ed为结构本身阻尼消耗的能量;Es为结构产生弹塑性变形吸收的能量;Ea为耗能装置消耗的能量;(其中Er为能量转换,并不是能量的消耗。
)(1)传统结构中:构件在利用其自身弹塑性变形消耗地震能量的同时,构件本身将遭到损伤甚至破坏。
(2)在消能减震结构中:耗能(阻尼)装置在主体结构进入耗能状态前率先进入耗能工作状态,耗散大量输入结构体系的地震、风振能量,则结构本身需消耗的能量很少,主体结构反应将大大减小,从而有效地保护了主体结构,使其不再受到损伤或破坏。
阻尼器的结构原理
阻尼器是一种用来减小或消除物体振动幅度的装置。
它的结构原理可以分为以下几个方面:
1. 惯性质量:阻尼器通常由一个重物(惯性质量)和一个连接该重物的弹性元件组成。
当物体振动时,重物会随着振动运动。
2. 弹性元件:阻尼器的弹性元件可以是弹簧、橡胶或气体等材料。
弹性元件可以储存振动能量,并将其释放出来,从而减小振动幅度。
3. 阻尼材料:阻尼器中还通常包含一种阻尼材料,如液体或粘度较高的油,用于吸收和耗散振动能量。
当物体振动时,阻尼材料内的分子摩擦会转化为热能,从而减小振动。
根据不同的应用需求,阻尼器的结构原理也会有所不同。
例如,汽车避震器就是一种阻尼器,它通过液体的阻尼来减小车辆行驶时的颠簸。
另外,工程中常用的其他阻尼器包括摩擦阻尼器、液压阻尼器和涡流阻尼器等,它们的结构原理也不尽相同。
大跨度钢结构连体TMD减振优化设计随着建筑设计的发展,钢结构成为了一种主要的结构形式。
大跨度钢结构在设计中经常会面临振动问题,这会影响建筑物的稳定性和使用舒适性。
为了解决这个问题,可以采用TMD(调谐质量阻尼器)来减振。
TMD是一种通过改变建筑物的质量和阻尼来消除或减小振动的装置。
它通常由一个质量块、一个弹簧和一个阻尼器组成。
当建筑物发生振动时,TMD会以相反的方式振动,从而抵消或减小原有的振动。
在大跨度钢结构中使用连体TMD可以有效地减小振动的幅度,提高建筑物的稳定性。
为了进行优化设计,可以考虑以下几个因素:首先,需要确定合适的TMD参数。
质量块的质量、弹簧的刚度和阻尼器的阻尼都会影响TMD的减振效果。
通过数值模拟和试验可以确定最佳参数。
其次,需要考虑TMD的安装位置。
通常情况下,TMD应该安装在建筑物的重点区域,如楼层的节点处。
这样可以提高减振效果。
另外,需要考虑TMD的数量。
一般而言,TMD的数量越多,减振效果越好。
但是考虑到造价和空间限制,需要找到一个平衡点。
通过数值模拟和经验可以确定最佳数量。
此外,还需要考虑TMD的调谐频率。
TMD应该调谐到钢结构的主要振动频率,这样才能获得最佳的减振效果。
通过调谐质量块的质量和弹簧的刚度可以实现频率调谐。
最后,需要考虑施工和维护的便利性。
TMD应该设计成模块化结构,方便安装和维修。
此外,还需要定期检查和维护TMD,以确保其正常运行。
综上所述,大跨度钢结构连体TMD减振优化设计需要考虑TMD的参数、安装位置、数量、调谐频率以及施工和维护的便利性。
通过合理的设计和优化,可以有效地减小建筑物的振动,提高建筑物的稳定性和使用舒适性。
高层建筑的振动控制技术在现代化的城市中,高层建筑如雨后春笋般拔地而起。
这些高楼大厦不仅是城市繁荣的象征,也为人们提供了更多的生活和工作空间。
然而,随着建筑高度的增加,振动问题也逐渐凸显出来。
高层建筑在风荷载、地震作用以及人群活动等因素的影响下,可能会产生较大的振动,这不仅会影响居住者的舒适度,还可能对建筑结构的安全性造成威胁。
因此,研究和应用高层建筑的振动控制技术显得尤为重要。
一、高层建筑振动的来源及影响高层建筑振动的来源多种多样。
