(完整版)道路工程专业3000字外文翻译
- 格式:doc
- 大小:56.51 KB
- 文档页数:11
专业外文翻译原文road surface of pitch1 Debulk1.1 SummaryGood pitch road surface quality is it reflect , appear any quality defect will all that has been achieved has come to nothing in rolling through rolling to want. The durable performance of meeting pitch road surface of the structure demand is affected by two indexes mainly, namely the mixture and debulk designed. In these two indexes , lack any durable performance that can't ensure the pitch road surface , if insufficient debulk, optimum mixture that design will reduce serviceability , pitch of road surface, and good debulk can improve the result of a kind of nonstandard mixture effectively . So, debulk is considered to influence one of the most important factors of durable performance of road surface of pitch .Debulk course to reduce pitch course , air vent of content in the mixture, for solid particle stemming and orientating among one viscoplasticity medium course this, in the form of forming a kind of closely more knit and more effective particle to arrange. This course only takes place under the construction state in theory, but not under the traffic condition.1.2 Impact on debulk of composition material on the pitch road surface1.2.1collects material performancein order to reach the ideal solidity of pressing, it is very important to collect material and detailed some nature of collecting material thickly: Such as the particle form, raised angle , the absorbing water rate and surface are constructed, grade mix mixture most heavy to collect material size , thick to collect material proportion , consumption and type ,etc. , consumption of sand and powder of ore pigeonhole to pitch mixture solidity have direct influence.Under the same situation as other indexes , collect material one grade of mixture or disconnected grade mixed and mix mixture than exchanging debulk more than the single size from thick to the detailed even grade of mixture mixed , thick to collectmaterial proportion heavy pitch mixture, must increase the strength of keeping notably , could obtain the necessary space rate . On the other hand, many sand, or detailed grade buy bituminous concrete to be very much easy to be plastic, this kind of mixture is still difficult to reach proper closely knit degree. The pitch mixture of much sand tends towards pushes and shoves and difficult with debulking under debulk function . The different kinds of packing has remarkable influence on debulk of the pitch mixture, according to survey, in a situation that other conditions are the same, ordinary silicate packing than lime stone ore powder pitch mixture and cement stone pitch mixture easy debulk bituminous concrete, pitch mixture total hole rate too very heavy difference have behind the shaping, 8% , 9.1% , 12% respectively.1.2.2pitch viscidity influencepitch viscidity influence pitch mixture strength degree, and can debulk nature have something to do with mixture. At the mixture, high viscidity can pin down particle move often as debulk pitch, if pitch viscidity too low, is it collect material to be particle easy to move and push and shove in real time to press. When pitch mixture temperature is higher, pitch is it is it collect material particle rub lubricant of obstruction to overcome to make, when the mixture has already been cooled, the pitch makes and combines the combinationmaterial which is collected the material particle. Generally speaking, in fixed 135 pitch being viscidity high,resistance, mixture of person who reduces space the heavier. So use high viscidity at the pitch , adopt higher debulk temperature to reduce viscidity promote pitch road surface but debulk essential means. Show according to materials data give temperature definitely , low drip of viscidity educate than high closely knit high degree that pitch reach of viscidity, through rise debulk temperature, high viscidity drip is it can reach high solidity of pigeonholing as low viscidity pitch to educate. Therefore understand debulk state , pitch of viscidity under the temperature to promote pitch road surface good debulk there are important meanings.1.2.3 performance of mixture influencein fact, performance , pitch of mixture, influence degree, road surface of debulk the heaviest to pitch, the influence than simple to collect material or drip breedobvious even. When pitch consumption is lower in the pitch mixture easy to is it do astringent , coarse mixture to form, often difficult debulk; When pitch consumption is too great, can form and lubricate the mixture excessivly , make the mixture under the function of the road roller, form unstable and can fracture ing , mixture suffused with the oil after the traffic is open; For lower than best pitch mixture of consumption, can through increase efficiency , debulk of course reduce the space rate, reach a kind of satisfaction; But if pitch consumption at the optimum value of higher thanning , press real-time , can't prevent out of shape limit , pitch of mixture from almost; Secondly , collect material water content meet the requirement of norm minimum while drying, such wet pitch mixture, present the inclination moved in the course of debulk, it is very difficult for the result to press worker.1.3 Temperature impact on pitch roadsurface debulk pitch debulk performance , mixture of road surface receive match ratio design, influence of factor, variety of pitch and temperature ,etc. of debulk, it is the most influential but with debulk temperature. As everyone knows, the properties of pitch and pitch mixture are very sensitive to temperature, is it can know (125C1130 ) in the same grade is it under the mixture , roll rising of temperature at the same time to mix to test. Mixture try on pieces of density increase , air rate reduce , until a certain temperature (145 1150 ) , mixture try on a density up to most heavy, at the same time the air rate is dropped to minimumly . If is it rise to continue under temperature this, can make density reduce, atmosphere rate increases. It is obvious temperature of mixture on the low side on the high side , will influence density and air rate , pitch of mixture (pigeonhole the solidity). The temperature of the pitch mixture is very important too in debulk of the construction site mixture. The temperature of the mixture has already become one of the two major factors influencing the solidity of high pressure of construction site and low air rate. Dark- Kui expressway layers of grains of type in being thick for 4cm the pitch. Construct location windy (4-5), organize the pitch but layer construct in with high temperatures period only, keep temperature bring 80 one 90 up to , make layer receive further debulk the pitch after all.1.4 mechanical impact on pitch roadBecause pitch road surface quality should reflect the mechanical impact on pitch road surface debulk of debulk through rolling finally, so, the selecting type and disposing of debulk machinery seems particularly important. Dark- expressway two bid section (13.4km ) pitch concrete road surface project Kui, construct by Xinjiang the north new construction of road and brige Limited Company, the layers of structure for 6cm thick grains of type grains of grains of type bituminous concrete of the type ten 4cm in the +5cm, the lower floor is the cement stability gravel storey. Each constructed to begin since April of 2000 by the end of September of the same age. Pitch by day work N eight P-1600 for dose rein in 1800 types mix and stir , paver of mixing and stir etc. mixture. According to the regional climate situation of known construction , and mix and stir the productivity of the equipment , paver, transporting the distance and transportation situation, the characteristic of the mixture, pave the thickness, pave layers of location ,etc. , select and make up to the mechanical pattern. Namely use two CC2l a pair of steel and a round of vibration road roller while pressing for the first time , press quietly twice at the speed of 3-5km; When is it press to replying, adopt two CC21 pairs of steel rounds of vibration road roller still, vibration at the speed of 4-5km/11 roll four, dispose the tire road roller of a Model YL16 at the same time, roll twice at the speed of 4-5km/h; After all when pressing, adopt one 2Y8/10 pairs of steel rounds of vibration road roller, at the speed of 3-4km/h quiet to press and accept mere twice. Make from the machinery of the above up and analyse that can be drawn , the having direct relations all over the speed that is counted , rolling with rolling of debulk on the road surface . As thickness , environmental temperature , effective debulk time of paving being when constructing within the person who allow, the ones that rolled would play a decisive role to the debulk of the road surface all over the speed that is counted with rolling.Can know according to experience. The rolls and only fix through testing section all over countinging of pitch road surface, and should also be in the type of the road roller, solidity of pressing, shake frequently under the situation confirmed of valid debulk time of the amplitude , mixture, could get . Can select through conclusion totest section to debulk speed at the same time. By result of the test analyse can know , while rolling all over counting the samly , roll slow than roll speed get high solidity of pigeonholing soon, but it is only higher to press the solidity 0.4-0.8, there is no actual use value, while replying and press and press after all, should try one' s best to choose the high speed of rolling , in order to improve and press the mechanical homework efficiency of the way, reduce its quantity allocated1.5 pitch concrete glueand form analysis and research VFA (pitch consumption) of strength and pitch kind to solve pitch concrete glued and marries the strength problem. Because Marshall's test method has not already accorded with the actual conditions(because the concrete road surface of pitch has been pressed gently by the automobile tire on the real highway, Marshall test hit real number of times whether two sides each hit 75 times, if increase and hit the real number of times at the same time, aggregate break up and break to pieces, but gentle to press and increase aggregate have broken situation take place even quiet year again), so we must solve with other theory pitch concrete oilstone of as with glueing reason of envelope come and explain pitch concrete oil film thickness of as problem we (oilstone than) problem, we spread certain paste to paste while glueing envelopes, with the increase of the pressure, the surplus paste is crowded out, the tighter the envelope mouth is glued, there is the relation between certain pressure and thickness of the paste, the bigger the pressure is, the thinner the thickness of the paste is, it is the bigger to glue the strength of forming. The thickness of oil film of concrete of pitch is the same too, the greater the pressure of rolling the equipment (the tire) adopted when we construct is, keep high temperature for the first time, oil film thickness thin, pitch concrete that form it glues to be heavy to marry strength, this is that the American engineer JOHN.L.MCRAE gentleman's GTM machine rotates the gentle theory of pressing, this GTM testing machine has well solved the equipment (the pressure of the tire) of rolling, rolls the relation that temperature compares with oilstone (the thickness of the oil film). Seeing that of our country large-scale car amount tire pressure up to 1.0 Mpa more than already, propose and use GTM testing machine go on and rotate with 1.0 pressure of Mpa gentle to pigeonhole, temperature130 ∽ 135 when testing, after being steady in order to design the amount of oil used with the oil amount. The on-the-spot construction technological requirement is replied and pigeonholes the temperature after finishing to control above 130 degrees, press and adopt the large tonnage tire road roller for the first time (pressure of tires is more than of 1.0 Mpas).The kind of the pitch and ore material glue the strength of forming influencing the pitch concrete to the seizing of the pitch directly in addition, so the good modified pitch with good resisting splitting at the time of the low temperature at the same time of high-temperature stability has appeared at home, and should deal with the acid and neutral hard quality ore material , improve the seizing, generally adopt and catch the lime wash and is washed or mixed and adds the quick lime powder or low grade cement.2 Pitch preventative maintenance and machinery of concrete road surface2.1 The characteristic of concrete road surface of original sin and type of damagingPitch because concrete road surface use and glue and form strength better pitch material made and combine the material , therefore gluing the strength of forming while strengthening the ore material greatly , has improved the intensity and stability of the mixture, make to use the quality and durability raise road surface . Pitch concrete road surface have surface level, infiltrate, drive a vehicle advantage comfortable, with low noises, therefore find more and more extensive application. But it is often influenced by respects, such as weather, temperature, driving a vehicle and material, and such reasons of the respect as the road surface structure is designed, will present various disease unavoidably, and the disease has brought harmful influence on driving speed, road surface service life, passenger's comfortableness and traffic safety.Pitch damage of concrete road surface overall to can be divided into two big classes, one is structural damage , including the destruction of a certain part whole or among them of structure of road surface , the ones that made road surface unable tosupport and is scheduled loaded; Another functional damage, it might follow and structural damage take place, but because roughness and resisting the decline in slippery performance,etc. make it not have a function booked again, thus influenced quality of driving a vehicle.Pitch early disease of concrete road surface show as early rut and decay of roughness, suffused with oil and resist slippery decline of