浅谈数据挖掘技术
- 格式:pdf
- 大小:117.45 KB
- 文档页数:1
浅谈大数据下财务数据挖掘及应用 在当今信息化时代,数据已经成为企业运营和决策的重要资源。随着大数据技术的迅猛发展,财务数据挖掘及应用在企业管理中扮演着越来越重要的角色。本文将从大数据的定义和特点、财务数据挖掘的概念和方法、财务数据挖掘的应用案例等方面进行浅谈。
一、大数据的定义和特点 大数据是指规模庞大、类型多样、产生速度快的数据集合。它具有以下几个特点:
1.规模庞大:大数据的规模通常以TB、PB、EB等单位来衡量,远远超过传统数据库管理系统的处理能力。
2.类型多样:大数据包含结构化数据和非结构化数据,如文本、图像、视频等,需要采用不同的处理方法和技术。
3.产生速度快:大数据以高速产生,要求能够实时或近实时地对数据进行处理和分析。
二、财务数据挖掘的概念和方法 财务数据挖掘是指通过应用数据挖掘技术和方法,从企业财务数据中发现隐藏的模式、关联规则和趋势,提供对企业财务运营的深入洞察。常用的财务数据挖掘方法包括:
1.关联规则挖掘:通过挖掘财务数据中的关联规则,发现不同财务指标之间的关系,如销售额与广告投入之间的关系。
2.聚类分析:将财务数据中的企业进行分类,寻找相似的企业群体,为企业提供市场定位和竞争对手分析的依据。 3.时间序列分析:通过对财务数据的时间变化进行分析,预测未来的财务趋势,为企业的决策提供参考。
4.异常检测:通过对财务数据的异常值进行检测和分析,发现潜在的财务风险和问题。
三、财务数据挖掘的应用案例 1.财务风险评估:通过对企业财务数据进行挖掘和分析,评估企业的财务风险,提供预警和风险控制的决策支持。例如,通过分析企业的负债率、资产负债表等指标,判断企业的偿债能力和财务稳定性。
2.销售预测:通过挖掘历史销售数据和市场数据,建立销售预测模型,预测未来的销售趋势和需求变化,为企业的生产计划和市场营销提供指导。
3.成本控制:通过对企业财务数据中的成本信息进行挖掘和分析,找出成本的主要驱动因素和影响因素,制定成本控制策略,提高企业的盈利能力。
浅谈数据挖掘与数据库知识发现蔡鹏(北京交通大学北京100044)[摘要]数据挖掘是解决数据库中数据急剧增大与利用率低之间矛质的必然结果。
数据库知识发现(kdd)技术的应运而生使得人们在实际工作中消耗大量财力和物力的数据得以利用。
这也是数据库知识和人工智能技术发展的结果。
[关键词]模式数据库中的知识发现数据挖掘中图分类号:T P3文献标识码:A文章编号:1671-7597(2009)0920081-01一、引言1.准备。
了解K D D相关领域的有关情况,熟悉背景知识,并弄清楚用户的要求。
随着数据库技术的不断发展及数据库管理系统的广泛应用,数据库中2.数据选择。
根据用户的要求从数据库中提取与K D D相关的数据,存储的数据量急剧增大。
但目前数据库系统所能做到的只是对数据库中已K D D将主要从这些数据中进行知识提取,在此过程中,会利用一些数据库操有的数据进行存取,人们通过这些数据所获得的信息仅仅是整个数据库所作对数据进行处理。
包含的信息量的一部分。
也就是说传统的数据分析方法(例如:统计)只3.数据预处理。
主要是对阶段2产生的数据进行再加工,检查数据的能获得这些数据的表层信息,而不能获得数据属性的内在关系和隐含的信完整性及数据的一致性,对其中的噪音数据进行处理,对丢失的数据可以息,即不能获得重要的知识。
面对“堆积如山”的数据集合,无论在时间利用统计方法进行填补。
意义上还是空间意义上,传统的数据分析手段还是难以应付。
这样,快速的数据产生与搜集技术和拙劣的数据分析方法之间形成了鲜明的对照。
在数据技术飞速发展的同时,人工智能和机器学习的研究也取得了很大进展。
根据人类学习的不同模式人们提出了很多机器学习方法。
如:实例学习、观察和发现学习、神经网络和遗传算法等等,其中某些成熟的算法已被人们运用于应用系统及智能机的设计和实现中。
正是由于数据库技术和人工智能技术的发展,也是为了满足人们实际工作的需要:“智能地”和“自动地”分析数据,以使消耗大量财力和物力所收集与整理的宝贵资源——数据得以利用,数据库知识发现(K D D)技术应运而生。