转炉炼钢钢渣处理概况
- 格式:docx
- 大小:217.69 KB
- 文档页数:21
浅谈钢铁行业灰渣处理的现状及发展趋势钢铁行业作为重要的基础产业,其生产所产生的灰渣处理问题一直备受关注。
灰渣是指在钢铁冶炼过程中产生的含铁废渣,其含铁量较高,同时还含有大量的铁、碳和其他有价值的元素。
钢铁行业灰渣处理的现状及发展趋势对于环境保护和资源综合利用具有重要意义。
一、钢铁行业灰渣处理的现状1. 现状在钢铁行业,灰渣的处理一直是一个重要的环保问题。
当代钢铁产业在生产过程中产生大量的灰渣,其中包括高炉炉渣、转炉炉渣、铁水渣、尾矿渣等。
这些灰渣中所含有的有害物质,如果直接排放到环境中,将对周围的土壤、水资源和空气质量构成严重的威胁。
钢铁行业必须对灰渣进行科学合理的处理。
2. 处理方式目前,钢铁行业对灰渣的处理主要包括填埋、堆放和资源化利用等方式。
填埋和堆放是早期处理灰渣的传统方式,但这些处理方式已经面临严重的环境问题,如土壤污染、地下水受到污染等。
越来越多的钢铁企业开始关注灰渣的资源化利用,将灰渣处理为再生资源,用于生产建筑材料、水泥、道路材料等。
3. 难题与挑战钢铁行业灰渣的处理仍然面临着一些难题与挑战。
首先是技术和设备的不足,灰渣处理的资源化利用需要先进的技术和设备支持,目前国内对于灰渣处理技术的研究和开发还比较薄弱。
其次是市场需求的匮乏,虽然资源化利用灰渣有着环保和经济双重效益,但由于市场对于再生资源的需求不足,导致了灰渣处理技术的推广和应用受到了一定的限制。
1. 绿色环保随着环保意识的提高和国家对于环保政策的不断加严,钢铁行业灰渣处理的发展趋势是向着绿色环保方向发展。
未来,钢铁企业必须加大对灰渣处理的投入和研发力度,积极开发和应用高效、低耗、无污染的灰渣处理技术和设备,实现灰渣零排放,并将灰渣处理与企业的环保形象和社会责任结合起来。
2. 资源化利用资源化利用是未来钢铁行业灰渣处理的主要发展方向。
随着再生资源市场的不断扩大和政策的支持,钢铁企业将会更加积极地开展灰渣的资源化利用工作,发展相关的灰渣处理技术和产品,如水泥、路基材料、砖块等,在资源再生利用的基础上,实现灰渣的经济价值。
钢渣处理及资源化利用技术现状与展望摘要:近年来,我国的工业化进程有了很大进展,在钢铁工业中,钢渣处理是非常重要的内容。
钢渣处理过程产尘量大、产尘点多、烟尘湿度大,超低排放改造难度大,是钢铁工业超低排放改造的重要环节。
本文首先分析钢渣基层标准体系现状,其次探讨钢渣资源化利用技术,最后就相关思考与展望进行研究,为相同或相似工序提供借鉴与参考。
关键词:钢渣;资源化;利用引言钢渣是炼钢环节产生的一类大宗碱性工业固废,随着粗钢产量的快速增长,作为炼钢工艺副产物的钢渣的产生量也逐年递增。
2018年,我国钢渣产生量达1.21亿吨,综合利用率仅为30%左右。
钢渣的堆存不仅占用大量的土地,还会对空气、土壤和水源造成严重的污染。
资源化利用这一工业固废是钢铁行业实现绿色、低碳发展亟待解决的问题。
建设期按当时最为严格的特排标准进行设计和建设,运营期针对无组织排放进行了多次专项改造,钢渣处理中心全工序通过了超低排放评估审核。
1钢渣基层标准体系现状国内开展钢渣在道路基层的标准制定工作可追溯到20世纪90年代,CJJ35—1990《钢渣石灰类道路基层施工及验收规范》从原材料、混合料设计、现场施工工艺、质量控制与验收标准等方面规定了钢渣石灰作为道路基层、底基层的要求。
YBJ230—1991《钢渣混合料路面基层施工技术规程》提出了钢渣在水泥、水泥粉煤灰、石灰粉煤灰(以下简称二灰)稳定混合料的技术要求,进一步拓展了钢渣在道路基层的应用范围。