performance often at expressway, show as early small crack at ordinary arterial highway, detailed material lose cause undisguised, polishes, , the host is lost, surface disease that the road surface infiltrates. That the pitch wears out. If disease the can deal with but develop as one pleases in early days, must lead to the fact surface to be loose further, or cause serious deformation disease, such as peeling off and rut of depth of lower floor. Because of infiltrating, then cause structural damage, such as whole trough, thus must adopt the repairing method to carry on road surface maintenance. So seek one swift helping, cost rational settlement pitch concrete road surface early applicable technology of disease to maintain to be solved problem urgently in the work2.2 Important meaning of preventative maintenanceAround the relation that is built and maintaining, maintaining and preventing, with the constant perfection of the road network, only keep good road surface serviceability for a long time, the huge investment of road construction could give full play to its investment benefit , keep road surface good technological state must have one maintaining and support system come guarantee powerful for a long time, come from this meaning and say , maintain a kind of continuation that is road construction in fact. In the road surface maintains the relation with maintenance, People always get used to it after the road surface begins to be damaged for a long time , just remembers that will carry on maintenance to it, Carry on preventative meaning of maintenance know enough often under being also in good state to road surface. Preventative maintenance is a kind of periodic pressure maintenance measure in fact, it does not consider whether there is a certain damage on the road surface, Preventative maintenance best to implement opportunity should to in good state still in road surface, or go on only at the time of some disease omen .Though preventative maintenance needs to invest some expenses, it is a kind of expenses- benefit than very good maintenance measure. American department mentions in the road surface solution , what the American road industry was once passed to different grades of hundreds of thousands kilometers is followed, find that the serviceability and life-span of these roads have a common change characteristic : A road with qualified quality, performance drops by 40% within service life 75%, called preventative maintenance stage this stage. Such as be unable to in time maintenance, in 12% service life in the time, performance drops by 40% again afterwards, cause and maintain cost increase by a large margin , call that and correct maintenance stage this stages. Count and draw and invest through investigation 1 preventative maintenance fund can economize 3- l0 yuan correct maintenance conclusion of fund each time. U.S.A. SHRP plan one important achievement point out preventative maintenance delay road surface serviceability worsen the speed, lengthen its service life and economize the important meaning of expenses of life cycle.Correct serviceability that implement preventative maintenance and can keep the road surface good , lengthen life cycle of road surface , reduce life cycle expenses and economize and maintain the fund. Plan and estimate according to SHRP , go on preventative maintenance of 3-4 can lengthen 10- 1 years such as service life within life cycle of whole road surface, economize and maintain 45-50% of expenses, these foreign experience of benefitting is worth we drew lessons from . Need emphasize , implement to one- two road preventative maintenance can not give full play to his potential benefit and function only, put it preventative maintenance in network of highways support height of the system pay only, could fully embody its important strategic meaning and function .2.3 Choose suitable preventative maintenance machineryCarry on maintenance promptly when the road surface presents disease omen , make it not happen or continue developing, expanding , influence the stability of the basic unit, should carry on preventative maintenance. Preventative maintenance capital equipment have and irritate and sew machinery, road surface part mend homework machinery, heavy area surface punish machinery, usually.The pressure type irritates the sewing machine: Adopt artificial way to irritate and sew the homework, though can prevent the infiltration of the sub-surface of rainwater , alleviate the development with further crack, but because the sealed material is not irritated deeply enough, it is very difficult to reach the lasting result. Adopt pressure type irritate person who sew can irritate deep layer to reach the crack sealed material, irritate and sew better result , can lengthen service life of road surface , raise and go the security and comfortableness of the vehicle.Irritate and sew homework want and carry on clear to go on and irritate and sew after sewing first generally, greater than 3 crack of mm need and slot the homework generally. Irritate the heating that the sewing machine should be furnished with the control device of pressure, sealed material mainly or keep the device warm, for prevent spray gun hose from stop up and should take corresponding heating, keep measure warm also. The main characteristic of the pulling type is: Heat storehouse volume 470L, relatively more complete function havesuitable for irritating and sewing the homework by a large scale. Pair set up yuans of hand person who push away hot to irritate heating storehouse of person who sew volume 40 L, small easy to operate using flexible, low fabrication cost company, can look at according to work load feeling worthy of and heat cauldron again separately, suitable for hot to caulk the irritating and sewing the homework of material mainly; Have function cold to irritate person who sew without heating, use polymer modify water quality caulk the material mainly. If department pitch cold to irritate and sew material to modify emulsification, as emulsification after the solidification pitch, the modified pitch and crack of high polymer are glued and formed closely, can guarantee that there is good strength of seizing to irritate and sew the material and crack . Because cold to irritate and sew simple, easy to use craft, road surface give person who defend maintenance have wide prospects in pitch.Mend the hole machine in spraying type: Person who spray pitch road surface mend technology one high-efficient mending road surface hole maintenance technology of pool fast, cardinal principle to utilize way of spaying with high presure , mix emulsification pitch that heat already through nozzle with conveyer belt dept. oforthopedics come to convey, spray the mixture to the hole pool of road surface evenly through the compressed air at a high speed, because passing through function reaches and glues the result formed closely knitly. Because craft simple, need and go on and roll again, mend hole short activity duration, can open traffic quickly.Hope that you remember my result every day. Car chassis (or pulling type); Pitch pot of emulsification and heating and keep the device warm, sending the pipeline; The aggregate stores the storehouse and conveyer belt; The cleaner stores the pot; Liquor pressure drive; Air compressor machine and nozzlemake up . In pool go on and clear up, after repairing, attenbant need and know one nozzle (operate button at nozzle handle) can finish the hole pool of road surface mend the homework only to hole. Should pay attention to controlling the quality of the good aggregate and grading in using; Choose the broken milk tempo of the good emulsification pitch ; Grasp the spraying amount and so as to ensure roughness of road surface after mending, Mend machinery in hot regeneration of road surface : For economize valuable way spend material, reduce and mill old material pollution of the environment these come down to plane, many place popularize old way spend regeneration of material, pitch hot recycled craft because with cold to mill- factory mix recycled craft compare on the spot among them in a more cost-effective manner, reduce old material freight and factory mix regeneration need use continuous type to mix and stir the reasons, such as equipment. Generally, the maintenance of the expressway is widely used with maintaining in JiangsuProvince. Reach materials that company offer according to Great Britain, " repair the roads king " its mend method compare with traditional method, it can save 5/6 to mend time, personnel save 1/2 for homework, the old way totally utilizes with the material, new pitch mixture consumption can save 1/2 .Hot recycled key part of equipment to heat board mainly on the spot, it want offer high-efficient heat energy of radiating, heat and should short time to old road surface have, and reach certain depth; Can't be overheated, make the pitch wear out , lose the recycled meaning. Great Britain reach company repair the roads king heat board take interval heating way, can one is penetrated to the road surface deep layer, and road surface top layer pitch wear out again and hotly, well solve this problem . Inaddition according to mend area of uniform size, heat board it's better to have the sub-zone function.The rare thick liquid seals one layer of pitch rare thick liquid of emulsification with modifying and seals one layer of pavers: Rare thick liquid seal layers of technology to new, old wear out, crack, smooth loose of road surface, hole trough. Disease can play prevent and function of maintenance, make road surface waterproof, resist slippery, levels, wear-resisting performance is raised rapidly. In recent years, because rare thick liquid seal layers of standardization that construct, standardize, construction quality raise and reducing of cost, rare thick liquid seal layer apply common road and expressway maintained and had in early days extensively already.Modify emulsification pitch rare thick liquid seal layer modify emulsification pitch with roll and break to pieces by water quality high polymer intensive material, mineral packing, water and surface that additive make up punish layer one, can pave the thin layer , solidify fast, can open traffic in an hour after constructing in characteristic, because modify the pitch rare thick liquid of emulsification seal one layer of solidification time faster than the ordinary rare thick liquid, modify emulsification pitch rare thick liquid seal layer can seal than traditional rare thick liquid layer thick. Used in the punishment of constructing disease, such as repairing, chap, rut, etc. of road surface mainly, can be used for sealing and improving resisting slippery punishment of road surface. But modify the pitch rare thick liquid of emulsification is the same as other thin layers are punished, only have highway section with steady structure now suitably, must construct after mending strongly when curved sinking value is not enough. Guarantee modify emulsification pitch there aren't the thick liquid not rares. Modify emulsification pitch rare thick liquid material viscidity heavy, pave layer relatively thick, generally speaking, modify emulsification pitch raise than the emulsification pitch viscidity not modifying by 30-50%, result in and make obstruction heavy thick liquid, the speed slows down. Demand and modify emulsification pitch rare thick liquid seal layers of equipment device corresponding to strengthen power store to make thick liquid, cloth fast, mobility fine, cloth speed pave range that the thickness regulate heavy, in order to meet modifying the constructionrequest for sealing layer of rare thick liquid of pitch of emulsification.The pitch road surface maintains machinery and cares the car synthetically, cares the car etc. multi-functionally, have given play to one's own characteristics in the maintenance of the superhighway. As the constant increase,, especially the expressway of the superhighway increase, and the constant innovation on maintenance work craft and material , the mechanical manufacturer to maintaining , including the respects, such as designing, making, after-sale service. Put forward higher and higher request. Too should maintain mechanical applying unit from maintenance, quality of attenbant of equipment, maintenance exertion of material,etc. pays enough attention, it is in many aspects to accomplish, multi-disciplinary close cooperation, could promote the preventative maintenance mechanized development of the highway to the maximum extent .3 pitch concrete road surface in constructing1.one of precautions infiltrate, design and grade kind pitch concrete match ratio very in theory in constructing, in not butting if can't construct it guarantee by pitch concrete homogeneity(include and grade and last homogeneity that shut pitch , homogeneity that pave, roll homogeneity of shaping), pitch concrete road surface equally will produce infiltrate, purt thick liquid, rut, suffused with oil,etc. destroy the phenomenon in early days. Stone fit expressway pitch concrete finish adopt many broken stone pitch concrete (SAC) make finish structure, SAC structure does not infiltrate theoretically, and have good resisting the slipping and temperature stability, can meet and construct TD of depth > request for 0.7mm, why is it very good in some paragraphs on the line of Ann of stone, some paragraph very serious to destroy phenomenon in early days, main reason to guarantee pitch concrete homogeneity of road surface and pigeonhole solidity, pursue the roughness to cause excessivly. Guarantee pitch homogeneity of concrete and pigeonhole solidity key problem very in constructing. Sand celebrate academician Lin in " expressway pitch road surface destroy phenomenon with predict " book chapter ten describe to pitch concrete importance of homogeneity specially " in early days. Only brief here to sum up the。
