黄河是怎样调水调沙的(一)
- 格式:docx
- 大小:13.40 KB
- 文档页数:2
区际联系与区域协调发展流域内协调发展课程标准:以某流域为例,说明流域内部协作开发水资源、保护环境的意义。
目标导航知识导图1.结合材料,分析流域内水资源协作开发的原因、意义及措施。
2.结合材料,分析黄河流域水资源的调配对不同地区的影响。
3.结合材料,分析黄河中游黄土高原水土流失的原因及其治理措施,改善黄土高原及黄河流域的生态环境的措施。
一、流域内部水资源协作开发1.流域概述(1)水系:由河流的干流和各级支流以及连通的湖泊、沼泽构成。
(2)流域:由分水岭所包围的河流或水系的集水区域。
2.流域特点3.水资源协作开发(1)流域内的水资源的功能农业灌溉、淡水养殖、提供工业用水和生活用水、发展航运、水能发电、生态保护、旅游等多种功能。
(2)协作开发的必要性角度原因存在利益冲突不同的利益主体对于水资源开发利用的需求不同,导致地区之间、上下游之间、工农业之间、城乡之间在水资源利用、水质保护中出现利益冲突需统筹管理流域的整体性强、关联度高,需要以流域为单元进行统筹管理4.协作开发的措施综合运用工程技术措施和行政、法律、市场等手段,对流域进行统筹管理,分担义务、分享权利、协调行为,为流域内各区域提供公平的共同发展的机会。
二、黄河的调沙减淤1.调沙减淤的实施背景(1)黄河下游“易淤、易决、易徙”的原因黄土高原水土流失严重→黄河含沙量大(黄河最突出的水文特征)→下游流经华北平原,坡度变小→流速缓慢,泥沙沉积→下游河床抬高→洪涝灾害多发。
(2)黄河沙患的解决方法——减少入河泥沙量——减少河道淤积2.调沙减淤的主要措施(1)中游黄土高原侵蚀区的治理①根本措施:水土保持。
②具体措施:因地制宜进行综合治理。
措施具体做法生物措施封山育林、退耕还林还草等耕作措施沿等高线耕作、留茬少耕、免耕等工程措施修建梯田和水平沟、打坝淤地、挖鱼鳞坑等③治理效果:通过综合治理,有效地减少了从黄土高原进入黄河的泥沙量。
(2)下游地区河道淤积的治理①利用水库对黄河调水调沙是一种有效的工程措施。
黄河小浪底调火调沙问题之阳早格格创做纲要:本文利用插值拟合的要领通过Matlab工具模拟出了排沙量与时间、排沙量与火流量的函数闭系,而且供出了总排沙量为1.704亿吨.所有模型简朴且便当估计,其中排沙量与火流量的函数闭系为分段函数.闭键词汇:调火调沙 Matlab 插值拟合一、问题重述2004年6月至7月黄河举止了第三次调火调沙考查,特天是尾次由小浪底、三门峡战万家寨三大火库共同调动,采与交力式防洪预鼓搁火,产生人制洪峰举止调沙考查赢得乐成.所有考查期为20多天,小浪底从6月19日启初预鼓搁火,曲到7月13日回复平常供火中断.小浪底火力工程按安排拦沙量为亿坐圆米,正在那之前,小浪底共积泥沙达亿吨.那次调火调考查一个要害手段便是由小浪底上游的三门峡战万家寨火库鼓洪,正在小浪底产生人制洪峰,冲刷小浪底库区重积的泥沙.正在小浪底火库启闸鼓洪以去,从6月27日启初三门峡火库战万家寨火库陆绝启闸搁火,人制洪峰于29日先后到达小浪底,7月3日达到最大流量2700坐圆米/每秒,使小浪底火库的排沙量也不竭天减少.底下是由小浪底瞅测站从6月29日到7月10日检测到的考查数据:表1: 考查瞅测数据单位:火流为坐圆米 / 秒,含沙量为公斤 /坐圆米当前,根据考查数据修坐数教模型钻研底下的问题:(1) 给出估算任性时刻的排沙量及总排沙量的要领;(2) 决定排沙量与火流量的变更闭系.两、模型假设1.假设所给数据客瞅准确的反应了现真情况2.假设所给数据按照一定顺序变更,即是连绝的3.假设模型中不需要思量一些中表果素4.假设可将时间化为平分的时间面举止估计三、标记证明t: 时间或者时间面v: 火流量S: 含沙量V: 排沙量四、问题分解假设火流量战含沙量皆是连绝的,那么某一时刻的排沙量V=v(t)S(t),其中v(t)为t时刻的火流量,而S(t)为t时刻的含沙量.通过瞅察数据,那些数据是每个12小时支集一次,所以咱们不妨将时间设为时间面t,依次为1,2,3,……,24,单位时间为12h.为了找到排沙量与时间的闭系,咱们便要先找到火流量战含沙量与时间的闭系,一然而找到火流量战含沙量与时间的闭系,那么所央供的问题也便不深刻决了.五、模型的修坐与供解通太过解,咱们假设火流量战含沙量皆是连绝的,那么咱们启初对于问题“(1) 给出估算任性时刻的排沙量及总排沙量的要领”举止供解.咱们通过Matlab工具将所知讲的数据隐现为曲瞅的图像,如下所示,简曲步调睹附录的.通过瞅察图像,咱们不妨瞅出其变更本去不然而滑,而且也不特定的表示出遵循某种分散的趋势.然而是为了得到简曲的估计函数,咱们便必须对于数据举止拟合,所以通过Matlab先利用spline要领对于数据举止插值,进而普及透彻度,使图像变得光润,而后利用多项式举止拟合,当多项式次数越下拟合也越准确,然而是由于数据受到的做用较多,所以那里的数据也不是准确值,果此咱们不妨只与三次举止拟合,也便当了后绝的估计.于是咱们分别对于含沙量战火流量举止插值拟合,即不妨得到底下图像战截止,简曲步调睹附录战.