由于钢渣来源渠道多、理化性质复杂,为了明确钢渣在道路基层的技术要求,CJJ35—1990在平炉和转炉钢渣的基础上增加了电炉钢渣,提出了钢渣粉化率、最大粒径以及压碎值等指标的技术要求与试验方法。
截至2021年底,道路钢渣基层标准体系已基本形成,涵盖了沥青混合料、水泥混凝土、无机结合料等原材料技术要求、混合料设计、设计参数、质量控制、施工工艺及验收标准等内容。
2钢渣资源化利用技术2.1钢渣用作建材及道路材料钢渣含有C2S、C3S等具有一定胶凝活性的矿物组分,与硅酸盐水泥熟料类似。
高炉渣与转炉渣综合利用摘要:转炉炼钢过程中的主要副产品是转炉渣,目前我国转炉渣的利用率仅为10%。
为提高转炉渣的利用率,应按照分析成分、制定利用方案、综合处理、分级利用 4 个主要步骤,根据当地的实际情况,建立不同适应性的阶梯利用方式,以实现最好的社会效益、环境效益和经济效益。
介绍了当前国内外高炉渣综合回收与利用现状,对比分析了高炉渣各种处理工艺的优点和不足,展望了高炉渣回收与利用的发展趋势。
关键词:普通高炉渣;含钛高炉渣;综合利用转炉渣;综合处理;利用;分析1高炉渣处理工艺与综合利用高炉渣是冶炼生铁过程中从高炉中排出的副产品,是我国现阶段最主要的冶炼废渣。
在20世纪70年代以前,一直作为工业废弃物堆放。
随着钢铁工业的发展,各种高炉渣的堆积量日益增大,高炉渣的堆积不仅对环境造成了严重污染,也是一种资源的严重浪费,随着世界范围资源的日益贫乏,对高炉渣进行综合利用,变废为宝已刻不容缓。
1.1高炉渣的化学成分高炉渣有普通高炉渣和含钛高炉渣。
普通高炉渣的化学成分与普通硅酸盐水泥类似,主要为CaO、MgO、SiO2、Al2O3和MnO。
含钛高炉渣中除含有上述物质外,还含有大量的TiO2。
见表1表 1 高炉渣的化学成分高炉渣的处理工艺可分为水淬粒化工艺、干式粒化工艺和化学粒化工艺。
在我国工业生产中,主要以水淬粒化工艺作为高炉渣的处理工艺,但水渣处理工艺存在以下问题 : 新水消耗量大、熔渣余热没有回收、系统维护工作量大、冲渣产生的二氧化硫和硫化氢等气态硫化物带来空气污染。
粉磨时,水渣必须烘干,要消耗大量能源。
因此,利用干法将高炉渣粒化作为水泥原料,同时高效利用炉渣显热,减少对环境的污染,是高炉渣处理的发展趋势。
1.2国内外高炉渣处理工艺概况1.2.1 水淬粒化工艺水淬粒化工艺就是将熔融状态的高炉渣置于水中急速冷却,限制其结晶,并使其在热应力作用下发生粒化。
水淬后得到沙粒状的粒化渣,绝大部分为非晶态。
其主要方法有:底滤法、因巴法、图拉法、拉萨法等。
冶金废渣的利用现状及前景随着现代工业生产的发展,冶金废渣(即钢铁、铝、铜等金属冶炼过程中所产生的废弃物)逐渐成为环境问题和资源利用问题的焦点。
废渣的处理方式与利用方式直接关系到其对环境和资源的影响,同时也关系到企业的经济效益和社会效益。
本文从利用的角度来探讨冶金废渣的现状及前景。
1、钢铁废渣利用钢铁行业中产生的废渣包括钢渣、铁渣、炉渣等。
其中,钢渣中含有一定量的CaO、MgO等氧化物和SiO₂、Al₂O₃等酸性氧化物,可以用于水泥、路基、港口填埋场等建筑材料的生产。
铁渣则可以提取铁元素,用于制造钢铁、铜、铝等金属。
炉渣中含有一定量的矿物质和有机成分,可以作为土壤改良剂、钙肥等农业材料。
铝行业中产生的废渣主要是铝渣和闪烁渣。
铝渣由于具有高度的蓄热性和保温性能,常被用于高温隔热材料、夜间反射材料、路基材料等方面。
闪烁渣则可以用于生产水泥、硅酸盐等建筑材料。
铜行业中产生的废渣包括铜渣和电子废料。
铜渣中含有铜、金、银等金属元素,经过提炼可以回收这些元素。