Unit 1 The Evolution of Transport交通工具的演化The evolution of transport has been closely linked to the development of humankind throughout the earth’s history.Transport’s early function was to meet the basic need of hauling food supplies and building materials.But with the formation of tribes,then peoples,and finally nations,the societal and economic functions of transport became more and more complex. At first there was mobility required for individuals,clans,households,and animals to protect them against,and to escape from,the dangers of natural disasters and tribal aggressions,and in the search for the best places to settle.As tribal groups formed and gradually established their geographical identity,transport was increasingly needed to open up regions for development,to provide access to natural resources,to promote intercommunal trade,and to mobilize territorial defense.When the first nations came into being,transport played a major role in establishing national integrity.交通工具的演变紧密相连的人类在整个地球的历史发展。
Lesson 1 Careers in Civil Engineering(土木工程中的各种业务)土木工程是一个意味着工程师必须要经过专门的大学教育的职业。
许多政府管辖部门还有(一套)认证程序,这一程序要求工科毕业生在他们能积极地开始(从事)他们的事业之前,通过(认证)考试, 这种考试类似于律师职业里的律师考试一样。
大学里, 工科课程中着重强调数学、物理, 和化学,尤其在开始的二到三年。
在工科所有分支中,数学非常重要, 因此它被着重地强调。
今天, 数学包括统计学中的课程主要涉及集合, 分类, 和使用数字数据, 或信息。
统计数学的一个重要方面是概率, 它涉及当有改变问题的结果的不同的因素, 或变量时,可能会发生什么。
例如,在承担桥梁的建设之前, 运用统计研究来预计未来桥梁期望承受的交通量. 在桥梁的设计中,(各种)变量如作用在基础上的水压, 碰撞, 不同的风力的作用, 以及许多其它因素必须考虑。
由于在解决这些问题涉及大量的计算, 现在几乎所有工科课程中都包括计算机编程。
当然,计算机能比人类以更快的速度和准确性解决许多问题。
但如果不给计算机清楚和准确指令和信息,换句话说,一个好程序,它也是无用的。
虽然,在工科课程中,对技术科目着重强调,但当前的趋势还是要求学生学习社会科学和语言艺术的课程。
工程和社会间的关系变得更加紧密; 因此,再一次充分说明, 工程师负责(承担)的工程在许多不同和重要的方面影响社会,这些方面是他们所知道的。
并且,工程师需要一种很肯定(自信)语言表达方式来准备报告,这个报告要清楚明了,且在多数情况下, 是令人信服的。
参与研究的工程师要能为科学出版物详细描述他们的发现。
最后两年的工科课程计划包括学生专业领域的学科。
为准备使学生成为一名土木工程师, 这些专业课程可能会涉及诸如大地测量、土力学,或水力学。
学生在大学中的最后一年前常常就开始了频繁的工程师招聘。
近年来,许多不同的公司和政府机构为争夺工程师而竞争。
Unit1The Evolution of Transport交通工具的演化The evolution of transport has been closely linked to the development of humankind throughout the earth’s history.Transport’s early function was to meet the basic need of hauling food supplies and building materials.But with the formation of tribes,then peoples,and finally nations,the societal and economic functions of transport became more and more complex. At first there was mobility required for individuals,clans,households,and animals to protect them against,and to escape from,the dangers of natural disasters and tribal aggressions,and in the search for the best places to settle.As tribal groups formed and gradually established their geographical identity,transport was increasingly needed to open up regions for development,to provide access to natural resources,to promote intercommunal trade,and to mobilize territorial defense.When the first nations came into being,transport played a major role in establishing national integrity.交通工具的演变紧密相连的人类在整个地球的历史发展。
道路施工英文作文Title: Road Construction: Ensuring Smooth Transitions。
Road construction plays a pivotal role in enhancing transportation infrastructure, facilitating economic growth, and ensuring the safety of commuters. It involves a myriadof processes, from planning and design to execution and maintenance. In this essay, we will delve into the various aspects of road construction, its importance, challenges, and solutions.Firstly, the planning phase sets the foundation for a successful road construction project. It involves thorough research, analysis of traffic patterns, environmentalimpact assessments, and stakeholder consultations.Effective planning ensures that the road meets the needs of the community while minimizing adverse effects on the environment.Next comes the design phase, where engineers andarchitects translate the project's requirements into detailed blueprints. Factors such as road alignment, drainage systems, pavement materials, and safety features are meticulously considered to create a robust and functional road infrastructure.Execution is perhaps the most visible phase of road construction, where heavy machinery, skilled labor, and precise coordination come into play. Clear communication and adherence to safety protocols are paramount to prevent accidents and ensure the smooth progress of work. Delays due to unforeseen circumstances like adverse weather or logistical issues are not uncommon, underscoring the need for contingency plans and flexible scheduling.One of the significant challenges in road construction is managing traffic flow during the construction period. Temporary diversions, traffic signals, and signage are deployed to guide motorists safely through construction zones. However, congestion and delays can still occur, testing the patience of commuters and highlighting the importance of efficient traffic management strategies.Quality control and assurance are critical throughout the construction process to ensure that the road meets specified standards and withstands the test of time. Regular inspections, material testing, and adherence to technical specifications help identify and rectify any defects or deficiencies promptly.Environmental sustainability is another key consideration in road construction, with measures in place to minimize the project's ecological footprint. This includes mitigating soil erosion, preserving natural habitats, and implementing green technologies such as permeable pavements and rainwater harvesting systems.Community engagement is essential to address concerns and garner support for road construction projects. Public consultations, information sessions, and outreach programs help foster transparency and build trust between project stakeholders and the local community.Finally, maintenance is an ongoing responsibility toensure the longevity and functionality of the road infrastructure. Regular inspections, repairs, and upgrades are necessary to address wear and tear, changing traffic patterns, and evolving safety standards.In conclusion, road construction is a complex and multifaceted process that requires careful planning, execution, and maintenance. Despite the challenges it entails, the benefits of well-built roads in terms of connectivity, economic development, and safety cannot be overstated. By adopting best practices, embracing innovation, and fostering collaboration, we can continue to build and maintain road networks that serve the needs of society while preserving the environment for future generations.。
毕业论文(外文翻译)(2012届)学院名称土木与水利工程学院专业(班级)土木工程七班姓名(学号)李小润(20083650)指导教师扈惠敏系(教研室)负责人方诗圣PavementHighway pavements are divided into two main categories: rigitand flexible.The wearing surfaceof a rigid pavement is usually constructed of Portland cement concrete such that it acts like a beam over any irregularities in the underlying supporting material.The wearing surface of flexible pavements, on the other hand, is usually constructed of bituminous material such that they remain in contact with the underlying material even when minor irregularities occur.Flexible pavements usually consist of a bituminous surface underlaid with a layer of granular material and a layer of a suitable mixture of coarse and fine materials.Coarse aggregatesFine aggregatesTraffic loads are transferred by the wearing surface to the underlying supporting materials through the interlocking of aggregates, the frictionaleffect of the granular materials, and the cohesion of the fine materials.Flexible pavements are further divided into three subgroups: high type, intermediate type, and low type. High-type pavements have wearing surfaces that adequately support the expected traffic load without visible distress due to fatigue and are not susceptible to weather conditions.Intermediate-type pavements have wearing surfaces that range from surface treated to those with qualities just below that of high-type pavements. Low-type pavements are used mainly for low-cost roads and have wearing surfaces that range from untreated to loose natural materials to surface-treated earth.✹The components of a flexible pavement include the subgradeor prepared roadbed, the subbase, basecourse, and the surface course (Fig.11.1).✹Upper surface courseMiddle surface courseLower surface courseThe performance of the pavement depends on the satisfactory performance of each component, which requires proper evaluation of the properties of each component separately.✹The subgrade is usually the natural material located along the horizontal alignment of the pavement and serves as the foundation of the pavement structure.✹The subgrademay also consist of a layer of selected borrow materials, well compacted to prescribedspecifications.✹Compacting plantCompaction deviceCompactnessIt may be necessary to treat the subgrade material to achieve certain strength properties required for the type of pavement being constructed.Located immediately above the subgrade, the subbase component consists of a superior quality to that which generally is used for subgrade construction. The requirements for subbase materials are usually given in terms of the gradation, plastic characteristics, and strength. When the quality of the subgrade material meets the requirements of the subbase material, the subbase component may be omitted.In cases where suitable subbase material is not readily available ,the available material can be treated with other materials to achieve the necessary properties. This process of treating soils to improve their engineering properties is know as stabilization.✹The base course lies immediately above the subbase. It is placed immediately above the subgrade if a subbase course is not used.✹This course usually consists of granular materials such as crushed stone, crushed or uncrushed.The specifications for base course materials usually include stricter requirements than those for subbase materials, particularly with respect to their plasticity, gradation, and strength.Materials that do not have the required properties can be used as base materials if they are properly stabilized with Portland cement, asphalt, or lime .In some cases, high-quality base course materials may also be treated with asphalt or Portland cement to improve the stiffness characteristics of heavy-duty pavementsThe surface course is the upper course of the road pavement and is constructed immediately above the base course. The surface course in flexible pavement usually consists of a mixture of mineral aggregates and asphaltic materials.It should be capable of withstanding high tire pressures, resisting the abrasive forces due to traffic, providing a skid-resistant driving surface, and preventing the penetration of surface water into the underlying layers.✹The thickness of the wearing surface can vary from 3 in. to more than 6 in.(inch,英寸,2.54cm), depending on the expected traffic on the pavement.It was shown that the quality of the surface course of a flexible pavement depends on the mix design of the asphalt concrete used.✹Rigid highway pavements usually are constructed to carry heavy traffic loads, although they have been used for residential and local roads. Properly designed and constructed rigid pavements have long service lives and usually are less expensive to maintain than the flexible pavements.✹The Portland cement concrete commonly used for rigid pavements consists of Portland cement, coarse aggregate, fine aggregate, and water. Steel reinforcing rods may or may not be used, depending on the type of pavement being constructed.Rigid highway pavements be divided into three general type: plain concrete pavements, simply reinforced concrete pavements, and continuously reinforced concrete pavement. The definition of each pavement type is related to the amount of reinforcement used.Plain concrete pavement has no temperature steel or dowels for load transfer.However, steel tie bars are often used to provide a hingeeffect at longitudinal joints and to prevent the opening of these joints. Plain concrete pavements are used mainly on low-volume highways or when cement-stabilized soils are used as subbase.Joints are placed at relatively shorter distances (10 to 20 ft) than with the other types of concrete pavements to reduce the amount of cracking.In some case, the transverse joints of plain concrete pavements are skewed about 4 to 5 ft in plan, such that only one wheel of a vehicle passes through the joint at a time. This helps to provide a smoother ride.Simply reinforced concrete pavements have dowels for the transfer of traffic loads across joints, with these joints spaced at larger distances, ranging from 30 to 100 ft. Temperature steel is used throughout the slab, with the amount dependent on the length of the slab. Tie bars are also commonly used in longitudinal joints.Continuously reinforced concrete pavements have no transverse joints, except construction joints or expansion joints when they are necessary at specific positions, such as at bridges.These pavements have a relatively high percentage of steel, with the minimum usually at 0.6 percent of the cross section of the slab. They also contain tie bars across the longitudinal joints.h/2h/25~10cm填缝料 横向施工缝构造填缝料平缝加拉杆型Bituminous Surface CoursesThe bituminous surface course has to provide resistance to the effects of repeated loading by tyres and to the effects of the environment.✹In addition, it must offer adequate skid resistance in wet weather as well as comfortable vehicle ride. It must also be resistant to rutting and to cracking.✹It is also desirable that surface course is impermeable, except in the case of porous asphalt.Hot rolled asphalt (HRA) is a gapgraded material with less coarse aggregate. In fact it is essentially a bitumen/fine aggregate/filler mortar into which some coarse aggregate is placed.The mechanical propertiesare dominated by those of the mortar. This material has been extensively used as the wearing course on major road in the UK, though its use has recently declined as new materials have been introduced.✹It provides a durablelayer with good resistance to cracking and one which is relatively easy to compact. The coarse aggregate content is low (typically 30%) which results in the compacted mixture having a smooth surface. Accordingly, the skid resistance is inadequate and precoated chippings are rolled into the surface at the time of laying to correct this deficiency.In Scotland, HRA wearing course remains the preferred wearing course on trunk roads including motorway but,since 1999 thin surfacings have been the preferred option in England and Wales. Since 1999 in Northern Ireland, HRA wearing course and thin surfacings are the preferred permitted options.Porous asphalt (PA) is a uniformly graded material which is designed to provide large air voids so that water can drain to the verges within the layer thickness. If the wearing course is to be effective, the basecourse below must be waterproof and the PA must have the ability to retain its open textured properties with time.Thick binder films are required to resist water damage and ageing of the binder. In use, this material minimizes vehicle spray, provides a quiet ride and lower rolling resistance to traffic than dense mixtures.