所得到的拟合函数为:y = 0.014*x^{3} - 1.3*x^{2} + 21*x + 16即含沙量与时间的闭系式为:S=0.014*t^3-1.3*t^2+21*t+16所得到的拟合函数为:y = 0.13*x^{3} - 14*x^{2} +2.4e+002*x + 1.5e+003即火流量与时间的闭系式为:v=0.13*t^3-14*t^2+2.4e+002*t+1.5e+003果为某一时刻的排沙量V=v(t)S(t),所以咱们不妨将所拟合出去的多项式戴进上式,通过Matlab举止估计不妨得到底下问案,步调睹附录.ans=91/50000*t^6-73/200*t^5+2429/100*t^4-14573/25*t^3+2866*t^2+35340*t+24000即排沙量与时间的闭系为:V=0.0018*t^6-0.365*t^5+24.29*t^4-582.92*t^3+2866*t^2+35340*t+24000由于那里的多项式次数过下,便当于估计战传播,所以咱们不妨对于其再举止一次拟合,有底下截止,步调睹附录.所以拟合后的函数为V=95*t^3-5.5e+003*t^2+7.7e+004*t-3.2e+004,通过图像不妨瞅出排沙量与时间遵循正态分散,所以也不妨化成的形式e的指数形式举止拟合,那里便不再重复估计.咱们得到了拟合函数,底下便不妨估计出那几天的总排沙量,通过Matlab编程不妨估计出定积分,截止如下,步调详睹附录.即总含沙量为1.704亿吨.底下咱们对于问题“(2) 决定排沙量与火流量的变更闭系.”举止分解估计.以下所有相闭步调睹附录,底下便不重复证明.咱们先利用Matlab将排沙量战火流量的相闭数据反映到图像中.通过瞅察不妨瞅出,其闭系是分段的,所以咱们准时间举止分段拟合,拟合本理共问题(1)相共,于是不妨得到分段前后的拟合多项式.y = - 7.5e-005*x^{3} + 0.43*x^{2} - 5.2e+002*x + 3.6e+004y = 2.3e-005*x^{3} - 0.066*x^{2} + 1.9e+002*x - 1.9e+005综上,咱们不妨得到排沙量与火流量的闭系式为- 7.5e-5*v^3+0.43*v^2-5.2e+2*v+3.6e+4 0<=t<9 V=2.3e-5*v^3-0.066*v^2+1.9e+2*v-1.9e+5 9<=t<=24六、模型评估本模型的便宜是:修模简朴,便当估计,适用度广.然而也有最大的缺面为:透彻度较矮.为了缩小缺面,咱们不妨通过删大模型中拟合多项式的次数.天然正在日后的模型矫正中不妨加进缺面评估系统,去对于模型举止完备.附录T=1:24;S=[32 60 75 85 90 98 100 102 108 112 115 116 118 120 118 105 80 60 50 30 26 20 85 ];W=[1800 1900 2100 2200 2300 24002500 2600 2650 2700 2720 2650 2600 2500 2300 2200 2000 1850 1820 1800 1750 1500 1000 900]; subplot(2,1,1);plot(T,S);hold on;plot(T,S,'.');title('时间与含沙量闭系');xlabel('时间t/12h');ylabel('含沙量/公斤每坐圆米');subplot(2,1,2);plot(T,W);hold on;plot(T,W,'.');title('时间与火流量闭系');xlabel('时间t/12h');ylabel('火流量/坐圆米每秒');T=1:24;S=[32 60 75 85 90 98 100 102 108 112 115 116 118 120 118 105 80 60 50 30 26 20 85 ];x=1:0.1:24;y=interp1(T,S,x,'spline');plot(T,S,'.',x,y);title('时间与含沙量闭系拟合图');xlabel('时间t/12h');ylabel('含沙量/公斤每坐圆米');T=1:24;W=[1800 1900 2100 2200 2300 2400 2500 2600 2650 2700 2720 2650 2600 2500 2300 2200 2000 1850 1820 1800 1750 1500 1000 900]; x=1:0.1:24;y=interp1(T,W,x,'spline');plot(T,W,'.',x,y);title('时间与火流量闭系拟合图');xlabel('时间t/12h');ylabel('火流量/坐圆米每秒');syms t;S=0.014*t^3-1.3*t^2+21*t+16;v=0.13*t^3-14*t^2+2.4e+002*t+1.5e+003;V=v*S;simple(V);syms t;V=95*t^3-5.5e+003*t^2+7.7e+004*t-3.2e+004;int(12*60*60*V,t,0,24)t=1:24;V=0.0018*t.^6-0.365*t.^5+24.29*t.^4-582.92*t.^3+2866*t.^2+35340*t+24000;plot(t,V);title('时间与排沙量闭系图')t=1:24;v=0.13*t.^3-14*t.