电子废料中含有大量的金属元素和有毒化合物,需要进行专业处理,可以回收金属元素并减少对环境的污染。
1、环保需求推动利用在全球环保需求不断升温的背景下,冶金废渣的处理问题受到了更为严格的监管。
加强对废渣的污染物排放、存储和处置的监管力度,促进废渣资源化利用成为必然趋势。
目前,废渣利用还存在着不稳定、不规范和不全面的现象,需要加强相关政策的制定和执行,推动废渣资源化利用工作的长期稳定发展。
2、技术创新提高利用效率目前,废渣利用技术的研究和开发也取得了一定的进展,从单纯地填埋和焚烧到了更为高效的矿物资源化利用和综合能源利用。
目前,新技术和新工艺的不断推广,有望降低废渣的处理成本,提高资源化利用效率,推动废渣资源化利用行业的快速发展。
3、利用需求持续增加随着人们生活水平的提高,各行业对金属材料和有色金属等资源的需求不断增加,促使冶金废渣资源化利用具有广泛的市场前景和应用前景。
转炉渣的性能及其应用【摘要】综述了转炉钢渣的性能和所采取的主要处理方法及国内外研究现状。
阐述转炉钢渣的结构理论、性能及相关的应用情况,为转炉钢渣的研究和应用提供较全面的理论和工艺参考。
【关键词】转炉钢渣性能应用转炉渣是转炉炼钢生产的副产品,它浓聚了炉料被氧化后所形成的氧物及硫化物,主要包括被侵蚀的炉衬及炉衬材料;金属炉料带入的杂质,如泥沙等;为调整钢渣性质所加入的造渣材料及助熔剂,如石灰石、铁矿石、萤石等[1]。
在炼钢工艺中,每吨钢产生的转炉渣为80~120kg,转炉钢渣作为冶金工业的主要废弃物,每年排放量非常大。
一般来说,钢渣可利用的资源包括液渣显热、单质铁和尾渣矿物。
现有的熔融渣处理工艺中钢渣冷却过程主要以水冷为主,产生的蒸汽量大、压力低、品质低,难以将产生的蒸汽加以利用,因此现有的各种钢渣处理工艺都没能实现液渣显热的回收利用,主要是考虑单质铁和尾渣矿物的综合利用。
1.国内外研究概况目前,国内外大部分钢铁企业都是将热态钢渣进行各种不同的冷却处理后进行破碎-筛分-磁选加工,提取其中的金属后再加以利用。
上世纪初期,国外开始研究钢渣的利用价值,至今一些主要钢铁生产国冶金渣基本上已经实现了全部利用,如美国冶金渣利用率已经超过了98%,德国和日本95%以上,而我国同国外钢铁工业发达国家相比,在钢渣综合利用方面还存在较大差距。
据相关文献资料报道,目前我国钢渣利用率仅36%,随着近年来国内钢铁产量的大幅度增加,钢渣综合利用率呈相对下降趋势[3]。
2.转炉渣的处理工艺由于炼钢造渣制度、钢渣物化性能的多样性及其利用上的多种途径,决定了钢渣处理工艺上的多样化。
各种钢渣处理方式比较如表1所示。
表1 各种钢渣处理方式的性能对比综合来说,国内外应用的钢渣处理工艺主要以热泼和热焖为主,热泼法不受钢渣流动性限制,热焖法工艺简单,易于实现。
3.转炉渣的结构理论、性能及其应用3.1熔渣的结构理论高温熔体的结构十分复杂,由于现在还受到研究方法和实验手段的限制,所以至今难由实验直接确定液态渣的结构,从经验和理论方面提出了两种主要的理论:分子结构假说和离子结构理论。
钢渣热焖炉的变形原因分析与改进措施一、转炉钢渣处理方法简介转炉钢渣处理方法有自然风化法、热泼法、热焖法、水淬法(滚筒法)。
自然风化法为最原始的处理方法,将钢渣堆积成钢渣山,由于该方法占地面积大,粉尘污染严重,通过自然风化,处理周期长(需要数年时间),渣铁分离不彻底,现今已完全淘汰。
热泼法在自然风化法的基础上有了进一步的改进,利用钢渣富含氧化钙、潜热等特点,通过对其泼水使氧化钙反应膨胀继而使渣铁分离。