✹It is often specified for environmental reasons but stone mastic asphalt (SMA) and special thin surfacings are generally favoured in current UK practice.There have been high profile instances where a PA wearing course has failed early in its life. The Highways Agency does not recommend the use of a PA at traffic levels above 6000 commercial vehicles per day.✹Asphaltic concrete and dense bitumen macadam (DBM) are continuously graded mixtures similar in principle to the DBMs used in roadbases and basecourses but with smaller maximum particle sizes. Asphaltic concrete tends to have a slightlydenser grading and is used for road surfaces throughout the world with the excepting of the UK.✹It is more difficult to meet UK skid resistance Standards with DBMs than HRA, SMA or PA. This problem can be resolves by providing a separate surface treatment but doing so generally makes DBM economically unattractive.✹Stone mastic asphalt (SMA) material was pioneeredin Germany and Scandinavia and is now widely used in the UK. SMA has a coarse, aggregrate skeleton, like PA, but the voids are filled with a fine aggregate/filler /bitumen mortar.✹In mixtures using penetration grade bitumen , fibres are added to hold the bitumen within the mixture (to prevent “binder drainage”).Bitumen✹oil bitumen( earth oil)✹natural bitumen✹TarWhere a polymer modified bitumen is used, there is generally no need for fibres. SMA is a gap-graded material with good resistance to rutting and high durability. modified bitumen✹SBS✹SBR✹PE\EV A✹It differs from HRA in that the mortar is designed to just fill the voids in the coarse aggregate whereas, in HRA, coarse aggregate is introduced into the mortar and does not provide a continous stone matrix. The higher stone content HRAs ,however, are rather similar to SMA but are not wide used as wearing courses in the UK, being preferred for roadbase and basecourse construction.A variety of thin and what were called ultra thin surfacings (nowadays, the tendency is to use the term ‘thin surfacings’ for both thin and ultra thin surfacings ) have been introduced in recent years, principally as a result of development work concentrated in France.These materials vary in their detailed constituents but usually have an aggregate grading similar to SMA and often incorporate a polymer modified bitumen.They may be used over a high stiffness roadbase and basecourse or used for resurfacing of existing pavements. For heavy duty pavements (i .e those designed to have a useful life of forty years), the maintenance philosophy is one of minimum lane occupancy, which only allows time for replacement of the wearing course to these ‘long life’ pavement structures. The new generation of th in surfacings allows this to be conveniently achieved.The various generic mixture types described above can be compared with respect to their mechanical properties and durability characteristics by reference to Fig.12.1. This shows, in principle, how low stone content HRA, asphaltic concrete, SMA and PA mixtures mobilize resistance to loading by traffic.Asphaltic concrete (Fig.12.1a)) presents something of a compromise when well designed, since the dense aggregate grading can offer good resistance to the shear stresses which cause rutting, while an adequate binder content will provide reasonable resistance to the tensile stresses which cause cracking.In general, the role of the aggregate dominates. DBMs tend to have less dense gradings and properties which, therefore, tend towards good rutting resistance andaway from good crack resistance.HRA (Fig.12.1b)) offers particularly good resistance to cracking through the binder rich mortar between the coarse aggregate particles. This also provides good durability but the lack of coarse aggregate content inhibits resistance to rutting.SMA and PA are shown in the same diagram ( Fig.c)) to emphasis the dominant role the coarse aggregate. In both case, well coated stone is used. In PA, the void space remains available for drainage of water, whilst in SMA, the space is occupied by a fine aggregate/ filler/ bitumen/ fibre mortar.Both materials offer good rutting resistance through the coarse aggregate content. The tensile strength of PA is low whilst that of SMA is probably adequate but little mechanical testing data have been reported to date.Drainage for Road and Airports✹Provision of adequate drainage is important factor in the location and geometric design of road and airports. Drainage facilities on any highway, street and airport should adequately provide for the flow of water away from the surface of the pavement to properly designed channels.Inadequate drainage will eventually result in serious damage to the structure.✹In addition, traffic may be slowed by accumulated water on the pavement, and accidents may occur as a result of hydroplaning and loss of visibility from splash and spray. The importance of adequate drainage is recognized in the amount of highway construction dollars allocated to drainage facilities. About25 percent of highway construction dollars are spent for erosion control anddrainage structures, such as culverts, bridges, channels, and ditches.✹Highway Drainage Structures✹One of the main concerns of the highway engineer is to provide an adequate size structure, such that the waterway opening is sufficiently large to discharge the expected flow of water.Inadequately sized structures can result in water impounding, which may lead to failure of the adjacent sections of the highway due to embankments being submerged in water for long periods.✹The two general categories of drainage structures are major and minor. Major structures are those with clear spans greater than 20 feet, whereas minor structures are those with clear spans of 20 feet or less .✹Major structures are usually large bridges, although multiple-span culverts may also be included in this class. Minor structures include small bridges and culverts.Emphasis is placed on selecting the span and vertical clearancerequirements for major structures. The bridge deck should be located above the high water mark .The clearance above the high water mark depends on whether the waterway is navigable ✹If the waterway is navigable, the clearance above the high water mark should allow the largest ship using the channel to pass underneath the bridge without colliding with the bridge deck. The clearance height, type, and spacing of piers also depend on the probability of ice jams and the extentto which floating logs and debris appear on the waterway during high water.✹An examination of the banks on either side of the waterway will indicate the location of the high water mark, since this is usually associated with signs of erosion and debris deposits. Local residents, who have lived near and observed the waterway during flood stages over a number of years, can also give reliable information on the location of the high water mark. Stream gauges that have been installed in the waterway for many years can also provide data that can be used to locate the high water mark.Minor structures, consisting of short-span bridges and culverts, are the predominant type of drainage structures on highways. Although openings for these structures are not designed to be adequate for the worst flood conditions, they shouldbe large enough to accommodate the flow conditions that might occur during the normal life expectancy of the structure.✹Provision should also be made for preventing clogging of the structure due to floating debris and large boulders rolling from the banks of steep channels.✹Culverts are made of different materials and in different shapes. Materials used to construct culverts include concrete(reinforced and unreinforced), corrugated steel, and corrugatedaluminum. Other materials may also be used to line the interiorof the culvert to prevent corrosion and abrasionor to reduce hydraulic resistance. For example, asphaltic concrete may be used to line corrugated metal culverts. The different shapes normally used in culvert construction include circular, rectangular (box), elliptical, pipe arch, metal box, and arch.✹The drainage problem is increased in these areas primarily for two reasons: the impervious nature of the area creates a very high runoff; and there is little room for natural water courses. It is often necessary to collect the entire storm water into a system of pipes and transmit it over considerable distances before it can be loosed again as surface runoff. This collection and transmission further increase the problem, since all of the water must be collected with virtually no pending, thus eliminating any natural storage; and through increased velocity the peak runoffs are reached more quickly.Also, the shorter times of peaks cause the system to be more sensitive to short-duration,high intensive rainfall.Storm sewers,like culverts and bridges,are designed for storms of various intensity-return-period relationships, depending upon the economy and amount of ponding that can be tolerated.✹Airport Drainage✹The problem of providing proper drainage facilities for airports is similar in many ways to that of highways and streets. However, because of the large and relatively flat surface involved, the varying soil conditions, the absence of natural water courses and possible side ditches, and the greater concentration of discharge at the terminus of the construction area, some phases of the problem are more complex. For the average airport the over-all area to be drained is relatively large and an extensive drainage system is required. The magnitude of such a system makes it even more imperative that sound engineering principles based on all of the best available data be used to ensure the most economical design.Overdesigning of facilities results in excessive money investment with no return, and underdesigning can result in conditions hazardous to the air traffic using the airport. In order to ensure surfaces that are smooth, firm, stable, and reasonably free from flooding, it is necessary to provide a system which will do several things.It must collect and remove the surface water from the airport surfaces; intercept and remove surface water flowing toward the airport from adjacent areas; collect and remove any excessive subsurface water beneath the surface of the airport facilities and in many cases lower the ground-water table; and provide protection against erosion of the sloping areas.路面公路的路面被分为两类:刚性的和柔性的。
原文1AUTOMATIC DEFLECTION AND TEMPERATUREMONITORING OFA BALANCED CANTILEVER CONCRETE BRIDGEby Olivier BURDET, Ph.D.Swiss Federal Institute of Technology, Lausanne, SwitzerlandInstitute of Reinforced and Prestressed ConcreteSUMMARYThere is a need for reliable monitoring systems to follow the evolution of the behavior of structures over time.Deflections and rotations are values that reflect the overall structure behavior. This paper presents an innovative approach to the measurement of long-term deformations of bridges by use of inclinometers. High precision electronic inclinometers can be used to follow effectively long-term rotations without disruption of the traffic. In addition to their accuracy, these instruments have proven to be sufficiently stable over time and reliable for field conditions.The Mentue bridges are twin 565 m long box-girder post-tensioned concrete highway bridges under construction in Switzerland. The bridges are built by the balanced cantilever method over a deep valley. The piers are 100 m high and the main span is 150 m. A centralized data acquisition system was installed in one bridge during its construction in 1997. Every minute, the system records the rotation and temperature at a number of measuring points. The simultaneous measurement of rotations and concrete temperature at several locations gives a clear idea of the movements induced by thermal conditions. The system will be used in combination with a hydrostatic leveling setup to follow the long-term behavior of the bridge.Preliminary results show that the system performs reliably and that the accuracy of the sensors is excellent.Comparison of the evolution of rotations and temperature indicate that the structureresponds to changes in air temperature rather quickly.1.BACKGROUNDAll over the world, the number of structures in service keeps increasing. With the development of traffic and the increased dependence on reliable transportation, it is becoming more and more necessary to foresee and anticipate the deterioration of structures. In particular, for structures that are part of major transportation systems, rehabilitation works need to be carefully planned in order to minimize disruptions of traffic. Automatic monitoring of structures is thus rapidly developing.Long-term monitoring of bridges is an important part of this overall effort to attempt to minimize both the impact and the cost of maintenance and rehabilitation work of major structures. By knowing the rate of deterioration of a given structure, the engineer is able to anticipate and adequately define the timing of required interventions. Conversely, interventions can be delayed until the condition of the structure requires them, without reducing the overall safety of the structure.The paper presents an innovative approach to the measurement of long-term bridge deformations. The use of high precision inclinometers permits an effective, accurate and unobtrusive following of the long-term rotations. The measurements can be performed under traffic conditions. Simultaneous measurement of the temperature at several locations gives a clear idea of the movements induced by thermal conditions and those induced