^2+2.4e+002*t+1.5e+003;V= 95*t.^3-5.5e+003*t.^2+7.7e+004*t-3.2e+004; plot(v,V,'.');title('整治图')figure;t=1:9;v=0.13*t.^3-14*t.^2+2.4e+002*t+1.5e+003;V= 95*t.^3-5.5e+003*t.^2+7.7e+004*t-3.2e+004; plot(v,V,'.');title('前半段图')figure;t=10:24;v=0.13*t.^3-14*t.^2+2.4e+002*t+1.5e+003;V= 95*t.^3-5.5e+003*t.^2+7.7e+004*t-3.2e+004; plot(v,V,'.');title('后半段图')。
黄河小浪底调水调沙问题数学建模黄河是中国第二长河流,也是中国北方主要的水源之一。
然而,由于年际变化和人类活动的影响,黄河水沙特性的变化对地区社会经济和生态环境产生了巨大影响。
黄河小浪底是黄河下游的一个关键水文站点,对黄河的水沙调控起着重要作用。
因此,对于黄河小浪底的调水调沙问题进行数学建模具有重要意义。
数学建模是通过数学方法分析和解决实际问题的过程。
对于黄河小浪底的调水调沙问题,我们可以从以下几个方面进行数学建模:1. 水量平衡模型:黄河小浪底是一个重要的水源供给站点,掌握黄河的水量情况对于调水调沙至关重要。
因此,我们可以建立一个水量平衡模型,根据入库、出库等因素来估计黄河在小浪底的流量。
这个模型可以包括如下因素:入流量(降雨、地表径流、地下径流等)、出流量(供水、排水等)以及河道水量的变化。
通过这个模型,可以对黄河小浪底的水量进行预测和调控。
2. 水沙关系模型:黄河的水沙关系对于调水调沙具有重要影响。
水沙关系模型可以通过分析黄河不同断面的水位和水沙含量之间的关系,来估计黄河的河床输沙量。
这个模型可以包括如下因素:断面形态特征、流量、水沙含量等。
通过这个模型,可以了解到黄河的水沙变化规律,并对黄河小浪底的调沙情况进行预测和控制。
3. 沉积模型:黄河的床面沉积是一个长期过程,对于调水调沙有着重要影响。
沉积模型可以通过分析黄河不同断面的沉积速率、沉积厚度等变化,来估计黄河的床面沉积情况。
这个模型可以包括如下因素:流率、输沙率、流态等。
通过这个模型,可以对黄河小浪底的沉积情况进行预测和控制。
4. 排沙方案优化模型:为了减少黄河小浪底的沙泥淤积问题,需要设计科学合理的排沙方案。
排沙方案优化模型可以通过考虑沙泥淤积的成因、河道特征、水流特性等因素,来确定最佳的排沙方案。
这个模型可以包括如下因素:流态、输沙率、河道形态等。
通过这个模型,可以设计出最优的排沙方案,从而实现黄河小浪底的水沙调控。
综上所述,黄河小浪底的调水调沙问题可以通过数学建模的方式来研究和解决。
简析黄河调水调沙的影响1黄河水文特征黄河是我国第二大河,但天然年径流量仅占全国河川径流量的2.1%。
黄河流域主要有以下水文特征:流域水资源区域分布不均,由南向北呈递减趋势;年径流量年际变化悬殊,河川径流年内分配不均匀,60%的水量集中在每年的汛期。
黄河挟带泥沙数量之多,居世界首位。
平均每年输入黄河下游的泥沙达16亿t,年平均含沙量达35kg/m3;黄河泥沙在时空分布上有比径流更为集中的特点,来自中游河口镇至潼关区间的泥沙占全流域总量的90%以上,80%以上的泥沙来自每年的汛期,输沙量年际变化也很大。
自1986年以来,黄河下游及河口来水来沙持续偏少(图1-1,表1-1),上世纪90年代后,随着沿黄地区社会经济的发展,引黄水量急剧增加,进入河口地区的水量持续减少,河道断流严重,1997年利津站出现了长达226天的断流。
为限制超计划用水,促进水资源的有序利用,1999年黄河开始实行水资源统一调度,从而遏制了持续27年的河口断流现象。
为恢复黄河的健康新生命,2002年开始的调水调沙运用,保证了黄河下游的不断流,进入河口地区和入海水量得到保证。
但是来水偏枯仍是一个客观存在的现实。
图1-1 黄河利津站逐年径流量输沙量变化图表1-1 黄河山东利津站历年径流量和输沙量统计表。
时段径流量(108m3)占多年(%)输沙量(108t)占多年(%)1950~1959 4291 144 120.0 1681960~1969 5012 168 108.9 1501970~1979 3112 102 89.81 1261980~1989 2860 96 63.86 901990~1999 1407 48 38.99 542000~2009 1409 48 13.44 182黄河洪水入海水沙特征1958年7月14日至19日在黄河三门峡至花园口(简称三花区间)的干流区间以及伊河、洛河、沁河流域持续暴雨,黄河发生了自1919年有实测资料记载以来最大洪水。