风荷载是其中一个主要因素。
当强风刮过高层建筑时,会在建筑表面产生复杂的气流,从而引起结构的振动。
地震作用也是不可忽视的,尽管在设计中会考虑地震的影响,但强烈的地震仍可能导致建筑产生较大的振动。
此外,人群的活动,如在楼层中的行走、跳跃,以及机器设备的运行等,也会引发一定程度的振动。
高层建筑的振动会带来诸多不利影响。
首先,过大的振动会让居住者感到不适,影响生活和工作质量。
长期处于振动环境中,可能会导致人们出现头晕、恶心等症状。
其次,振动可能会对建筑内部的设备和设施造成损坏,影响其正常运行。
最重要的是,频繁且强烈的振动会对建筑结构本身产生疲劳损伤,降低结构的承载能力和耐久性,从而危及建筑的安全。
二、高层建筑振动控制技术的分类为了减轻高层建筑的振动,科研人员和工程师们研发了多种振动控制技术,主要可以分为被动控制技术、主动控制技术和半主动控制技术三大类。
被动控制技术是通过在建筑结构中设置耗能装置或改变结构的特性来消耗振动能量,从而减小振动响应。
常见的被动控制装置包括调谐质量阻尼器(TMD)、调谐液体阻尼器(TLD)和粘滞阻尼器等。
TMD 是一个由质量块、弹簧和阻尼器组成的系统,其固有频率通过调整与结构的主要振动频率相近,从而吸收振动能量。
TLD 则是利用液体的晃动来消耗能量。
粘滞阻尼器则是通过内部液体的粘性阻力来耗散能量。
主动控制技术则是通过传感器实时监测建筑的振动状态,然后由控制器计算出所需的控制力,并通过作动器施加到结构上,以主动地抑制振动。
调谐质量阻尼器的结构组成
在众多的被动控制装置中,调谐质量阻尼器是较早在建筑结构中应用的控制装置,是种经典的同时也是比较可靠、成熟的动力吸振装置。
调谐质量阻尼器主要由弹簧、阻尼器和质量块组成,其工作原理是利用质量块的惯性力或主动控制力达到共振吸能、减少结构反应的目的。
调谐质量阻尼器有悬挂式和支撑式两种。
对于被动调谐质量阻尼器来说,最重要的部件是质量块、弹簧系统和支撑系统。
(1)质量块
调谐质量阻尼器主要是利用质量块与结构相对运动时产生的惯性力对结构发生的作用达到减少结构反应的目的,因此调谐质量阻尼器质量块是重要部件之一。
它可以利用建筑物已有的水箱、混凝土块、装铅的钢箱或者环绕在结构外部的装铅钢圈和环形水箱。
一般而言质量块越大,减振效果越好。
但在实际工程中,质量块的大小有一定的
限制,调谐质量阻尼器与主体结构的质量比一般在0.005-0.03之间。
(2)弹簧系统
弹簧系统的作用是调整调谐质量阻尼器自振频率,使之与结构的受控自振频率接近达到最优或近优调谐状态,实现对结构反应的最好控制。
弹簧系统可用普通螺旋弹簧,也可用气动弹簧。
一般来说,对高层建筑,其弹簧沿结构的纵横两个方向都要安装。
(3)阻尼系统
阻尼系统的作用是为调谐质量阻尼器提供阻尼,使之有足够的减振效果。
选择阻尼系统的参数时必须考虑两方面:一要使结构地震反应减小;二要使质量块的运动即冲程控制在一定范围内。
阻尼器通常采用油压阻尼器,它可以通过调节活塞面积和油的粘滞度来控制阻尼值。
阻尼器一般应与弹簧系统配对设置。
(4)质量块支撑系统
对于悬吊式调频质量阻尼器,其质量块支撑系统就是悬吊的挂钩,挂钩与质量块之间摩擦很小,质量块可以自由晃动,这种支撑系统设计比较简单,也不需要附加设备来保证质量块的运动灵敏度。
而对于支撑式调频质量阻尼器,由于质量块直接支撑在结构上,因此为了保证质量块运动的灵敏度,必须使质量块支撑系统摩擦阻力很小,这就使得这种系统的做法复杂了。
此时这种系统可由数个在钢板上滑动的液压千斤顶组成,也可在质量块与支撑钢板之间增设油压膜。
当然最好的途径是用混合控制方法来克服质量块滑动的摩阻力。