by creep and shrinkage. The system presented is operational since August 1997 in the Mentue bridge, currently under construction in Switzerland. The structure has a main span of 150 m and piers 100 m high.2. LONG-TERM MONITORING OF BRIDGESAs part of its research and service activities within the Swiss Federal Institute of Technology in Lausanne (EPFL), IBAP - Reinforced and Prestressed Concrete has been involved in the monitoring of long-time deformations of bridges and other structures for over twenty-five years [1, 2, 3, 4]. In the past, IBAP has developed a system for the measurement of long-term deformations using hydrostatic leveling [5, 6]. This system has been in successful service in ten bridges in Switzerland for approximately ten years [5,7]. The system is robust, reliable andsufficiently accurate, but it requires human intervention for each measurement, and is not well suited for automatic data acquisition. One additional disadvantage of this system is that it is only easily applicable to box girder bridges with an accessible box.Occasional continuous measurements over periods of 24 hours have shown that the amplitude of daily movements is significant, usually amounting to several millimeters over a couple of hours. This is exemplified in figure 1, where measurements of the twin Lutrive bridges, taken over a period of several years before and after they were strengthened by post-tensioning, are shown along with measurements performed over a period of 24 hours. The scatter observed in the data is primarily caused by thermal effects on the bridges. In the case of these box-girder bridges built by the balanced cantilever method, with a main span of 143.5 m, the amplitude of deformations on a sunny day is of the same order of magnitude than the long term deformation over several years.Instantaneous measurements, as those made by hydrostatic leveling, are not necessarily representative of the mean position of the bridge. This occurs because the position of the bridge at the time of the measurement is influenced by the temperature history over the past several hours and days. Even if every care was taken to perform the measurements early in the morning and at the same period every year, it took a relatively long time before it was realized that the retrofit performed on the Lutrive bridges in 1988 by additional post-tensioning [3, 7,11] had not had the same effect on both of them.Figure 1: Long-term deflections of the Lutrive bridges, compared to deflections measured in a 24-hour period Automatic data acquisition, allowing frequent measurements to be performed at an acceptable cost, is thus highly desirable. A study of possible solutions including laser-based leveling, fiber optics sensors and GPS-positioning was performed, with the conclusion that, provided that their long-term stability can be demonstrated, current types of electronic inclinometers are suitable for automatic measurements of rotations in existing bridges [8].3. MENTUE BRIDGESThe Mentue bridges are twin box-girder bridges that will carry the future A1 motorway from Lausanne to Bern. Each bridge, similar in design, has an overall length of approximately 565 m, and a width of 13.46 m, designed to carry two lanes of traffic and an emergency lane. The bridges cross a deep valley with steep sides (fig. 2). The balanced cantilever design results from a bridge competition. The 100 m high concrete piers were built using climbing formwork, after which theconstruction of the balanced cantilever started (fig. 3).4. INCLINOMETERSStarting in 1995, IBAP initiated a research project with the goal of investigating the feasibility of a measurement system using inclinometers. Preliminary results indicated that inclinometers offer several advantages for the automatic monitoring of structures. Table 1 summarizes the main properties of the inclinometers selected for this study.One interesting property of measuring a structure’s rotations, is that, for a given ratio of maximum deflection to span length, the maximum rotation is essentially independent from its static system [8]. Since maximal allowable values of about 1/1,000 for long-term deflections under permanent loads are generally accepted values worldwide, developments made for box-girder bridges with long spans, as is the case for this research, are applicable to other bridges,for instance bridges with shorter spans and other types of cross-sections. This is significant because of the need to monitor smaller spans which constitute the majority of all bridges.The selected inclinometers are of type Wyler Zerotronic ±1°[9]. Their accuracy is 1 microradian (μrad), which corresponds to a rotation of one millimeter per kilometer, a very small value. For an intermediate span of a continuous beam with a constant depth, a mid-span deflection of 1/20,000 would induce a maximum rotation of about 150 μrad, or 0.15 milliradians (mrad).One potential problem with electronic instruments is that their measurements may drift over time. To quantify and control this problem, a mechanical device was designed allowing the inclinometers to be precisely rotated of 180°in an horizontal plane (fig. 4). The drift of each inclinometer can be very simply obtained by comparing the values obtained in the initial and rotated position with previously obtained values. So far, it has been observed that the type ofinclinometer used in this project is not very sensitive to drifting.5. INSTRUMENTATION OF THE MENTUE BRIDGESBecause a number of bridges built by the balanced cantilever method have shown an unsatisfactory behavior in service [2, 7,10], it was decided to carefully monitor the evolution of the deformations of the Mentue bridges. These bridges were designed taking into consideration recent recommendations for the choice of the amount of posttensioning [7,10,13]. Monitoring starting during the construction in 1997 and will be pursued after the bridges are opened to traffic in 2001. Deflection monitoring includes topographic leveling by the highway authorities, an hydrostatic leveling system over the entire length of both bridges and a network of inclinometers in the main span of the North bridge. Data collection is coordinated by the engineer of record, to facilitate comparison of measured values. The information gained from these observations will be used to further enhance the design criteria for that type of bridge, especially with regard to the amount of post-tensioning [7, 10, 11, 12, 13].The automatic monitoring system is driven by a data acquisition program that gathers and stores the data. This system is able to control various types of sensors simultaneously, at the present time inclinometers and thermal sensors. The computer program driving all the instrumentation offers a flexible framework, allowing the later addition of new sensors or data acquisition systems. The use of the development environment LabView [14] allowed to leverage the large user base in the field of laboratory instrumentation and data analysis. The data acquisition system runs on a rather modest computer, with an Intel 486/66 Mhz processor, 16 MB of memory and a 500 MB hard disk, running Windows NT. All sensor data are gathered once per minute and stored in compressed form on the hard disk. The system is located in the box-girder on top of pier 3 (fig. 5). It can withstand severe weather conditions and will restart itself automatically after a power outage, which happened frequently during construction.6. SENSORSFigure 5(a) shows the location of the inclinometers in the main span of the North bridge. The sensors are placed at the axis of the supports (①an d⑤), at 1/4 and 3/4 (③an d④) of the span and at 1/8 of the span for②. In the cross section, the sensors are located on the North web, at a height corresponding to the center of gravity of the section (fig.5a). The sensors are all connected by a single RS-485 cable to the central data acquisition system located in the vicinity of inclinometer ①. Monitoring of the bridge started already during its construction. Inclinometers①,②and③were installed before the span was completed. The resulting measurement were difficult to interpret, however, because of the wide variations of angles induced by the various stages of this particular method of construction.The deflected shape will be determined by integrating the measured rotations along the length of the bridge (fig.5b). Although this integration is in principle straightforward, it has been shown [8, 16] that the type of loading and possible measurement errors need to be carefully taken into account.Thermal sensors were embedded in concrete so that temperature effects could be taken into account for the adjustment of the geometry of the formwork for subsequent casts. Figure 6 shows the layout of thermal sensors in the main span. The measurement sections are located at the same sections than the inclinometers (fig. 5). All sensors were placed in the formwork before concreting and were operational as soon as the formwork was removed, which was required for the needs of the construction. In each section, seven of the nine thermal sensor (indicated in solid black in fig. 6) are now automatically measured by the central data acquisition system.7. RESULTSFigure 7 shows the results of inclinometry measurements performed from the end of September to the third week of November 1997. All inclinometers performed well during that period. Occasional interruptions of measurement, as observed for example in early October are due to interruption of power to the system during construction operations. The overall symmetry of results from inclinometers seem to indicate that the instruments drift is not significant for that time period. The maximum amplitude of bridge deflection during the observed period, estimated on the basis of the inclinometers results, is around 40 mm. More accurate values will be computed when the method of determination of deflections will have beenfurther calibrated with other measurements. Several periods of increase, respectively decrease, of deflections over several days can be observed in the graph. This further illustrates the need for continuous deformation monitoring to account for such effects. The measurement period was .busy. in terms of construction, and included the following operations: the final concrete pours in that span, horizontal jacking of the bridge to compensate some pier eccentricities, as well as the stressing of the continuity post-tensioning, and the de-tensioning of the guy cables (fig. 3). As a consequence, the interpretation of these measurements is quite difficult. It is expected thatfurther measurements, made after the completion of the bridge, will be simpler to interpret.Figure 8 shows a detail of the measurements made in November, while figure.9 shows temperature measurements at the top and bottom of the section at mid-span made during that same period. It is clear that the measured deflections correspond to changes in the temperature. The temperature at the bottom of the section follows closely variations of the air temperature (measured in the shade near the north web of the girder). On the other hand, the temperature at the top of the cross section is less subject to rapid variations. This may be due to the high elevation of the bridge above ground, and also to the fact that, during the measuring period, there was little direct sunshine on the deck. The temperature gradient between top and bottom of the cross section has a direct relationship with short-term variations. It does not, however, appear to be related to the general tendency to decrease in rotations observed in fig. 8.8. FUTURE DEVELOPMENTSFuture developments will include algorithms to reconstruct deflections from measured rotations. To enhance the accuracy of the reconstruction of deflections, a 3D finite element model of the entire structure is in preparation [15]. This model will be used to identify the influence on rotations of various phenomena, such as creep of the piers and girder, differential settlements, horizontal and vertical temperature gradients or traffic loads.Much work will be devoted to the interpretation of the data gathered in the Mentue bridge. The final part of the research project work will focus on two aspects: understanding the very complex behavior of the structure, and determining the most important parameters, to allow a simple and effective monitoring of the bridges deflections.Finally, the research report will propose guidelines for determination of deflections from measured rotations and practical recommendations for the implementation of measurement systems using inclinometers. It is expected that within the coming year new sites will be equipped with inclinometers. Experiences made by using inclinometers to measure deflections during loading tests [16, 17] have shown that the method is very flexible and competitive with other high-tech methods.As an extension to the current research project, an innovative system for the measurement of bridge joint movement is being developed. This system integrates easily with the existing monitoring system, because it also uses inclinometers, although from a slightly different type. 9. CONCLUSIONSAn innovative measurement system for deformations of structures using high precision inclinometers has been developed. This system combines a high accuracy with a relatively simple implementation. Preliminary results are very encouraging and indicate that the use of inclinometers to monitor bridge deformations is a feasible and offers advantages. The system is reliable, does not obstruct construction work or traffic and is very easily installed. Simultaneous temperature measurements have confirmed the importance of temperature variations on the behavior of structural concrete bridges.10. REFERENCES[1] ANDREY D., Maintenance des ouvrages d’art: méthodologie de surveillance, PhD Dissertation Nr 679, EPFL, Lausanne, Switzerland, 1987.[2] BURDET O., Load Testing and Monitoring of Swiss Bridges, CEB Information Bulletin Nr 219, Safety and Performance Concepts, Lausanne, Switzerland, 1993.