第四章区际联系与区域协调发展第一节流域内协调发展................................................................................................ - 1 -第二节资源跨区域调配................................................................................................ - 6 -第三节产业转移.......................................................................................................... - 13 -第四节国际合作.......................................................................................................... - 18 -第一节流域内协调发展一、教学目标1.掌握流域内协调发展;2.以黄河流域为例,说明流域内部协作开发水资源、保护环境的意义。
二、教学重难点以黄河流域为例,说明流域内部协作开发水资源、保护环境的意义。
三、教学方法讲授法、谈话法、讨论法。
四、教学过程[新课导入]:四川从2017年全面建立河长制,2018年全面建立湖长制以来,所有的7415条河流、7817座水库全部建立了河长制,泸沽湖等29个重要天然湖泊被纳入了湖长制。
不仅如此,四川还把2458条长年流水的水渠和一些重要的渠道、12个湿地都创新性的纳入了河长制管理范畴。
【提出问题】为什么要实行“河长制”?[新课教学]:一、流域内部水资源协作开发【讲解】河流与人类生存发展的关系十分密切。
河流的干流和各级支流以及连通的湖泊、沼泽构成了水系,由分水岭所包围的河流或水系的集水区域称为流域。
新时期黄河调水调沙思考与建议高兴;朱呈浩;刘俊秀;陈翠霞【期刊名称】《人民黄河》【年(卷),期】2023(45)2【摘要】黄河调水调沙连续开展二十余年,是协调黄河水沙关系行之有效的措施,在减淤、塑槽、生态等方面发挥了显著效益。
但新时期黄河水沙情势异变,水库及河道边界条件也发生调整,调水调沙面临冲刷效率下降和后续动力不足两个突出问题。
为适应新时期新形势变化,有必要对调水调沙进行优化创新,以更好地发挥其长期综合效益。
采用实测资料分析的方法,结合工程实际调度经验,提出基于现状水沙调控工程体系优化调水调沙的措施,包括小浪底水库多排沙提供沙源以及挖掘干流水库群潜力为调水调沙补充后续水流动力。
从保障黄河长久安澜的角度,提出完善调水调沙的建议:一是加快推动骨干工程建设,完善水沙调控体系;二是积极创新调水调沙运用模式,动态优化调控指标。
上述工程措施和非工程措施的结合,可有效解决黄河泥沙治理难题。
【总页数】5页(P42-46)【作者】高兴;朱呈浩;刘俊秀;陈翠霞【作者单位】黄河勘测规划设计研究院有限公司;水利部黄河流域水治理与水安全重点实验室(筹)【正文语种】中文【中图分类】TV62;TV882.1【相关文献】1.挟沙能力多值性及黄河下游多来多排特性分析——"黄河调水调沙的根据、效益与巨大潜力"之五2.黄河调水调沙的效益——"黄河调水调沙的根据、效益和巨大潜力"之八3.黄河调水调沙的巨大潜力——"黄河调水调沙的根据、效益和巨大潜力"之九4.对调水调沙理解的几个误区和有关质疑的讨论——"黄河调水调沙的根据、效益和巨大潜力"之十5.黄河防总实施2012年黄河汛前调水调沙滚动分析,精细高度,统筹调水调沙和抗旱保灌因版权原因,仅展示原文概要,查看原文内容请购买。
浅谈调水调沙对引黄供水的影响及对策发表时间:2020-09-24T11:15:46.867Z 来源:《科学与技术》2020年14期作者:李红卫张凤翱[导读] 调水调沙在确保黄河河床不抬高取得显著成效的同时,李红卫1 张凤翱21.济南黄河河务局供水局中国济南 2500322.山东黄河河务局供水局中国济南 250011摘要调水调沙在确保黄河河床不抬高取得显著成效的同时,也给引黄供水带来了不可忽视的影响。
河槽大幅刷深,水闸引水能力明显下降;高含沙黄河水不利于先进农业节水灌溉技术的推广应用,也会造成土壤沙化;灌区引水渠道加速淤积,沉沙清淤不仅使用水成本增加,也恶化了当地周边地区的生态环境等。
针对调水调沙已经或可能给引黄供水造成的影响,初步提出解决问题的对策及措施建议。
关键词调水调沙;引黄供水;影响;对策;初探1 调水调沙概述调水调沙就是根据黄河下游河道的输沙能力,利用水库的调节库容,有计划地控制水库的蓄、泄水时间和数量,调整天然水沙过程,使不平衡的水沙过程尽可能协调。
通过调水造峰、调沙淤滩、增加洪水冲刷河槽等措施,使水沙过程两极分化,改善河床形态,增大滩槽高差,增大河槽的排洪和输沙能力,起到减轻下游河道淤积的作用。
2 调水调沙对引黄供水的影响多年的调水调沙,黄河下游行洪能力和过沙能力普遍提高,河槽形态得到调整,对实现河床不抬高,提高防洪标准,维护黄河健康生命产生了明显的成效。
黄河下游主槽得到全线冲刷,使黄河主河槽的最小过流能力由1800立方米每秒提高到4000立方米每秒以上,防洪能力明显增强。
调水调沙在对黄河下游河道防洪及延长小浪底水库使用寿命等方面取得显著成效的同时,也给引黄供水带来了不可忽视的影响。
2.1 河槽大幅刷深,黄河枯水季节,水闸引水能力严重不足有关资料显示,调水调沙人造洪水使黄河下游河道全程冲刷,河道主河槽高程平均下降1.5米左右。
黄河下游绝大多数水闸均建于20世纪70~90年代。
由于对调水调沙的影响未予考虑或考虑不足,闸底板高程是基于河道主槽不断淤积抬高的情况设计确定的,普遍比较高。