虽然该处理方法仍然有占地面积大,粉尘污染严重,处理周期长(处理周期需要二十天左右),渣铁分离不理想的弊端,但热泼处理不需要厂房及大型起重设备,投资少,至今仍有部分钢厂采用。
热焖法借鉴了热泼法的原理,并在此基础上改进,在特制的焖罐炉内人为控制了钢渣的温度、块度,控制了喷水的量并做到了均衡喷水,达到了渣铁分离比较完全的效果.至此解决了钢渣处理占地面积大,粉尘污染严重,处理周期长,渣铁分离不彻底的瓶颈,取得了较大的经济效益及环保效益.但热焖处理需要厂房、大型起重设备、焖罐炉等设备设施,投资及运行成本均相对增加。
水淬法(滚筒法)的优点是占地面积小,生产过程基本无污染,渣铁分离比较彻底。
但水淬法处理钢渣存在较大的缺陷:其一,难以确保生产安全,如转炉钢渣中含有钢水,则极易发生激烈爆炸;其二,该方法只能处理全液态的钢渣,固态钢渣不能处理,钢渣从转炉内倒出后难以确保其不产生少量的凝固,处理量大约只能占总渣量的60%左右;其三,该工艺投资及运行成本较大。
二、转炉钢渣热焖工艺发展历程转炉钢渣热焖工艺系湖南涟钢环保科技有限公司(原涟钢钢渣公司)1993年在热泼工艺的基础上研发,1994年建成焖罐炉并投产使用。
涟钢焖罐炉设备设施一期共6座炉子,达到年处理钢渣30万吨的规模,在全国同行列属于首次研发成功,二期2004年9月建成投产,共5座炉子,年处理能力30万吨,迄今为止,涟钢环保科技公司已有60万吨钢渣处理能力,正好处理450万吨钢产量产生的钢渣。
钢铁制造过程中炉渣的处理与利用随着工业化进程的加快,钢铁产业逐渐成为国民经济的支柱行业,但随之而来的问题也不容忽视,如炉渣污染问题就是一个比较突出的例子。
炉渣是钢铁制造等冶炼过程中产生的一种废渣,其主体成分为氧化物,富含难以降解的重金属污染物质,若不加以处理和利用,它将给环境和人类健康带来极大危害,本文就对钢铁制造过程中炉渣的处理与利用进行讨论。
1. 钢铁工业产生的炉渣类型及其成分钢铁制造过程中,不同工序的高温反应所产生的炉渣种类各异,通常分为高炉炉渣、钢渣、钢铁水渣、硅酸盐渣等。
这些炉渣的主要成分是氧化物、硅酸盐、碳酸钙等,同时含有较高的重金属元素,如铅、镉、锌、铬等,其中含有害元素的炉渣对环境和人类健康造成的威胁比较大。
2. 炉渣的危害炉渣是一种常见的工业废渣,在钢铁制造过程中大量产生,若不加以处理和利用,它将对环境和人类健康造成很大威胁。
据统计,在我国仅钢铁行业每年产生的炉渣达到2亿吨,若处理不当,会导致以下危害:(1)炉渣占用土地资源;(2)炉渣含有较高的重金属污染物,若随意倾倒将会对水、土、空气等自然资源造成严重污染,给环境带来极大危害;(3)重金属对人体健康有较大危害,如铅、镉等均是人类致癌物质,若长期暴露于含有这些元素的炉渣中,容易导致身体患病。
3. 炉渣的处理与利用要想减少炉渣的危害,就需要对其进行规范处理和有效利用。
当前业内常见的处理方法一般包括以下几种:(1)填埋:并不是最佳的处理方案,因为填埋会占用大量土地资源,且炉渣中的重金属难以分解,对土壤和地下水造成的污染十分严重。
(2)焦炭:利用焦炭吸附处理炉渣中的重金属,在一定程度上减少其对环境的危害。
(3)铁分离法:通过高温加压,使炉渣中的铁分离出来,达到减轻重金属污染程度、减少资源浪费的效果。
(4)氧化还原法:是一种较为高效的炉渣处理方式,其优点是可以将含有害物质转化为有用物质,如氧化亚铁可变为水泥、砖等建筑材料。
(5)土改法:主要适用于钢铁厂及其周边地区,其主要思想是将废渣与有机物、植物等进行混合,通过减缓废渣的分解速度,减轻对环境造成的影响,从而达到资源回收的目的。