[3] BURDET O., Critères pour le choix de la quantitéde précontrainte découlant de l.observation de ponts existants, CUST-COS 96, Clermont-Ferrand, France, 1996.[4] HASSAN M., BURDET O., FAVRE R., Combination of Ultrasonic Measurements and Load Tests in Bridge Evaluation, 5th International Conference on Structural Faults and Repair, Edinburgh, Scotland, UK, 1993.[5] FAVRE R., CHARIF H., MARKEY I., Observation à long terme de la déformation des ponts, Mandat de Recherche de l’OFR 86/88, Final Report, EPFL, Lausanne, Switzerland, 1990.[6] FAVRE R., MARKEY I., Long-term Monitoring of Bridge Deformation, NATO Research Workshop, Bridge Evaluation, Repair and Rehabilitation, NATO ASI series E: vol. 187, pp. 85-100, Baltimore, USA, 1990.[7] FAVRE R., BURDET O. et al., Enseignements tirés d’essais de charge et d’observations à long terme pour l’évaluation des ponts et le choix de la précontrainte, OFR Report, 83/90, Zürich, Switzerland, 1995.[8] DAVERIO R., Mesures des déformations des ponts par un système d’inclinométrie, Rapport de maîtrise EPFL-IBAP, Lausanne, Switzerland, 1995.[9] WYLER AG., Technical specifications for Zerotronic Inclinometers, Winterthur, Switzerland, 1996.[10] FAVRE R., MARKEY I., Generalization of the Load Balancing Method, 12th FIP Congress, Prestressed Concrete in Switzerland, pp. 32-37, Washington, USA, 1994.[11] FAVRE R., BURDET O., CHARIF H., Critères pour le choix d’une précontrainte: application au cas d’un renforcement, "Colloque International Gestion des Ouvrages d’Art: Quelle Stratégie pour Maintenir et Adapter le Patrimoine, pp. 197-208, Paris, France, 1994. [12] FAVRE R., BURDET O., Wahl einer geeigneten Vorspannung, Beton- und Stahlbetonbau,Beton- und Stahlbetonbau, 92/3, 67, Germany, 1997.[13] FAVRE R., BURDET O., Choix d’une quantité appropriée de précontrainte, SIA D0 129, Zürich, Switzerland, 1996.[14] NATIONAL INSTRUMENTS, LabView User.s Manual, Austin, USA, 1996.[15] BOUBERGUIG A., ROSSIER S., FAVRE R. et al, Calcul non linéaire du béton armé et précontraint, Revue Français du Génie Civil, vol. 1 n° 3, Hermes, Paris, France, 1997.[16] FEST E., Système de mesure par inclinométrie: développement d’un algorithme de calcul des flèches, Mémoire de maîtrise de DEA, Lausanne / Paris, Switzerland / France, 1997.[17] PERREGAUX N. et al., Vertical Displacement of Bridges using the SOFO System: a Fiber Optic Monitoring Method for Structures, 12th ASCE Engineering Mechanics Conference, San Diego, USA, to be published,1998.原文2The Structure of Concrete BridgePre-stressed concrete has proved to be technically advantageous, economically competitive, and esthetically superior bridges, from very short span structures using standard components to cable-stayed girders and continuous box girders with clear spans of nearly 100aft .Nearly all concrete bridges, even those of relatively short span, are now pre-stressed. Pre-casting, cast-in-place construction, or a combination of the two methods may be used .Both pre-tensioning and post tensioning are employed, often on the same project.In the United States, highway bridges generally must-meet loading ,design ,and construction requirements of the AASHTO Specification .Design requirements for pedestrian crossings and bridges serving other purposes may be established by local or regional codes and specifications .ACI Code provisions are often incorporated by reference .Bridges spans to about 100ft often consist of pre-cast integral-deck units ,which offer low initial cost ,minimum ,maintenance ,and fast easy construction ,with minimum traffic interruption .Such girders are generally pre-tensioned .The units are placed side by side ,and are often post-tensioned laterally at intermediate diaphragm locations ,after which shear keys between adjacent units are filled with non-shrinking mortar .For highway spans ,an asphalt wearing surface may be applied directly to the top of the pre-cast concrete .In some cases ,a cast-in-place slab is placed to provide composite action .The voided slabs are commonly available in depths from 15 to 21 in .and widths of 3 to 4 ft .For a standard highway HS20 loading, they are suitable for spans to about 50 ft, Standard channel sections are available in depths from 21 to 35 in a variety of widths, and are used for spans between about 20 and 60 ft .The hollow box beams-and single-tee girders are intended for longer spans up to about 100 ft.For medium-span highway bridges ,to about 120 ft ,AASHTO standard I beams are generally used .They are intended for use with a composite cast-in-place roadway slab .Such girders often combine pre-tensioning of the pre-cast member with post-tensioning of the composite beam after the deck is placed .In an effort to obtain improved economy ,some states have adopted more refined designs ,such as the State of Washington standard girders.The specially designed pre-cast girders may be used to carry a monorail transit system .The finished guide way of Walt Disney World Monorail features a series of segments, each consisting of six simply supported pre-tensioned beams ,together to from a continuous structure .Typical spans are 100 to 110 ft . Approximately half of the 337 beams used have some combination of vertical and horizontal curvatures and variable super elevation .All beams are hollow, a feature achieved by inserting a styro-foam void in the curved beams and by a moving mandrel in straight beam production.Pre-cast girders may not be used for spans much in excess of 120 ft because of the problems of transporting and erecting large, heavy units.On the other hand ,there is a clear trend toward the use of longer spans for bridges .For elevated urban expressways ,long spans facilitate access and minimize obstruction to activities below .Concern for environmental damage has led to the choice of long spans for continuous viaducts . For river crossings, intermediate piers may be impossible because of requirements of navigational clearance.In typical construction of this type, piers are cast-in-place, often using the slip-forming techni que .A “hammerhead” section of box girder is often cast at the top of the pier, and construction proceeds in each direction by the balanced cantilever method. Finally, after the closing cast-in-place joint is made at mid-span, the structure is further post-tensioned for full continuity .Shear keys may be used on the vertical faces between segments, and pre-cast are glued with epoxy resin.The imaginative engineering demonstrated by many special techniques has extended the range of concrete construction for bridges far beyond anything that could be conceived just a few years ago .In the United States, twin curved cast-in –place segmental box girders have recently been completed for of span of 310 ft over the Eel River in northern California .Preliminary design has been completed for twin continuous box girders consisting of central 550 ft spans flanked by 390 ft side spans.Another form of pre-stressed concrete bridge well suited to long spans is the cable-stayed box girder .A notable example is the Chaco-Corrientes Bridge in Argentina .The bridges main span of 804 ft is supported by two A-frame towers, with cable stays stretching from tower tops to points along the deck .The deck itself consists of two parallel box girders made of pre-cast sections erected using the cantilever method .The tensioned cables not only provide a verticalreaction component to support the deck ,but also introduce horizontal compression to the box girders ,adding to the post-tensioning force in those members .Stress-ribbon Bridge pioneered many years ago by the German engineer Ulrich Finsterwalder. The stress-ribbon bridge carries a pipeline and pedestrians over the Rhine River with a span of 446 ft .The superstructure erection sequence was to (a) erect two pairs of cables, (b) place pre-cast slabs forming a sidewalk deck and a U under each of the sets of cables, and (c) cast-in-place concrete within the two Us. The pipeline is placed atop supports at railing height, off to one side, which greatly increases the wind speed of the structure.It is appropriate in discussing bridge forms to mention structural esthetics .The time is past when structures could be designed on the basis of minimum cost and technical advantages alone .Bridge structures in particular are exposed for all to see .To produce a structure that is visually offensive ,as has occurred all too often in the past, is an act professional irresponsibility .Particularly for major spans ,but also for more ordinary structures ,architectural advice should be sought early in conceptual stage of the design process.。
英文文献Highway asphalt pavement Preventive MaintenanceAbstract: The high-grade highway asphalt pavement and damaged the various early stage disease, the type of damage and its causes, and made a crack repair, slurry seal asphalt pavement, such as preventive conservation technology.Key words: asphalt pavement; conservationasphalt pavement and the type of damage causestype of damageThe asphalt pavement damage can be divided into: crack category, loose category, class and other types of deformation of the four major categoriesCauses(1) horizontal cracks in this relatively common disease, mainly due to contraction of asphalt surface temperature and semi-rigid or temperature shrinkage of the shrinkage caused. Roadbed degree of compaction less than this will lead to disease(2) vertical cracks in most cases took place in a half filled or half-dug embankment road widening, mainly from the roadbed caused by uneven settlement.(3) cracking along its initial shape is round with a single trace or more of parallel vertical joints, gradually appeared in the horizontal or vertical Feng Jian oblique connection joints cracking form. Mainly due to lack of structural strength from the road(4) along the road to track performance with a horizontal height difference, mainly because of foot-graded asphalt mixture design unreasonable. Poor or because of the stability of the grass-roots level and degree of compaction of the lack of construction so that the wheel tracks with the material and layer and grass-roots role in the traffic load has repeatedly appeared in the consolidation of lateral shear deformation and displacement caused. In addition, the overloading of heavy vehicles and also produce too many of the important reasons for rutting(5) is the main reason for the wave of road construction material design unreasonable or of poor quality, the road leading to insufficient material level of resistance Mou round of the role: Zongpo paragraph, because the high temperature will cause such diseases(6) loose water damage occurred mainly in the section on the serious.(7) pits is cracked and loose, and other damage to the further development of the results.(8) embankment subsidence is mainly caused by insufficient degree of compaction, especially in some high-filling and compaction difficult to fill a half-dug sections and structures at both ends of a(9) If the spalling asphalt Mixture using neutral or acid stone, will cause aggregate and asphalt adhesion b s(10) Fan You asphalt Mixture too much asphalt content, porosity smaller, high temperature stability poor, is the main reason for a Fanyouasphalt pavement Preventive Maintenance TechnologyAsphalt Pavement Preventive Maintenance Technology: repair cracks, slurry seal, the closure of the Stone Chip, the closure of the table and micro-thin heat Overlay (including open-graded, Miji and with intermittent grading). Here focus of slurry seal and repair cracks in technology.repair cracks in technology and methods⑴ slotted repair methodSlotted repair method for small and medium-sized cracks. Crack is a better approach. The equipment used slot machines and irrigation sewing machine to make up for joint use of materials designed specifically for repairing cracks in the sealed plastic (polymer modified asphalt), slotting size of at least l cm wide, l ~ 3 cm deep. Slotted than the depth should not exceed 2: l, greater depth than the smaller the better. Slotted repair of the construction process are as follows:① preparations for the inspection slot machines and irrigation sewing machine to ensure that its technical condition: Pavement cracks under the specific circumstances to determine fill slit design: sewing machine and start filling the tank sealant heating add sealant, sealant heating , Stirring to l90 ℃, can not exceed 200 ℃; heating during the sewing machine Tuogua irrigation in the truck behind, and the sealant, Geli Dun, the umbrella label instructions, and Shoulder-style slot machines, such as hair dryer mounted on trucks, Shi T locations scheduled to drag on a "safe highway maintenance of order" (JTG H30-2004) as the provisions of the construction area operations.② slotted in accordance with the design of the slot size, good pre-conditioning F-slot machine slot depth, and then slotted operations, operations, according to crack width type of situation, timely adjustment slotted sizes to meet the minimum design requirements.③ Shoulder-to-trough hair dryer to bed and cracks on both sides of the ejecta l0 till at least within the scope of cleaning dust thoroughly clean.④ irrigation in the seam if the temperature below the 4:00-slit. Irrigation with a sewing machine to be slotted parts of the preheating equipment for preheating, if not at this temperature preheat to fill the joints, sealants would reduce the cohesive force: if the temperature higher than the 4 ℃ at the joint meeting, From time to preheat, the general meeting of the joint after preheating better results, in sealed plastic heating temperature reached about 190 ℃, with irrigation with a sewing machine for pressure nozzle Guaping sealant will be evenly Guanru bed and Crack drag on both sides of a certain width and thickness of the closure.⑤ conservation irrigation joint sealant, sealed in plastic and the full cooling ejecta on the roads after sweeping clean, open to traffic. As cooling time for about 15 min, the specific time and opening up under the traffic situation in temperature flexibility⑵ non-slotted repair (the traditional repair method)Non-slotted for the repair of micro-cracks to repair, according to the use of different materials, such repair method can be divided into hot-and cold-two kinds.