有机电致发光器件
- 格式:pptx
- 大小:2.51 MB
- 文档页数:26
电致发光材料电致发光概述电致发光(Electroluminescence, EL)是指发光材料在电场作用下而发光的现象。
用有机发光材料制作的发光器件,一般统称作OLEDs(Organic Light-emitting Devices),用聚合物为发光层的器件,称作PLEDs(Polymeric Light-emitting Devices)。
有机电致发光器件多采用夹层式(三明治)结构,即将有机层夹在两侧的电极之间。
空穴和电子分别从阳极和阴极注入,并在有机层中传输,相遇之后形成激子,激子在电场的作用下迁移,将能量传递给发光分子,并激发电子从基态跃迁到激发态,激发态能量通过辐射失活产生光子,释放出光能。
ITO透明电极和低功函数的金属(Mg、Li、Ca、Ba、Ce等)常被分别用作阴极和阳极。
根据材料特性和器件要求,主要有单层器件、双层器件、三层器件、多层器件、带有掺杂层的器件、三像素垂直层叠式器件等器件结构。
早在1963年,美国纽约大学的Pope 等首次发现有机材料单晶蒽的电致发光现象,直到1987年,美国柯达(Eastern Kodak)公司邓青云等用苯胺-TPD做空穴传输层(HTL)、八羟基喹啉铝(Alq3)作为发光层(EML)成功研制出一种有机发光二极管,其工作电压小于10 V,亮度高达1000 cd/m2,这样的亮度足以用于实际应用。
1990年Friend课题组[3]采用聚对苯撑乙烯(Poly-phenylene vinylene, PPV)为发光材料制成聚合物发光器件(PLED),打开了PLED研究的新局面。
近十多年来,聚合物发光材料受到各国科学家的高度重视,研究工作非常活跃。
相继合成并研究了种类繁多的共轭高分子,涉及聚对苯撑乙炔(PPE)、聚乙炔(PA)、聚对苯撑(PPP)、聚噻吩(PT)、聚芴(PF)以及它们的衍生物等等。
PPV及其衍生物是目前电致发光研究中最为成熟、最具商业化前景的一类电致发光材料,通过结构修饰、复合/共混来控制分子结构以及调节光电性能是当前研究的主要方向。
无机和有机电致发光材料
电致发光技术是一种通过电场激发材料发光的技术,它已经成为制造高质量平面显示器和照明设备的关键技术之一。
无机和有机材料是目前应用最广泛的电致发光材料,以下是它们的详细介绍。
一、无机电致发光材料
1.磷光体
磷光体是由氧化物或氟化物等高熔点材料和稀有金属离子组成的复合材料,具有较高的耐高温性和抗氧化性。
目前,磷光体已被广泛应用于LED照明和显示器行业。
其中,红色磷光体的发光效率较高,已经成为了LED照明产业中应用最广泛的颜色之一。
2.氮化物LED
氮化物LED是由镓铝氮化物等材料制成的发光二极管,具有发光效率高,颜色纯度度高等特点。
目前,氮化物LED已被广泛应用于绿色、蓝色和紫色LED照明以及RGB LED显示器中。
3.硅基LED
硅基LED是由硅材料和硅基异质结构组成的发光器件,具有低电压、高效率、长寿命等特点。
硅基LED已经成为了微电子学、生命科学、航空航天等领域的关键设备。
二、有机电致发光材料
1.聚合物LED
聚合物LED是由导电聚合物或导电聚合物复合材料制成的发光器件。
它具有发光效率高、颜色范围广等优点,目前已被广泛应用于照明、显示、可穿戴等领域。
2.小分子有机LED
小分子有机LED是由有机荧光分子制成的发光器件,具有可调颜色、发光亮度高等特点。
它已经被广泛应用于OLED电视、OLED照明等领域。
总体来说,无机和有机电致发光材料都具有各自的特点和优缺点。
未来,随着材料科学和控制技术的不断发展,电致发光材料的性能将
得到进一步提高和改善。
第二章 有机电致发光的基本原理2.1 有机电致发光器件的发光机理有机电致发光材料均为共轭有机分子,依据休克尔分子轨道理论(HMO ),并结合半导体理论中的能带理论,可将有机共轭分子中的最高分子占有轨道HOMO 类比为能带理论中的价带顶,最低空轨道LUMO 为导带底,这样就可以用半导体理论模型对有机电致发光进行理论研究。
有机电致发光和无机电致发光相似,属于载流子双注入型发光器件,所以又称为有机发光二极管,其发光机理一般认为是:在外界电压驱动下,从阴极注入的电子与从阳极注入的空穴在有机层中形成激子,并将能量传递给有机发光物质的分子,使其受到激发,从基态跃迁到激发态,当受激分子从基态回到基态时辐射跃迁而产生发光。
具体发光过程可分以下几个阶段:(1) 载流子的注入:在外加电场的条件下,空穴和电子分别从阳极和阴极向夹在电极之间的有机功能薄膜层注入,即空穴向空穴传输层的HOMO 能级(相当于半导体的价带)注入,而电子向电子传输层LUMO 能级(相当于半导体的导带)注入。
电子的注入机理比较复杂,可分为电场增强热电子发射;场致发射,其过程是在强电场作用下,电子通过势垒从金属至半导体的量子力学隧穿。
在低温时,大多数电子是在金属的费米能级上隧穿势垒的,这形成场致发射(F 发射),在中等温度时,大多数电子是在能级Em (高于金属的费米能级)上隧穿势垒的,这形成所谓的热电子场致发射或热助场致发射(T-F 发射),在极高温度时,主要贡献是热电子发射;隧穿发射,如果绝缘体足够薄或者含有大量的缺陷,或者两者兼有,则电子可直接从电极注入到有机层。
(2) 载流子的迁移:载流子在有机分子薄膜中的迁移被认为是跳跃运动和隧穿运动[9,10],并认为这两种运动是在能带中进行的。
当载流子一旦从两极注入到有机分子中,有机分子就处在离子基(A +、A -)状态,(见下图)并与相邻的分子通过传递的方式向对面电极运动。
此种跳跃运动是靠电子云的重叠来实现的,从化学的角度来说,就是相邻的分子通过氧化-还原方式使载流子运动。