转炉钢渣处理的工艺方法冶金13-A1 高善超120133201133摘要:介绍了钢渣的组成成分,简述了目前国内钢渣的主要处理工艺,对其中最为主流的热泼法、滚筒法、热闷法等钢渣处理工艺的工作原理及其优缺点进行简要评述。
转炉渣中的f-CaO是影响转炉渣安定性的主要因素,钢渣中的f-CaO遇水会进行如下化学反应:f-CaO+H2O→Ca(OH)2,会使转炉渣体积膨胀98%左右,导致道路、建材制品或建筑物的开裂而破坏。
如果能够降低转炉渣中f-CaO的含量,那么对钢渣的利用具有很大的指导意义。
游离氧化钙与二氧化碳酸化反应生成CaCO3,以消解游离氧化钙,使钢渣中氧化钙降低至3%以下,达到国家规定,从而可以在各个工程中得到良好的应用。
高炉渣中含SiO2一般是32%~42%,可见高炉渣可以视为一种含SiO2物料,具有潜在消解转炉钢渣中f-CaO的能力,如果实现高炉渣与转炉渣熔融态下同步处理,这无疑拓宽了冶金渣资源化处理的有效途径。
本文对以上两种钢渣中游离氧化钙的处理方法进行了论述。
关键词:高炉渣;转炉钢渣;游离氧化钙;二氧化碳;石英砂;高温反应;消解率0引言钢渣是生产钢铁的过程中,由于造渣材料、冶炼材料、冶炼过程中掉落的炉体材料、修补炉体的补炉料和各种金属杂质所混合成的高温固溶体,是炼钢过程中所产生的附属产品,需要再次加工方可应用【1】。
钢渣在欧美等发达国家可以广泛的利用,说明了钢渣具有非常好的应用前景,对钢渣的处理、利用、开发已经成为我们国家钢铁企业的重要发展方向。
由于钢渣中存在游离氧化钙这种物质,其含量在钢渣中约占0~10%,游离氧化钙遇水后发生反应生成Ca(OH)2,这种反应会使钢渣体积发生膨胀,膨胀后钢渣的体积约会增长一倍,这种情况制约了钢渣的使用方向,使其很难在建材与道路工程中加以使用。
由于我国正处于高速发展中,各项基础设施建设需要建设,其中高速公路的发展快速,如果可以将处理后的钢渣应用其中,代替其他岩土材料,可以降低建设成本,降低其他材料的消耗,有效的处理了堆积巨大的废弃钢渣,达到实际的经济效益【1-2】。
转炉炼钢原理及工艺介绍1. 引言转炉炼钢是一种常用的钢铁冶炼方法,在钢铁行业中具有重要的地位。
本文将介绍转炉炼钢的原理以及相关的工艺。
2. 原理转炉炼钢的原理基于炉料在高温下的氧化还原反应。
在转炉炉腔内,通过喷吹氧气来进行氧化反应,将炉料中的杂质和不需要的元素氧化为气体,并通过炉顶的排气系统排出。
同时,通过加入适量的合金元素和剂料,实现精确的调节和控制炉料中的化学成分,从而达到炼制特定钢种的目的。
3. 工艺介绍3.1 炉料准备转炉炼钢的炉料通常包括废钢、生铁和铸铁等。
在炉料准备阶段,首先将炉料进行破碎和称重,确保每炉的配料量准确。
然后将炉料装入倾动或转倒式转炉中。
3.2 酸碱度控制酸碱度的控制是转炉炼钢中的重要环节。
在炉料中加入不同的硅、锰、磷等元素和石灰质量,可以调节炉腔中的酸碱度。
通过测定炉腔中渣口撞击时的响声来判断酸碱度的状态,并根据需要进行调整。
3.3 氧气喷吹在转炉炼钢的过程中,通过在炉膛中喷吹预热后的氧气,可以实现杂质的氧化和温度升高。
氧气的喷吹方式有多种,包括底吹、侧吹和顶吹等。
氧气喷吹的速率和角度的控制对炉腔内的氧化反应有重要影响。
3.4 合金元素的加入根据钢种的要求,需要在转炉炼钢过程中加入适量的合金元素,如铬、镍、钒、钼等。
合金元素可以通过粉末喷吹、捞渣操作等方式添加到炉腔中。
合金元素的加入可以改变钢的性能和化学成分。
3.5 钢渣处理在转炉炼钢过程中,钢渣是产生的副产物。
钢渣中含有大量的氧化物和杂质,需要进行适当的处理。
一般采用钢渣保温、捞渣、保护渣、中性渣等措施来处理钢渣,以确保钢渣中的氧化元素被充分还原并排出炉外。