①AU-l lO ^ # heavy oil traffic hot asphalt-hot-melt asphalt construction machinery and equipment spraying equipment (installed in the car project).The rotation of the preparatory work → preparation → heating melt-down AH-l l0 ^ # heavy oil traffic around the asphalt cracks → remove dust → straddle spraying hot melt asphalt oil → hand-Moping natural cooling → open traffic.② modified emulsified asphalt cold-constructionModification of emulsified asphalt is a mixture of liquid-cold materials, machinery equipment without special request, after the stirring scene of artificial joints Guatu letters (at least three times) → preparations for the construction technology-artificial joints → Banliao → people on the Guatu → → curing → secondary Guatu → curing → three Guatu → Kang → opening of traffic (curing time l5 ~ 20 min).⑶ traditional repair method for repairing and slotted the comparison①to the traditional repair method, whether it is re-used to transport oil or pieces of asphalt emulsion asphalt irrigation joints, although Oxfam j equipment almost no input costs, lower cost of the initial application T, but with the surface temperature of contraction and the grassroots up to 1 year, after the repair of cracks and joints location of the original irrigation re-cracking, fire accounted for more than 80 percent efficiency, so the second year of re-repairThis regular maintenance, not only increased the cost of conservation and conservation of the frequent traffic of the operation will cause inconvenience and anxiety umbrella factors. Every five years Yanmi r-total cost of about l5 yuan.② the slotted-repair, although the initial investment cost of higher construction equipment. Higher initial construction cost, but greatly extend its service life, sealing cracks in the effective and efficient artificial increase, the use of 5 years later, slotting-repair cracks in the efficient handling of 85% in five years for each of the Yanmi Cost is about ll yuan③ traditional repair method for dealing with micro-cracks and small and medium-sized cracks in the temporary emergency treatment: barrel-repair cracks in the small and medium-sized carry out a repair can be maintained for more than five years, benefited from a repair for many years.slurry sealSlurry seal technology for the new and old road of aging, cracking, smooth, loose, pits and other diseases can play a role in the prevention and maintenance, so that the road waterproof, anti-slide, formation, the rapid increase wear resistance. In recent years. Because slurry seal of the standardization, standardization, improve construction quality and reduced costs, slurry seal has been widely used in the Highway Maintenance early on.modified emulsified asphalt slurry sealModification of emulsified asphalt is a high-temperature flow, low temperature brittle fracture resistance, weatherability, abrasion resistance, ageing resistance excellent road paving material, the lower coefficient of the road flooding, road management of the disease early, increasing the road And the formation of friction coefficient, a very good role. Modification of emulsified asphalt slurry seal from the water quality is a polymer modified asphalt emulsion and rolling broken-intensive materials, mineral fillers, additives and water treatment consisting of surface layer, can be characterized by a thin layer Paver, solidified quickly, the main Construction for the road was repaired, cracking, rutting, and other diseases of treatment, can also be used for sealing and enhance the anti-sliding surface treatment. However, modified emulsified asphalt slurries and other TLC treatment, apply only to sections of the existing structure and stability, not enough deflection value to be reinforced after construction.and other road compared to the conservation methods⑴ with hot asphalt mixture of paved compared to hot asphalt mixture paving thickness of 2.5 cm, cost per square metre l8 ~ 20 yuan modified emulsified asphalt paving slurry seal thickness of 1 cm, cost per square metre l3 Around yuan, the average service life of six to eight years, uh, saving 15 percent of asphalt to 20 percent, according to the road 1 1 m wide of shells savings of 8.8 per km to 110,000 yuan. Because the modified emulsified asphalt slurry seal in more than 5 ℃ to the construction, extension of time can be 1 to 2 months, and reduce environmental pollution, the construction is simple, reduce labor intensity, energy saving equipment. Construction of improved conditions.⑵general emulsified asphalt slurry seal open when asked transport needs of 4 h, emulsified asphalt modified slurry seal when asked open as long as 0.5 ~ 1 h, traffic disruption orsignificantly reduce the time Banfu Shi T, Banfu open traffic Shi, So that direct costs fell.⑶modified emulsified asphalt itself a better low-temperature flexibility and high performance. Modified slurry seal mixture has good physical properties, therefore, can be modified slurry seal emulsified asphalt road repair or reduce disease and prolong the life of the closure, the use of cost than regular emulsified asphalt slurry seal Lower⑷ as modified emulsified asphalt slurry seal has good waterproofing and anti-slide performance, but also shorten the travel time of the opening. Increased use of the roads to and utilization of machinery and equipment and labor efficiency. Greatly to avoid a sudden summer rainstorm caused flood losses, annual savings of 2 to 30,000 yuan. From stagnation to consider shortening the vehicle. Transport savings when asked. Reducing vehicle, goods in transit fees. Its economic and social benefits incalculable.ConclusionThis article cracks on the asphalt pavement repair methods were outlined. Preventive Maintenance Highway as a regular, periodic maintenance measures, attention should be paid enough attention to.中文翻译高等级公路沥青路面预防性养护摘要:针对高等级公路沥青路面出现的各种破损和早期病害,分析了破损类型及其产生原因,并且提出了裂缝修补、稀浆封层等沥青路面的预防性养护技术。
公路highway道路road公路工程highway engineering公路网highway network公路网密度highway density公路等级highway classification公路自然区划climatic zoning for highway公路用地highway right—of-way高速公路freeway等级公路classified highway辅导relief road干线公路arterial highway支线公路feeder highway专用公路accomodation highway国家干线公路(国道) national trunk highway省级干线公路(省道)provincial trunk highway县公路(县道)county road乡公路(乡道) township road辐射式公路radial highway环形公路ring highway绕行公路bypass交通结构traffic structure交通组成traffic composition混合交通mixed traffic交通流traffic flow交通流理论traffic flow theory车流vehicle stream交通密度traffic density车头间距space headway车头时距time headway车间净距vehicular gap延误delay地点速度spot speed行驶速度running speed运行速度poerating speed临界速度critical speed平均速度average speed计算行车速度(设计车速)design speed交通量traffic volume年平均日交通量annual average daily traffic月平均日交通量monthly average daily traffic 年第30位最大小时交通量thirtieth highest annualhourly volume年最大小时交通量maximum annual hourly设计小时交通量design hourly volume通行能力traffic capacity基本通行能力basic traffic capacity可能通行能力possible traffic capacity设计通行能力design traffic capacity 道路服务水平level of service公路交通规划traffic planning交通调查traffic survey交通量调查traffic volume survey交通量观测站traffic volume observationstation起迄点调查(OD调查)origin-destination study 出行trip境内交通local traffic过境交通through traffic交通发生traffic generation交通分布traffic distribution交通分配traffic assignment交通预测traffic prognosis行车道carriageway分离式行车道divided carriageway车道lane变速车道speed-change lane加速车道acceleration lane减速车道deceleration lane爬坡车道climbing lane停车道parking lane错车道turn—out lane自行车道cycle path路侧人行道sidewalk分隔带lane seperator中央分隔带median divider中间带central strip路肩shoulder;verge路缘带marginal strip路缘石kerb;curb侧向余宽lateral clearance路拱camber;crown路拱横坡crown slope公路建筑限界clearance of highway公路路线highway route公路线形highway alignment平面线形horizontal alignment纵面线形vertical alignment线形要素alignment elements平曲线horizontal curve极限最小平曲线半径limited minimum radius ofhorizontal curve复曲线compound curve反向曲线reverse curve断背曲线broken—back curve回头曲线switch-back curve缓和曲线transition curve竖曲线vertical curve弯道加宽curve widening加宽缓和段transition zone of curve超高superelevation超高缓和段supere levation runoff纵坡longitudinal gradient最大纵坡maximum longitudinal gradient 最小纵坡minimum ongitudinal gradient 变坡点grade change point平均纵坡average gradiant坡长限制grade length limitation高原纵坡拆减highland grade compensation 缓和坡段transition grading zone合成坡度resultant gradent视距sight distance停车视距non-passing sight distance;stopping sight distance超车视距passing sight distance道路交叉road intersection;道口railroad grade crossing平面交叉at—grade intersection ;grade crossing正交叉right—angle intersection斜交叉skew intersection环形交叉rotary intersection十字形交叉“+”intersectionT形交叉T intersection错位交叉offset intersection;staggered junction Y形交叉Y intersection立体交叉grade separation分离式立体交叉simple grade separation,separategrade crossing互通式立体交叉interchange首蓿叶形立体交叉full cloverleaf interchange部分首蓿叶形立体交叉cloverleaf interchange菱形立体交叉diamond interchange定向式立体交叉directional interchange喇叭形立体交叉three-leg interchange环形立体交叉rotary interchange匝道ramp交叉口road crossing;intersection交叉口进口intersection entrance交叉口出口intersection exit加铺转角式交叉口intersection with widenedcorners拓宽路口式交叉口flared intersection分道转弯式交叉口channelized intersection渠化交通channelization交织weaving交织路段weaving section合流converging分流diverging 冲突点conflict point交通岛traffic island导流岛channe lization island中心岛central island安全岛refuge island沿线设施roadside facilities交通安全设施traffic safety device人行横道crosswalk人形地道pedestrian underpass人形天桥pedestrian overcrossing护栏guard fence防护栅guard fence,safety barrier 遮光栅anti-dizzling screen应急电话emergency telephone反光标志reflective sign反光路钮reflective button弯道反光镜traffic mirror道路交通标志road traffic sign警告标志warning sign禁令标志regulatory sign指示标志guide sign指路标志information sign辅助标志auxiliary sign可变信息标志changeable message sign路面标线pavement marking防雪设施snow protection facilities 防沙设施sands protection facilities 隔音墙acoustic barrier停车场parking area踏勘reconnaissance可行性研究feasibility study线形设计highway alignment design 公路景观设计highway landscape design 选线route selection路线控制点control point定线location比较线alternative line展线line development初测preliminary survey定测location survey地貌topographie fcature地物culture地形topography台地terrace垭口pass;saddle back平原区plain terrain微丘区rolling terrain重丘区hilly terrain山岭区mountainous terrain沿溪线valley line山脊线ridge line山坡线hill-side line越岭线ridge crossing line土方调配cut-fill transition土方调配图cut—fill transition program土方调配经济运距economical hauling distance导线traverse导线测量traverse survey中线center line中线测量center line survey施工测量construction survey竣工测量final survey(路线)平面图plan交点intersection point虚交点imaginary intersection point转点turning point转角intersection angle方位角azimuth angle象限角bearing方向角direction angle切线长tangent length曲线长curve length外(矢)距external secant测站instrument station测点observation point中桩center stake加桩additional stake护桩reference stake断链broken chainage水准测量levelling survey水准点bench mark绝对基面absolute datum高程elevation地面高程ground elevation设计高程designed elevation(路线)纵断面图profile中桩填挖高度cut and fill at center stake地形测量topographic survey基线base line地形图topographic map等高线contour line横断面测量cross—sectional survey横断面图cross-section坑探pit test钻探boring摄影测量photogrammetry航空摄影测量aerial photogrammetry地面立体摄影测量ground stereophoto grammetry 地面控制点测量ground control—point survey 航摄基线aerophoto base影像地图photographic map像片索引图(镶辑复照图)photo index航摄像片判读aerophoto interpretation 综合法测图planimatric photo全能法测图universal photo微分法测图differential photo像片镶嵌图photo mosaic路基subgrade路堤embankment路堑cutting半填半挖式路基part cut-partfill subgrade 台口式路基benched subgrade路基宽度width of subgrade路基设计高程design elevation of subgrade (路基)最小填土高度minimum height of fill边坡side slope边坡坡度grade of side slope(边)坡顶top of slope(边)坡脚toe of slope护坡道berm边坡平台plain stage of slope碎落台berm at the foot of cutting slope 护坡slope protection挡土墙retaining wall重力式挡土墙gravity retaining wall横重式挡土墙balance weight retaining wall 悬臂式挡土墙cantilever retaining wall扶壁式挡土墙counterfort retaining wall柱板式挡土墙column—plate retaining wall 锚杆式挡土墙anchored retaining wall by tie rods 锚碇板式挡土墙anchored bulkhead retaining wall 石笼rock filled gabion抛石riprap路基排水subgrade drainage边沟side ditch截水沟intercepting ditch排水沟drainage ditch急流槽chute跌水drop water蒸发池evaporation pond盲沟blind drain渗水井seepage well透水路堤permeable embankment过水路面ford填方fill挖方cut借土borrow earth弃土waste取土坑borrow pit弃土堆waste bank回填土back-filling黄土loess软土soft soil淤泥mud泥沼moor泥炭peat盐渍土salty soil膨胀土expansive soil冻土frozen soil流砂quicksand软弱地基soft ground强夯法dynamic consolidation预压法preloading method反压护道loading berm砂井sand drain路基沙垫层sand mat of subgrade压实compaction压实度degree of compaction(标准)最大干容重maximum dry unit weight 相对密实度relative density毛细水capillary water土石方爆破blasting crater抛掷爆破blasting for throwing rock爆破漏斗blasting crater松动爆破blasting for loosening rock爆破作用圈acting cire les of blasting路面pavement弹性层状体系理论elastic multilayer theory(回弹)弯沉deflection加州承载比(CBR)California bearing ratio(CBR) 路面宽度width of pavement路槽road trough刚性路面rigid pavement柔性路面flexible pavement路面结构层pavement structure layer面层surface course磨耗层wearing course联结层binder course基层base course垫层bed course隔水层aquitard隔温层thermal insulating course封层seal coat透层prime coat保护层protection course补强层streng thening layer 高级路面high type pavement次高级路面sub-high type pavement中级路面intermediate type pavement 低级路面low type pavement水泥混凝土路面cement concrete pavement沥青路面bituminous pavement沥青混凝土路面bituminous concrete pavement 沥青碎石路面bituminous macadam pavement 沥青贯入碎(砾)石路面bituminous penetrationpavement沥青表面处治bituminous surface treatment 块料路面block pavement石块路面stone block pavement泥结碎石路面clay-bound macadam pavement 水结碎石路面water-bound macadam pavement 级配路面graded aggregate pavement稳定土基层stabilized soil base course工业废渣基层industrial waste base course块石基层telford base层铺法spreading in layers拌和法mixing method厂拌法plant mixing method路拌法road mixing method热拌法hot mixing method冷拌法cold mixing method贯入法penetration method铺砌法pitching method缩缝contraction joint胀缝expansion joint真缝true joint假缝dummy joint横缝transverse joint纵缝longitudinal joint施工缝construction joint传力杆dowel bar拉杆tie bar路面平整度surface evenness路面粗糙度surface roughness路面摩擦系数friction coefficient of pavement 附着力adhesive force水滑现象hydroplaning phenomenon桥梁bridge公路桥highway bridge公铁两用桥highway and rail transit bridge 人形桥pedestrian bridge跨线桥overpass bridge高架桥viaduct永久性桥permanent bridge半永久性桥semi-permanent bridge临时性桥temporary bridge钢筋混凝土桥reinforced concrete bridge预应力混凝土桥prestressed concrete bridge钢桥steel bridge圬工桥masonry bridge木桥timber bridge正交桥right bridge斜交桥skew bridge弯桥curved bridge坡桥bridge on slope斜桥skew bridge正桥right bridge上承式桥deck bridge中承式桥half-through bridge下承式桥through