浅论黄河泥沙处理作者:史立明来源:《城市建设理论研究》2012年第31期摘要:继承黄河泥沙治理历史经验,综合措施控制、治理、利用黄河泥沙,达到确保黄河下游河道百年不淤,长期安全使用。
关键词:泥沙成因;历史技术;综合技术措施Abstract: The succession of the Yellow River sediment treatment history experience, comprehensive measures to control, management, use of the Yellow River silt, ensure the Yellow River Centennial not silt, safe for long-term use.Key words: sediment origin; history of technology; comprehensive technical measures 中图分类号:TV145+.3 文献标识码: A文章编号:2095-2104(2012)01-0020-021、黄河泥沙形成主因内蒙古托克托县河口镇以上的黄河河段为黄河上游。
上游河段全长3472km,流域面积38.6万平方千米,流域面积占全黄河总量的51.3%。
上游河段总落差3496米,平均比降为10‰;河段汇入的较大支流(流域面积1000平方千米以上)43条,径流量占全河的54%;上游河段年来沙量只占全河年来沙量的8%,水多沙少,是黄河的清水来源。
内蒙古托克托县河口镇至河南郑州桃花峪间的黄河河段为黄河中游,河长1206km,流域面积34.4万平方千米,占全流域面积的45.7%;中游河段总落差890m,平均比降0.74‰;河段内汇入较大支流30条;区间增加的水量占黄河水量的42.5%,增加沙量占全黄河沙量的92%,为黄河泥沙的主要来源。
河南郑州桃花峪以下的黄河河段为黄河下游,河长786km,流域面积仅2.3万平方千米,占全流域面积的3%;下游河段总落差93.6m,平均比降0.12‰;区间增加的水量占黄河水量的3.5%。
黄河发源于青藏高原巴颜喀拉山北麓海拔4500米的约古宗列盆地,流经海拔3000米以上的青藏高原,海拔1000~2000米之间的世界上最大、水土流失最严重的黄土高原,海拔100米以下的黄淮海平原,在山东省垦利县注入渤海,干流河道全长5464公里,流域面积75.3万平方公里。
内蒙古托克托县河口镇以上为黄河上游,干流河道长3472公里,流域面积39.6万平方公里。
在黄河流域内该河段具有三个特点:一是上部的兰州以上黄河水量的主要来源区、沙量相对较少;二是中部的龙羊峡至青铜峡河段水力资源丰富;三是下部的河套平原是黄河流域最富饶的地区之一,存在一定的防洪防凌问题。
河口镇至河南郑州桃花峪为黄河中游,干流河道长1206公里,流域面积34.4万平方公里。
该河段具有四个特点:一是河口镇至三门峡区间为黄土高原地区,暴雨集中,水土流失十分严重,是黄河下游洪水和泥沙的主要来源区;二是上部的河口镇至禹门口河段和下部的潼关至小浪底河段水力资源较丰富,并且距电力负荷中心近;三是河口镇至禹门口区间煤炭资源丰富;四是中部的禹门口至潼关河段,河道宽浅散乱,存在一定的河道治理问题,三门峡水库运用对本河段以下的潼关至三门峡大坝河段也造成了一定塌岸问题。
在本河段汇入的渭河和在中游下部汇入的沁河等重要支流的下游地区经济社会较为发达,存在一定的防洪问题。
桃花峪以下为黄河下游,干流河道长786公里,流域面积2.2万平方公里,除艾山附近为山区丘陵外,其余全靠堤防约束洪水泥沙。
由于泥沙淤积,使该河段成为世界上著名的地上悬河,河道成为淮河和海河的分水岭。
黄河下游堤防保护是因黄河在历史上决口改道淤积形成的、绝大部分属于淮河和海河流域的、我国最大的平原——黄淮海平原,是我国经济社会的核心地区之一,历史上堤防频繁决口改道,黄河洪水泥沙对黄淮海平原带来巨大灾难,为中华民族的心腹之患。
黄河流域有青海、四川、甘肃、宁夏、内蒙古、山西、陕西、河南、山东等9省(区)的340个县(市、旗),2005年人口11275万人,耕地面积24362万亩,国内生产总值12150亿元,经济发展水平较低。
第1篇一、引言黄河,作为我国第二长河,流经多个省份,对我国的经济、社会和生态环境产生了深远的影响。
然而,由于自然和人为因素的影响,黄河的治理面临着诸多挑战。
在本次面试中,我将从以下几个方面阐述黄河治理的挑战与对策。
二、黄河治理的挑战1. 水土流失严重黄河中游流经黄土高原,土质疏松,植被破坏,土壤裸露,一遇暴雨,水土流失严重。
这使得黄河泥沙含量增加,导致下游河床抬高,形成地上河,严重威胁下游地区的安全。
2. 河道淤积严重黄河下游河床宽坦,水流缓慢,泥沙大量淤积,使河床抬高,形成地上河。
这不仅影响了黄河的航运和防洪能力,还对下游地区的生态环境和农业生产造成严重影响。
3. 洪涝灾害频发黄河下游地区地势低平,河道淤积严重,一旦发生洪水,容易造成决口、泛滥成灾。
历史上,黄河多次发生洪涝灾害,给下游地区的人民生命财产造成巨大损失。
4. 水资源短缺黄河流域水资源分布不均,上游地区水资源丰富,而下游地区水资源短缺。
这导致了黄河流域水资源的开发利用与保护之间的矛盾。