3.6 出钢经过一系列的氧化还原反应和调度控制,转炉中的炼钢过程逐渐接近尾声。
当出钢温度达到要求后,打开炉底的出钢口,将液态钢水流入连铸机进行继续加工。
4. 总结转炉炼钢是一种重要的钢铁冶炼方法,其原理是基于氧化和还原反应。
通过适当的酸碱度控制、氧气喷吹和合金元素的加入,可以实现炼制特定钢种的目的。
1文献综述1.1转炉炼钢钢渣处理概况1.1.1钢渣来源刚刚钢渣特指在炼钢过程时排出的熔渣,主要是指在吹炼过程中金属炉料中各元素被氧化后生成的氧化物、被侵蚀的炉衬料和补炉材料、金属炉料带入的杂质和为调整钢渣性质而特意加入的造渣材料,如石灰石、白云石、铁矿石、硅石等。
一般渣量是钢产量的8%~15%[1]。
钢渣的主要化学成分有:CaO、SiO2、Al2O3、FeO、Fe2O3、MgO、MnO、P2O5、f-CaO,对于一些特殊的冶炼钢种,其钢渣中还含有V2O5、TiO2等。
钢渣中Fe的氧化物以FeO和Fe2O3形式存在,而以FeO为主,总量在25%以下。
如表2-1为常见各种钢渣的成分[2]。
表1-1钢渣的化学成分(%)钢渣的矿物组成与钢渣的化学成分有关,特别是取决于钢渣的碱度(CaO与SiO2的比)。
在我国主要以转炉炼钢为主,因此大部分钢渣为转炉炼钢渣。
矿物按下式反应:2(CaO·RO·SiO2)+CaO→3CaO·RO·2 SiO2+RO3(CaO·RO·SiO2)+CaO→2(2CaO·SiO2)+RO2CaO·SiO2)+CaO→3CaO·SiO2其中RO代表二价金属(一般为Mg2+、Fe2+、Mn2+)氧化物的连续固熔体。
在炼钢初期,碱度比较低,钢渣的矿物组成主要是钙镁橄榄(CaO·MgO·SiO2),其中的镁可被锰和铁所代替。
当碱度提高时,橄榄石吸收氧化钙变成蔷薇辉石(3CaO·RO·2SiO2),同时放出RO相(CaO·MnO·FeO的固熔体)。
再进一步增加石灰含量,则生成硅酸二钙(2CaO·SiO2)和硅酸三钙(3CaO·SiO2)。
在吹炼末期,氧化物增加的速度很快,这个时候,硅酸三钙(3CaO·SiO2)会随温度变化分解成硅酸二钙(2CaO·SiO2)和氧化钙(CaO),还会生成一部分铁酸二钙(2CaO·Fe2O3)。
钢渣中还含有铁酸钙(2CaO·FeO和CaO·FeO)和f-CaO。
钢渣的情况取决于钢铁生产的技术使用,包括转炉、电炉和精炼炉等。
这些钢渣中基本上含有约20~25%的铁元素[3]。
由于钢渣的化学成分变化很大,因此其矿物组成也有很大差异[4]。
钢渣中常见的矿物组成包括:橄榄石、镁硅钙石、C3S(3CaO·SiO2)、C2S(2CaO·SiO2)、C4AF(4CaO·Al2O3·Fe2O3)、C2F(2CaO·Fe2O3)、RO相(CaO FeO-MnO-MgO)和f-CaO(自由氧化钙)等[5]。
1.1.2钢渣的性质钢渣是由钙、铁、硅、镁、锰、磷等氧化物构成的,其中钙、铁、硅、镁的氧化物占绝大部分[6]。
根据冶炼钢种及冶炼工艺的不同排出的钢渣的成分也不同,钢渣的性质随化学成分的变化而变化,由于化学成分及冷却条件不同造成钢渣外观形态、颜色差异很大。
碱度较低的钢渣呈灰色,碱度较高的钢渣呈褐灰色、灰白色。
钢渣的外观像结块的水泥熟料,钢渣块松散不粘结,质地坚硬密实,孔隙较少。
钢渣中的含铁量较高,其密度为3.1g/cm3~3.6g/cm3,较难磨。
易磨指数为:标准砂为1,钢渣为0.7,钢渣的抗压性能好,压碎值为20.4%~30.8%。
不同炼钢工艺所得钢渣的化学成分如表2-2所示。
其中转炉炼钢渣占钢渣的绝大部分,我国主要钢厂转炉钢渣的化学成分见表2-3。
表1-2钢渣的主要化学成分,%表1-3转炉炼钢渣的主要化学成分1.1.3钢渣的利用目前钢渣可以应用到其他很多领域[7-9],包括水泥生产、道路建设和其他的民用工程、化肥生产、掩埋垃圾、土壤改良、水净化以及生产金属铁和铁精矿等[10-13]。
1.处理方法及利用方式[14-15]钢渣的综合利用技术有两个环节,包括钢渣处理和钢渣利用。
其中钢渣处理主要包括冷弃法、闷渣法、热泼法、盘泼法、风碎粒化法、水淬法等。
(1)冷弃法钢渣倒入渣罐(盘)缓冷后(有的打水强制冷却)直接运至渣场抛弃。
该工艺投资大、设备多、占地广,不利于钢渣的深加工,有时因排渣不畅而影响炼钢,所以新建的炼钢厂采用此法不多。
(2)热泼法钢渣倒入渣罐后,运到钢渣热泼车间,用吊车将渣罐的液态渣分层泼到渣床上(渣坑内),喷淋适量的水,使高温渣急冷碎裂并加速冷却,然后进行磁选或运至弃渣场破碎、筛选。
热泼工艺排渣速度快,与目前炼钢工艺的高节奏相适应,但该法钢渣粉化效果差,渣铁分离不彻底,需用大型装载挖掘机械,设备耗损严重,占地面积大,且破碎、筛分、磁选时产生大量粉尘。
污染环境[16]。
(3)水淬法目前使用较多的水淬处理钢渣有露天水淬和盘泼水淬这两种方法。
露天水淬法一般会选取很大的露天场地,将钢渣运送到露天场地,并由专人喷水到含有大量余热的钢渣上,钢渣自身会发生脆裂,这种方法比自然冷却较快。
盘泼法(ISC)起源于日本。
该工艺有利于钢渣中粒状残钢的回收。
经遴选后的钢渣金属铁含量低,而且稳定性和活性均较好,有良好的综合利用价值。
(4)熔渣水淬粒化法工艺比较成熟的熔渣水淬粒化法有华科法(HK)、嘉恒法和滚筒法。
HK法已在本钢、柳钢投入使用。
嘉恒法在首钢和沙钢已投产使用。
前者是通过旋转的滚筒提升脱水,后者是通过提升脱水器提升脱水。
滚筒法是宝钢在引进俄罗斯专利基础上改进而成。
并在宣钢、宝钢已应用。
与前两者不同的是,滚筒法是通过装在滚筒内钢球挤压及水淬冷却实现钢渣粒化的。
熔渣水淬粒化法投资少。
占地少,节约水,钢渣处理过程中无粉尘产生。
(5)热闷法这种处理方式就是将钢渣运送至钢渣处理现场,倒入焖渣罐中,这时钢渣的表面温度不得少于3000℃,配以适当的喷水工艺,产生微压蒸汽,利用钢渣自身余热和f-CaO的水解作用使钢渣粉化,使渣与铁分离。
粉化过程约8~12h。
这种处理方法机械化程度高,工艺简单,设备磨损小,劳动强度低,无二次污染,还解决了粉尘污染问题,比较突出的问题就是不能直接处理温度较高的钢渣。
由于这种钢渣处理方法效果很好,所以国内大多数钢厂都在使用这种处理技术。
(6)水淬—池闷法该法充分利用了水淬法的无粉尘和池闷法的简易高效特点,最大限度地克服了两种钢渣处理方式的缺点。
该工艺特点是在水淬工艺旁建闷渣池,水淬工艺无法处理的熔态渣倒入闷渣池打水热闷。
由于这种工艺是同时采用了两种钢渣处理方法,固投资大幅度增加,生产线相对较长,操作难度增加,运行维护费用高。
目前,首钢在应用该工艺[17-19]。
钢渣的利用方式可分为无害化处理和综合利用两大类。
无害化处理对钢渣的利用率很低,其典型的利用方式为热泼渣,将热态钢渣喷水,冷却后,磁选分离夹带的渣钢,残渣用于铺路或建筑回填。
若对钢渣进行综合利用则利用率较高,一般是先回收渣中有价元素(如铁、钒、钛等),然后根据尾渣的粒度不同,用作烧结矿熔剂(CaO含量较高的钢渣)、筑路材料或用作水泥、混凝土掺合料和建筑材料等很多领域[20]。
常见的利用方式包括如下几种:(1)回收渣中废钢钢渣中存在较高的Fe元素,包括金属铁块和含铁氧化物,其回收具有重要价值[21]。