5. 水污染严重黄河流域水污染问题突出,工业废水、农业面源污染、生活污水等对黄河水质造成严重影响。
水污染不仅危害了生态环境,还对下游地区人民的生活和健康带来威胁。
三、黄河治理的对策1. 加强水土保持工作治理黄河的根本在于治沙,治沙的关键在于做好中游黄土高原的水土保持工作。
具体措施如下:(1)大力开展植树造林、种草固沙,增加植被覆盖率,减少水土流失。
(2)修建梯田、打坝淤地,提高土地利用率,减少水土流失。
(3)加强农业技术培训,推广节水灌溉技术,减少农业面源污染。
2. 优化河道整治(1)实施河道清淤工程,降低河床高程,提高防洪能力。
(2)修建分洪区、蓄洪区,提高洪水调蓄能力。
(3)加固黄河大堤,确保下游地区防洪安全。
3. 合理调配水资源(1)优化水资源配置,确保黄河流域水资源的合理利用。
(2)加强水资源保护,防止水污染。
(3)推广节水技术,提高水资源利用效率。
黄河小浪底调水调沙问题摘要:本文应用插值拟合的办法经由过程Matlab对象模仿出了排沙量与时光.排沙量与水流量的函数关系,并且求出了总排沙量为1.704亿吨.全部模子简略且便利盘算,个中排沙量与水流量的函数关系为分段函数.症结词:调水调沙 Matlab 插值拟合一.问题重述2004年6月至7月黄河进行了第三次调水调沙实验,特殊是初次由小浪底.三门峡和万家寨三大水库结合调剂,采取接力式防洪预泄放水,形成人造洪峰进行调沙实验获得成功.全部实验期为20多天,小浪底从6月19日开端预泄放水,直到7月13日恢复正常供水停止.小浪底水利工程按设计拦沙量为亿立方米,在这之前,小浪底共积泥沙达亿吨.此次调水调实验一个主要目标就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙.在小浪底水库开闸泄洪今后,从6月27日开端三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7月3日达到最大流量2700立方米/每秒,使小浪底水库的排沙量也不竭地增长.下面是由小浪底不雅测站从6月29日到7月10日检测到的实验数据:表1: 实验不雅测数据单位:水流为立方米 / 秒,含沙量为公斤 / 立方米如今,依据实验数据树立数学模子研讨下面的问题:(1) 给出估算随意率性时刻的排沙量及总排沙量的办法;(2) 肯定排沙量与水流量的变更关系.二.模子假设1.假设所给数据客不雅精确的反响了实际情形2.假设所给数据遵守必定例律变更,等于持续的3.假设模子中不须要斟酌一些外在身分4.假设可将时光化为等分的时光点进行盘算三.符号解释t: 时光或时光点v: 水流量S: 含沙量V: 排沙量四.问题剖析假设水流量和含沙量都是持续的,那么某一时刻的排沙量V=v(t)S(t),个中v(t)为t时刻的水流量,而S(t)为t时刻的含沙量.经由过程不雅察数据,这些数据是每个12小时收集一次,所以我们可以将时光设为时光点t,依次为1,2,3,……,24,单位时光为12h.为了找到排沙量与时光的关系,我们就要先找到水流量和含沙量与时光的关系,一但找到水流量和含沙量与时光的关系,那么所请求的问题也就不难解决了.五.模子的树立与求解经由过程剖析,我们假设水流量和含沙量都是持续的,那么我们开端对问题“(1) 给出估算随意率性时刻的排沙量及总排沙量的办法”进行求解.我们经由过程Matlab对象将所知道的数据显示为直不雅的图像,如下所示,具体程序见附录的.经由过程不雅察图像,我们可以看出其变更其实不但滑,并且也没有特定的表示出屈服某种散布的趋向.但是为了得到具体的盘算函数,我们就必须对数据进行拟合,所以经由过程Matlab先应用spline办法对数据进行插值,从而进步精确度,使图像变得滑腻,然后应用多项式进行拟合,当多项式次数越高拟合也越精确,但是因为数据受到的影响较多,所以这里的数据也不是精确值,是以我们可以只取三次进行拟合,也便利了后续的盘算.于是我们分离对含沙量和水流量进行插值拟合,即可以得到下面图像和成果,具体程序见附录和.所得到的拟合函数为:y = 0.014*x^{3} - 1.3*x^{2} + 21*x + 16即含沙量与时光的关系式为:S=0.014*t^3-1.3*t^2+21*t+16所得到的拟合函数为:y = 0.13*x^{3} - 14*x^{2} + 2.4e+002*x + 1.5e+003即水流量与时光的关系式为:v=0.13*t^3-14*t^2+2.4e+002*t+1.5e+003因为某一时刻的排沙量V=v(t)S(t),所以我们可以将所拟合出来的多项式带入上式,经由过程Matlab进行盘算可以得到下面答案,程序见附录.ans=91/50000*t^6-73/200*t^5+2429/100*t^4-14573/25*t^3+2866*t^2+35340*t+24000即排沙量与时光的关系为:V=0.0018*t^6-0.365*t^5+24.29*t^4-582.92*t^3+2866*t^2+35340*t+24000因为这里的多项式次数过高,便利于盘算和传播,所以我们可以对其再进行一次拟合,有下面成果,程序见附录.