太钢“以渣治渣、变废为宝”的实践经验已经得到重视并加以推广。
首钢、鞍钢为开发渣山,先后建起了钢渣破碎磁选生产线,不仅使回收废钢量增加,而且提高了钢渣综合利用的经济效益,为我国开发渣山提供了成功的经验。
虽然目前取得一些有目共睹的成效,但是存在的问题也不得不引起有关部门的重视,如:①缺乏必要的破碎磁选及机械设备,一些地方靠人工捡拣,而增加了劳动强度。
②由于依赖手工劳动,金属回收不干净,存在资源浪费问题。
③在开发渣山过程中也存在回收废钢未能和钢渣的综合利用结合起来,甚至出现劳动重复现象[22]。
因此对于从渣中回收废钢仍存在相当的问题亟待解决。
(2)做烧结熔剂、高炉熔剂[23-25]烧结矿中适量配入钢渣后,能使结块率提高,粉化率降低,成品率增加。
高炉使用配入钢渣的烧结矿,由于强度高,粒度组成有所改善,尽管铁品位略有降低,炼铁渣量略有增加,但高炉操作顺行,焦比有降低。
我国首钢、马钢、重钢、太钢、济钢、湘钢、武钢、唐钢等均利用钢渣做烧结矿熔剂。
经长期的实践,其主要的优点有:(l)烧结矿强度提高。
(2)烧结矿还原性能显著提高。
(3)配入6%的钢渣后,烧结矿的FeO可升高2%。
钢渣中因含有大量的金属铁和低价氧化铁,在烧结过程中,不仅可使其FeO含量升高,而且还因其发生氧化放热反应,使烧结矿的配碳量降低约0.5%~1%。
(4)经济效益高。
美国有50%以上的钢渣用作高炉的替代熔剂。
早在1974年,美国内陆钢公司和西德森钢厂分别有40%和41%的钢渣直接返回高炉[22,26]。
高炉冶炼配加的钢渣量主要取决于钢渣中有害成分磷的含量以及高炉需要加入的石灰石用量,国内马钢、太钢、广钢等高炉大量应用转炉钢渣做熔剂,均取得了良好的经济效益[27]。
表2-4为太钢1200 m3高炉使用钢渣后的熔剂耗量和铁水磷含量的情况。
由此看出,钢渣加入后.石灰石和萤石耗量均大幅下降,焦比也随之降低,铁水磷含量则升高了约0.02%[2]。
表1-4太钢1200m3高炉使用炉渣情况(3)返回炼钢转炉炼钢使用部分转炉钢渣返回转炉冶炼,既能提高炉龄,促进化渣,缩短冶炼时间,又可降低副原料消耗,并减少转炉总的渣量。
宝钢在国内率先开发了转炉脱磷脱碳的双联法工艺,即在转炉内进行铁水脱磷处理,出半钢后再进行脱碳处理,可以稳定地生产磷质量分数低于0.008 %的超低磷钢,在双联法工艺中,由于脱磷负荷主要由脱磷炉分担,因此脱碳炉的钢渣磷比较低,因而可以返回转炉利用。
按照宝钢进行的铸余渣及脱碳炉的钢渣返回转炉利用的试验,结果表明,通过适当的工艺,合理地将钢渣返回转炉利用,可以有效地促进转炉冶炼过程的前期化渣,降低副原料的消耗,达到降本增效的目的,而且钢渣的返回利用不会对钢水质量发生负面影响。
预计推广使用后,每年可利用钢渣5万t 左右[28]。
(4)做道路基础材料及回填料钢渣碎石具有比重大、强度高(一般> 18MPa)、表面粗糙、稳定性好、不滑移、磨损率小(均< 25 %)、耐蚀、与沥青结合牢固,不会膨胀等优良性能,因而广泛用于铁路、公路、工程回填、修筑堤坝、填海造地等工程方面[29]。
作为道路用集料,钢渣具有良好的物理特性;作为路用混合料,钢渣沥青混合料同样具有优良的路用性能,完全可以适用于中国的公路建设事业,并且日益成为钢渣处理的一个重要的突破口。
将钢渣制作成为用于沥青混凝土的骨料、远远优于普通沥青路面。
钢渣沥青混凝土路用性实验结果见表2-5。
表1-5钢渣沥青混凝土路用性实验结果钢渣在铁路和公路路基、工程回填、修筑堤坝、填海造地等工程中使用,国内外己有相当广泛的实践,欧美各国钢渣约有60 %用于道路工程。