所以拟合后的函数为V=95*t^3-5.5e+003*t^2+7.7e+004*t-3.2e+004,经由过程图像可以看出排沙量与时光屈服正态散布,所以也可以化成的情势e的指数情势进行拟合,这里就不再反复盘算.我们得到了拟合函数,下面就可以盘算出这几天的总排沙量,经由过程Matlab编程可以盘算出定积分,成果如下,程序详见附录.即总含沙量为1.704亿吨.下面我们对问题“(2) 肯定排沙量与水流量的变更关系.”进行剖析盘算.以下所有相干程序见附录,下面就不反复解释.我们先应用Matlab将排沙量和水流量的相干数据反应到图像中.经由过程不雅察可以看出,其关系是分段的,所以我们按时光进行分段拟合,拟合道理同问题(1)雷同,于是可以得到分段前后的拟合多项式.y = - 7.5e-005*x^{3} + 0.43*x^{2} - 5.2e+002*x + 3.6e+004y = 2.3e-005*x^{3} - 0.066*x^{2} + 1.9e+002*x - 1.9e+005综上,我们可以得到排沙量与水流量的关系式为- 7.5e-5*v^3+0.43*v^2-5.2e+2*v+3.6e+4 0<=t<9 V=2.3e-5*v^3-0.066*v^2+1.9e+2*v-1.9e+5 9<=t<=24六.模子评估本模子的长处是:建模简略,便利盘算,实费用广.但也有最大的缺陷为:精确度较低.为了削减误差,我们可以经由过程增大模子中拟合多项式的次数.当然在日后的模子改良中可以参加误差评估体系,来对模子进行完美.附录T=1:24;S=[32 60 75 85 90 98 100 102 108 112 115 116 118 120 118 105 80 60 50 30 26 20 85 ];W=[1800 1900 2100 2200 2300 2400 2500 2600 2650 2700 2720 2650 2600 2500 2300 2200 2000 1850 1820 1800 1750 1500 1000 900]; subplot(2,1,1);plot(T,S);hold on;plot(T,S,'.');title('时光与含沙量关系');xlabel('时光t/12h');ylabel('含沙量/公斤每立方米');subplot(2,1,2);plot(T,W);hold on;plot(T,W,'.');title('时光与水流量关系');xlabel('时光t/12h');ylabel('水流量/立方米每秒');T=1:24;S=[32 60 75 85 90 98 100 102 108 112 115 116 118 120 118 105 80 60 50 30 26 20 85 ];x=1:0.1:24;y=interp1(T,S,x,'spline');plot(T,S,'.',x,y);title('时光与含沙量关系拟合图');xlabel('时光t/12h');ylabel('含沙量/公斤每立方米');T=1:24;W=[1800 1900 2100 2200 2300 2400 2500 2600 2650 2700 2720 2650 2600 2500 2300 2200 2000 18501820 1800 1750 1500 1000 900]; x=1:0.1:24;y=interp1(T,W,x,'spline');plot(T,W,'.',x,y);title('时光与水流量关系拟合图');xlabel('时光t/12h');ylabel('水流量/立方米每秒');syms t;S=0.014*t^3-1.3*t^2+21*t+16;v=0.13*t^3-14*t^2+2.4e+002*t+1.5e+003;V=v*S;simple(V);syms t;V=95*t^3-5.5e+003*t^2+7.7e+004*t-3.2e+004;int(12*60*60*V,t,0,24)t=1:24;V=0.0018*t.^6-0.365*t.^5+24.29*t.^4-582.92*t.^3+2866*t.^2+35340*t+24000;plot(t,V);title('时光与排沙量关系图')t=1:24;v=0.13*t.^3-14*t.^2+2.4e+002*t+1.5e+003;V= 95*t.^3-5.5e+003*t.^2+7.7e+004*t-3.2e+004;plot(v,V,'.');title('整顿图')figure;t=1:9;v=0.13*t.^3-14*t.^2+2.4e+002*t+1.5e+003;V= 95*t.^3-5.5e+003*t.^2+7.7e+004*t-3.2e+004; plot(v,V,'.');title('前半段图')figure;t=10:24;v=0.13*t.^3-14*t.^2+2.4e+002*t+1.5e+003;V= 95*t.^3-5.5e+003*t.^2+7.7e+004*t-3.2e+004; plot(v,V,'.');title('后半段图')。
黄河是怎样调水调沙的(一)
摘要:20世纪70年代后期,随着治黄实践的不断深入,“上拦下排”的治黄方针暴露出一定的局限性,治黄专家认识到黄河“水少沙多、水沙不平衡”对黄河下游河道淤积的重要影响。
首任黄河水利委员会主任、著名水利专家王化云和他的同事们,在此基础上比较系统地提出了“调水调沙”的治黄思想。
关键词:黄河调水调沙截至6月28日10时,来自黄河防汛指挥部的消息称,已经进行了9天的黄河第三次调水调沙试验,由于高科技的娴熟应用,没有再像前两次一样,在个别地段发生串沟漫滩现象,桀骜不驯的黄河水只冲河底泥沙,不淹滩上庄稼,表明我国在科技治黄方面已经迈出了新的一步。
“调水调沙”治黄思想的由来
20世纪70年代后期,随着治黄实践的不断深入,“上拦下排”的治黄方针暴露出一定的局限性,治黄专家认识到黄河“水少沙多、水沙不平衡”对黄河下游河道淤积的重要影响。
首任黄河水利委员会主任、著名水利专家王化云和他的同事们,在此基础上比较系统地提出了“调水调沙”的治黄思想。
其具体设想就是在黄河上修建一系列大型水库,实行统一调度,对水沙进行有效地控制和调节,变水沙不平衡为水沙相适应,更好地排洪、排沙入海,减轻下游河道的淤积,甚至达到不淤。
随着1997年小浪底工程的截流蓄水,治黄专家进行了大量的物理模型试验,找到了理论上的实现黄河下游不淤积的临界流量和临界时间。
2001年小浪底工程全面竣工,次年便进行首次“调水调沙”试验,从而使“通过原型试验,进行调水调沙试验”的设想最终变为现实。
调水调沙的基本原则是根据黄河下游河道的输沙能力,利用水库的调节库容,有计划地控制水库的蓄、泄水时间和数量,调整天然水沙过程,使不平衡的水沙过程尽可能协调。
“三条黄河”互为验证补充
从2002年7月4日黄河首次调水调沙试验开始,实验室里的“模型黄河”和计算机上的“数字黄河”就与“原型黄河”一样同步进行。
所谓“原型黄河”,就是自然界中真实的黄河;“数字黄河”则是借助现代信息技术构建的数字化虚拟平台,被称为“装在计算机里的黄河”;而“模型黄河”则是以相似性原理为依据,按照一定比例缩小的黄河模型,也就是“实验室中的黄河”。
“模型黄河”比“原型黄河”小600倍,河道模型长585米,宽36米,直观地反映了小浪底水库以下近350多公里游荡河段在不同水文条件下的河势变化。
与“原型黄河”具有高度的相似性。
当调水调沙还处于论证阶段的时候,“模型黄河”就已进行了数十次模拟试验,为找到利用最小水量、最短泄水时间、对下游河道形成最佳减淤效果的方法,提供了大量参考数据。
“调水调沙”试验开始后,“模型黄河”又与“原型黄河”进行同步试验,一方面复验“模型黄河”的可靠性,一方面为“原型黄河”提供更好的技术支撑。
与此同时,“数字黄河”则利用遥测、遥感、卫星技术和数字模型等科技手段,在调水调沙试验期间进行降雨预报、洪水预报和水库调度;同时收集水量分配、冲淤变化、洪水演变等方面的数据信息,并运用数学模型即时分析研究。
在首次试验前夕建成的黄河流域第一个数字化水文站——花园口水文站在其中发挥了重要作用。
每一次调水调沙试验结束后,专家们就对“三条黄河”分别取得的试验数据进行合成分析,互为验证补充,大大提高了试验的科学性。
第三次调水调沙不同于前两次
含沙量、水量及其历时,是确保调水调沙试验成功的三个关键数据。
既要把这三个指标确定下来,又要确保这三个指标能顺利实现,其中饱含着专家们的大量劳动和科学技术的强大作用。
今年6月19日开始的第三次试验,预计于7月14日结束,历时约25天。
其显著特点是,基于人工扰动方式,在更大空间尺度上的调水调沙。
将充分借助自然力量,加之中游水库联合
调度塑造人工异重流,形成连续的泄流动力对小浪底水库的淤积泥沙进行冲刷,同时在下游淤积严重的河段进行人工扰动加沙,增加入海洪水的挟沙含量,从而最大限度地实现减淤冲沙的目的。
今年的试验不同于2002年、2003年的地方是:科学调控万家寨、三门峡、小浪底水库的泄流时间和流量,在小浪底库区塑造人工异重流,并实现异重流的接力运行,从而保证对小浪底水库淤积泥沙形成连续的冲刷能量,不同于小浪底水库的单库运用,也不同于单纯依靠自然异重流的联合调度;二是充分利用小浪底出库洪水的富余能量,在下游“二级悬河”最严重和平滩流量最小的河段进行人工扰动,结合小浪底水库可能下泄的含沙量在下游河道实施人工加沙,从而增加“卡口段”平滩流量,扩大主河槽行洪能力。
通过科学调度,控制小浪底水库出库流量和含沙量,使花园口站流量控制在2700立方米/秒左右、平均含沙量控制在25千克/立方米左右。
塑造人工异重流
异重流本来是挟沙水流进入库区遭遇清水后,由于密度差而潜入清水底部运行的一种现象。
异重流使泥沙运行到大坝前淤积,增强大坝的防渗能力,但对调水调沙试验来说,如果不及时对异重流进行调控,则会大大影响人造洪峰中含沙量的试验指标。
一般来说,每立方米的水量最多只能运送20千克的泥沙,超过了这个量就可能淤积。
首次试验就是按这个一般规律进行。
但此后,科研人员发现了异重流,并变异重流这个不利条件为有利条件,加大泥沙的运送能力。
正在进行的第三次试验,在中下游长达2100公里的河道上,充分借助自然力量和黄河中游干流水库的联合调度,尝试塑造人工异重流,提高一定流量的水运送泥沙的能力,形成连续的泄流动力,对小浪底水库的淤积泥沙进行冲刷。
具体措施就是科学调控黄河干流万家寨、三门峡、小浪底水库的泄流时间和流量,在小浪底库区塑造人工异重流,并实现异重流的接力运行,从而保证对小浪底水库淤积泥沙形成连续的冲刷能量,减少库区淤积或调整其淤积形态。