bridge梁桥beam bridge简支梁桥simple supported team bridge 连续梁桥continuous beam bridge悬臂梁桥cantilever beam bridge联合梁桥composite beam bridge板桥slab bridge拱桥arch bridge双曲拱桥two—way curved arch bridge 空腹拱桥open spandrel arch bridge实腹拱桥filled spandrel arch bridge系杆拱桥bowstring arch bridge桁架桥truss bridge钢构桥rigid frame bridgeT形钢构桥T-shaped rigid frame bridge连续钢构桥continuous rigid frame bridge 斜腿钢构桥rigid frame bridge with inclinedlegs斜拉桥(斜张桥)cable stayed bridge悬索桥suspension bridge漫水桥submersible bridge浮桥pontoon bridge开启桥movable bridge装配式桥fabricated bridge装拆式钢桥fabricated steel bridge涵洞culvert管涵pipe culvert拱涵arch culvert箱涵box culvert盖板涵slab culvert无压力式涵洞non-pressure culvert压力式涵洞pressure culvert半压力式涵洞partial pressure culvert倒虹吸涵siphon culvert上部结构superstructure 主梁main beam横梁floor beam纵梁longitudinal beam,stringer挂梁suspended beam拱圈arch,ring拱上结构spandrel structure腹拱spandrel arch拱上侧墙spandrel wall桥面系floor system,bridge decking桥面铺装bridge deck pavement伸缩缝expansion and contraction joint 桥面伸缩装置bridge floor expansion andcontraction installation安全带afety belt桥头搭板transition slab at bridge head下部结构substructure桥墩pier墩身pier body墩帽coping盖梁bent cap破冰体ice apron重力式桥墩gravity pier实体桥墩solid pier空心桥墩hollow pier柱式桥墩column pier排架桩墩pile bent pier柔性墩flexible pier制动墩braking pier单向推力墩single direction thrusted pier桥台abutment台身abutment body前墙front wall翼墙wing walls台帽coping锥坡conical slope耳墙wing wallsU形桥台U-shaped abutment八字形桥台flare wing wall abutment一字形桥台head wall abutment,straight abutment 重力式桥台gravity abutment埋置式桥台buried abutment扶壁式桥台counterforted abutment锚锭板式桥台anchored bulkhead abutment 支撑式桥台supported type abutment地基subsoil加固地基consolidated subsoil天然地基natural subsoil基础foundation扩大基础spread foundation沉井基础open caission foundation管柱基础cylindrical shaft foundation桩基础pile poundation桩pile预制桩precast pile就地灌注桩cast-in—place concrete pile摩擦桩friction pile支承桩bearing pile承台bearing platform支座bearing固定支座fixed bearing活动支座expansion bearing索塔cable bent tower索鞍cable saddle调治构造物regulating structure丁坝spur dike顺坝longitudinal dam桥位bridge site桥梁全长total length of bridge主桥main bridge引桥approach span跨径span桥涵计算跨径computed span桥涵净跨径clear span矢跨比rise span ratio计算矢高calculated rise of arch桥下净空clearance of span桥面净空clearance above bridge floor桥梁建筑高度construction height of bridge 荷载load永久荷载permanent load可变荷载variable load偶然荷载accidental load荷载组合loading combinations车辆荷载标准loading standard for design vchicle 设计荷载design load施工荷载construction load梁beam简支梁simple-supported beam连续梁continuous beam悬臂梁cantilever beam板slab拱arch桁架truss刚构rigid frame柱column强度strength刚度stiffness ,rigidity抗裂度crack resistance 稳定性stability位移displacement变形deformation挠度deflection预拱度camber流域catchment basin集水面积runoff area径流runoff水文测验hydrological survey河床river bed河槽river channel主槽main channel边滩side shoal河滩rlood land河床宽度bed width河槽宽度channel width过水断面discharge section水位water level最高(或最低)水位maximum(minimum)water level通航水位navigable water level设计水位design water level水面比降water surface slope河床比降gradient of river bed湿周weffed perimeter糙率coefficient of roughuess水力半径hydraulic radius水文计算hydrological computation设计流量designed discharge设计流速designed flow velocity行近流速approach velocity洪水调查floor survey洪水频率floor frequency设计洪水频率designed flood frequency潮汐河流tidal river悬移质suspended load推移质bed material load水力计算hydraulic computation水头water head冲刷scour桥下一般冲刷general scour under bridge桥墩(或墩台)局部冲刷local scour near pier自然演变冲刷natural scour冲刷系数coefficient of scouring淤积silting壅水back water流冰ice drift先张法pretensioning method后张法post—tensioning method缆索吊装法erection with cableway悬臂拼装法erection by protrusion悬臂浇筑法cast-in-place cantilever mathod 移动支架逐跨施工法span by span method纵向拖拉法erection by longtitudinal pullingmethod顶推法incremental launching method 转体架桥法construction by swing浮运架桥法erecting by floating顶入法jack-in method围堰cofferdam护筒pile casing隧道tunnel洞门tunnel portal衬砌tunnel lining明洞open cut tunnel围岩surrounding rork隧道建筑限界structural approach limit of runnels 明挖法open cut method矿山法mine tunnelling method盾构法shield tunneling method沉埋法(沉管法)lmmersed tunnel导坑heading隧道支撑tunnel support构件支撑element support喷锚支护lock bolt support with shotcrete 隧道通风tunnel ventilation隧道照明tunnel lighting养护maintenance定期养护periodical maintenance巡回养护patrol maintenance大中修周期maintenance period小修保养routine maintenance中修intermediate maintenance大修heavy maintenance改善工程road inprovement抢修emergency repair of road加固strengthening of structure回砂sand sweeping罩面overlay of pavement路面翻修pavement recapping路向补强pavement strengthening车辙rutting路面搓板surface corrugation路面网裂net—shaped cracking路面龟裂alligator cracking路面碎裂pavement spalling反射裂缝reflection crack路面坑槽pot holes 路面冻胀surface frost heave路面沉陷pavement depression路面滑溜surface slipperiness露骨suiface angularity啃边edge failure泛油bleeding拥包upheaval拱胀blow up错台faulting of slab ends错位slab staggering滑坡slide坍方land slide崩塌collapse碎落debris avalanche沉降settlement沉陷subsidence泥石流mud avalanche(振动)液化liquefaction翻浆frost boiling岩溶karst沙害sand hazard雪害snow hazard水毁washout好路率rate of good road养护质量综合值general tating of maintenancequality路容road appearance路况road condition路况调查road condition survey路政管理rlad administration民工建勤civilian labourers working onpublic project养路费toll of road maintenance养路道班maintenance gang粒料granular material集料(骨料)aggregate矿料mineral aggregate矿粉mineral powder砂sand砾石gravel砂砾sand gravel卵石cobble stone碎石broken stone,crushed stone片石rubble块石block stone料石dressed stone石屑chip工业废渣industrial solid waste结合料binder有机结合料organic binding agent沥青bitumen地沥青asphalt天然沥青natural asphalt石油沥青petroleum asphalt煤沥青coal tar乳化沥青emulsified bitumen氧化沥青oxidized asphalt路用沥青road bitumen无机结合料inorganic binding agent粉煤灰fly ash混合料mixture沥青混合料bituminous mixture沥青混凝土混合料bituminous concrete mixture 沥青碎石混合料bituminous macadam mixture 沥青砂asphalt sand沥青膏asphalt mastic水泥砂浆cement mortar石灰砂浆lime mortar水泥混凝土混合料cement concrete mixture水泥混凝土cement concrete钢筋混凝土reinforced concrete预应力(钢筋)混凝土prestressed concrete早强混凝土early strength concrete干硬性混凝土dry concrete贫混凝土lean concrete轻质混凝土light-wehght concrete纤维混凝土fibrous concrete外掺剂admixture减水剂water reducing agent加气剂air entraining agent早强剂early strength agent缓凝剂retarder钢筋steel bar预应力钢材prestressing steel高强钢丝high tensile steel wire钢铰线stranded steel wire冷拉钢筋cold—stretched steel bar冷拔钢丝cold—drawn steel wire高强螺栓high strength bolt空隙率porosity孔隙比void ratio粒径grain size颗粒组成grain composition细度fineness筛分sieve analysis级配gradation级配曲线grading curve最佳级配optimum gradation含水量water content 最佳含水量optimum water content稠度界限consistency limit液限liquid limit塑限plastic limit缩限shrinkage limit塑性指数plasticity index水泥标号cement mark水泥混凝土标号cement concrete mark水泥混凝土配合比proportioning of cement concrete 水灰比water cement ratio和易性workabillty坍落度slump硬化hardening水硬性hydraulicity气硬性air hardening离析segregation徐变creep老化ageing(沥青)稠度consistency (of bitumen)针入度penetration粘(滞)度viscosity软化点softening point延度ductility闪点flash point溶解度dissolubility热稳性hot stability水稳性water stability油石化asphalt-aggregate ratio含油率bitumen content压碎率rate of crushing磨耗率abrasiveness弹性模量modulus of elasticity回弹模量modulus of resilience劲度(模量) stiffness modulus模量比modulus ratio泊松比poisson’s ratio疲劳试验fatigue test劈裂试验splitting test三轴试验triaxial test击实试验compaction test触探试验cone penetration test弯沉试验deflection test环道试验circular track test承载板试验loading plate test透水性试验perviousness test车辙试验wheel tracking test马歇尔试验Marshall stability test压实度试验compactness test铺砂法sand patch method硬练胶砂强度试验earth-dry mortar strength –test 软练胶砂强度试验plastic mortar strength—test (水泥)安定性试验soundness test(of cement)击实仪compaction test equipment长杆贯入仪penetration test equipment承载板loading plate杠杆完沉仪beam lever deflectometer路面曲率半径测定仪surface—curvature apparatus 路面平整度测定仪viameter路面透水度测定仪surface permeameter五轮仪fifth-wheel tester制动仪skiddometer速度检测器speed detector万能试验机universal testing machine三轴(剪切)仪triaxial shear ratiotester加州承载比(CBR)测定仪California bearingratiotester标准筛standard sieves(沥青)针入度仪penetrometer(沥青)粘度仪viscosimeter(沥青)延度仪ductilometer(沥青)软化点仪(环—球法)softening pointtester(ringball method)闪点仪(开口杯式) flash point tester(open cupmethod)马歇尔稳定度仪Marshall stability apparatus (沥青混合料)抽提机bitumen extractor砂浆稠度仪mortar penetration tester坍落度圆锥筒slump cone标准工业粘度计standard concrete consistometer 饱和面干吸水率试模saturated-surface—duiedmoisture retention tester撞击韧度试验机impact toughness machine圆盘耐磨硬度试验机wear hardness machine狄法尔磨耗试验机Deval abrasion testing machine 洛杉矶磨耗试验机Los Angeles abrasiontestingmachine压碎率试模crushing strength tester单斗挖掘机single—bucket excavator推土机bulldozer除根机rootdozer铲运机scraper平地机grader挖沟机trencher耕耘机cultivator松土机ripper松土搅拌机pulvi-mixer稳定土拌和机stabilizer凿岩机rock breaker碎石机stone crusher 碎石撒布机stone spreader装载机loader羊足压路机sheep-foot roller手扶式单轮压路机walk behind single drum蛙式打夯机frog rammer内燃夯实机internal comtustion compactor 铁夯(铁撞柱)tamping iron压路机roller振动压路机vibratory roller沥青加热器asphalt heater沥青泵asphalt pump沥青洒布机asphalt sprayer沥青洒布车asphalt distributor沥青混合料拌和设备asphalt mixing plant沥青混合料摊铺机asphalt paver散装水泥运输车cement deliver truck水泥混凝土混合料拌和设备concrete mixing plant (水泥混凝土混合料)搅拌运输车concrete delivertruck水泥混凝土混合料摊铺机concrete paver振捣器concrete vibrator水泥混凝土混合料整面机concrete finisher真空泵vacuum pump水泥混凝土路面切缝机concrete joint cutter水泥混凝土路面锯缝机concrete saw水泥混凝土路面清缝机concrete joint cleaner水泥混凝土路面填缝机concrete joint sealer水泵pump泥浆泵mud pump张拉钢筋油泵prestressed steel bar drawing oil pump 砂浆泵mortar pump水泥混凝土混合料泵concrete pump钢筋切断机bar shear钢筋冷轧机cold—rolling mill钢筋冷拉机steel stretcher钢筋冷拔机steel bar cold-extrudingmachine钢筋冷镦机steel bar heading press machine 钢筋拉伸机steel extension machine钢筋弯曲机steel bar bender钢筋调直机steel straighten machine对焊机butt welder钻孔机boring machine打桩机pile driver拔桩机pile extractor千斤顶jack张拉预应力钢筋千斤顶prestressed steel bar drawingjack手拉葫芦chain block起重葫芦hoisting block卷扬机hoister缆索吊装设备cableway erecting equipment 起重机crane架桥机bridge erection equipment砂筒sand cylinder盾构shield全气压盾构compressed air shield半盾构roof shield隧道掘进机tunnel boring machine全断面隧道掘进机tunnel boring machine for fullcection喷枪shotcrete equipment装碴机mucker盾构千斤顶main jack拉合千斤顶pull-in jacks复拌沥青混合料摊铺机asphalt remixer路面铣削机pavemill回砂车sand sweeping equipment除雪机snow plough装雪机snow loader洗净剂喷布车detergent spray truck清扫车sweeper洒水车water truck划标线机line maker振动筛vibrating screen撒布机spreader输送机conveyer提升机elevator翻斗车dump—body car自卸汽车dumping wagon牵引车tow truck拖车头tractor truck挂车trailer平板车flat truck工程车shop truck万能杆件fabricated universal steel members 交通规划traffic rules交通事故traffic accident交通事故率traffic accident rate人口事故率population accident rate车辆事故率vehicle accident rate运行事故率operating accident rate交通控制traffic control中央控制台central control unit点控制spot control线控制line control面控制area control交通信号traffic signal交通信号灯traffic signal lamp 信号周期signal cycle绿信比split ratio信号相位signal phase相位差phase difference 绿波green wave交通监视系统traffic surveillance 交通公害vehicular pollution。
Un it 1 The Evolution of Tran sport 交通工具的演化The evolution of transport has been closely linked to the development of humankind throughout the earth?shistory. Transport?s early function was to meet the basic need of hauling food supplies and building materials But with the formation of tribes, then peoples and fin ally n ati ons , the societal and econo mic functions of tran sport became more and more complex. At first there was mobility required for individuals , clans, households and animals to protect them aga in st, and to escape from, the dan gers of n atural disasters and tribal aggressions and in the search for the best places to settle. As tribal groups formed and gradually established their geographical identity transport was increasingly needed to open up regions for development, to provide access to natural resources to promote intercommunal trade , and to mobilize territorial defense . When the first nations came into being , transport played a major role in establishi ng n ati onal in tegrity.交通工具的演变紧密相连的人类在整个地球的历史发展。
软土路基处理方法概述 摘要:软土路基的加固有很多种方法,本文对常用的几种方法从加以解释对其加固机理,作用,作用范围以及个别的工程实例的阐述.新型的加固材料以及新工艺的开发和利用对提高软土路基的加固技术水平所起的重要作用等做以简单的阐述. 在道路工程中经常会遇到软土路基,由于高速公路、高速铁路的发展,对地基的承载能力要求越来越高,天然的软土地基远远不能满足这些高档次的构造物对地基承载力的要求。20世纪80~90年代,由于人口膨胀土地资源日益紧张,同时软土路基加固的技术也有了长足的发展,经济条件有所改善,各种软土加固理论得到了充分的应用与验证,软基加固技术也得到长足发展,在不同的领域里均有涉猎;到20世纪90年代以后,各种各样的软基处理技术已广泛地应用在各种道路工程中。 地基中常见的软土,一般是指处于软朔或者流朔状态下的粘性土。其特点是天然含水量大、孔隙比大、压缩系数高、强度低,并具有蠕变性、触变性等特殊的工程地质性质,工程地质条件较差。选用软土作为路基应用,必须提出切实可行的技术措施。这种土质如在施工中出现在路基填土或桥涵构造物基础中,最佳含水量不易把握,极难达到规定的压实度值,满足不了相应的密实度要求,在通车后,往往会发生路基失稳或过量沉陷。其危害性显而易见,故禁止采用。在软土地基上修筑路堤,特别是桥头引道,如不采取有效的加固措施,就会产生不同程度的坍滑或沉陷,导致公路破坏或不能正常使用即所说的桥头跳车。一般地,除要确保新填筑路基的密实度以减少沉降外,包括原地面的地基总沉降必须达到基本稳定,沉降量大致达到总沉降量的80%以上时,才容许铺路面。软土地基沉降严重时,不仅增加填方数量,而且沉降或水平位移对临近填土的桥台、挡土墙、涵洞,甚至对附近的住宅、农田以及路线的技术标准都会产生很大的影响。为此,根据地基土的工程特性,选用适当的处理措施。经过长期的实践,在公路、铁路中形成了多种形式的软土地基处理方法,结合很多的施工企业多年施工经验及有关专家学者的论述进行总结归纳如下: 1 换填垫层法 当软弱土层厚度不很大时,可将路基面以下处理范围内的软弱土层部分或全部挖除,然后换填强度较大的土或其它稳定性能好、无侵蚀性的材料(通常是渗水性好的中粗砂)称为换填或垫层法。此法处理的经济实用高度为2~3m,如果软弱土层厚度过大,则采用换填法会增加弃方与取土方量而增大工程成本。通过换填具有较高抗剪强度的地基土,从而达到增强地基承载力的目的,满足构筑物对地基的要求。主要加固方法有换填、抛石挤淤、垫层、强夯挤淤几种。垫层法根据材料的不同可分为砂(砾石)垫层、碎石垫层、粉煤灰垫层、干渣垫层、土(灰土、二灰)垫层。代表方法有砂垫层法及换填法。 砂砾垫层:当路堤高度小于极限高度的2倍,软土层较薄,填筑材料比较困难,或雨季施工时,采用砂砾(砂)垫层,在填土与基底之间设一排水面,从而使地基在受到填土荷载后,迅速地将地基土中的孔隙水排出,加快固结速度,提高地基的承载力,减少沉降,防止地基局部剪切变形。要注意控制填土速度,所用的材料为含泥量不大于5%的洁净中粗砂,或最大粒径小于5cm的天然级配砂砾。 换填法:在软土厚度不大于2m 时,利用渗水性材料(砂砾或碎石)进行置换填土,可以降低压缩性,提高承载力,提高抗剪强度,减少沉降量,改善动力特性,加速土层的排水固结。它的特点是施工工艺简单,但费用比较高。 抛石挤淤:当软土或沼泽土位于水下,更换土施工困难,且厚度小于3m,表层无硬壳、基底含水量超过液限、路堤自重可以挤出的软土之上,排水比较困难时,采用抛片石(直径一般不小于 30cm)挤淤的方法。从中部开始抛石,逐渐向两边延伸,挤出淤泥,提高路基强度。 2 深层密实法 采用爆破、夯击、挤压和振动及加入抗剪强度高的材料等方法,对地基深层的软弱土体进行振密和挤密的地基加固方法称为深层密实法。适用于软土厚度>3m的中厚软土的加固,分布面积广的软基加固处理,其加固深度可达到30m。通过振动、挤压使地基中土体密实、固结,并利用加入的具有高抗剪强度的桩体材料置换部分软弱土体中的三相(气相、液相与固相)部分,形成复合地基,达到提高抗剪强度的目的。 主要加固方法:强夯法、土(或灰土、粉煤灰加石灰)桩法、砂桩法、爆破法、碎石桩法(振冲置换法)、石灰桩法、水泥粉煤灰碎石桩(CFG桩法)、粉喷桩法、旋喷桩法。代表方法有碎石桩法、强夯法、水泥粉煤灰碎石桩法、粉喷桩法。 强夯法:对于砂土地基及含水量在一定范围内的软弱粘性土地基,可采用重锤夯实或强夯。它的基本原理是:土层在巨大的冲击能作用下,土中产生很大的压力和冲击波,致使土体局部压缩,夯击点周围一定深度内产生裂隙良好的排水通道,使土中的孔隙水(气)顺利排出,土体迅速固结。强夯后地基承载力可提高3~4倍,压缩性可降低200%~1000%。其佳夯击能:从理论上讲,在最佳夯击能作用下,地基土中出现的孔隙水压力达到土的自重压力,这样的夯击能称最佳夯击能。因此可根据孔隙水压力的叠加值来确定最佳夯击能。在砂性土中,孔隙水压力增长及消散过程仅为几分钟,因此孔隙水压力不能随夯击能增加而叠加,可根据最大孔隙水压力增量与夯击次数关系来确定最佳夯击能。兰海高速公路某滑坡体的堆积破碎泥岩堆积物厚度4~12M.从土样的土工试验报告可知为低液限黏土含水量29.8~20.2,凝聚力13.8~12.2KPA,内摩擦角13.8~20.2. 挤密砂桩、碎石桩加固法:属于复合地基的一种,当软土层较厚,换填处理比较困难,地基土属于非饱和粘性土或砂土时,采用挤密砂桩或碎石桩加固法,可以使地基土密实,容重增加,孔隙比减少,防止砂土在地震或受震动时液化,提高地基土的抗剪强度和水平抵抗力,减少固结沉降,使地基变均匀,起到置换、挤密、排水作用,防止地基产生滑动破坏,提前完成沉降,减少沉降差。 3排水固结法 在软土地基上加压并配合内部排水,加速软土地基的排水,加快软土固结的处理方法称为排水固结法。适用于处理各类淤泥、淤泥质粘土及冲填等饱和粘性土地基。软土地基在附加荷载的作用下,逐渐排出孔隙水,使孔隙比减小,产生固结变形。在这个过程中,随着土体超静孔隙水压力的逐渐扩散,土的有效应力增加,并使沉降提前完成或提高沉降速度。 主要加固方法:堆载预压法、砂井法、袋装砂井、真空预压法、电渗排水法、降低地下水位法、塑料排水板法。 预压处理:分为超载预压、等载预压和欠载预压等,其施工工艺简单,但工期较长,超载预压的时间一般为6个月,通常与排水处理地基相结合使用。广州市新窑南路道路工程就是利用堆载法加固软土路基的.新窑南路道路工程起点为广州大道K4+600,终点为北山村K11+700,全长约7KM.道路沿线地层结构自上而下分别为:地壳硬壳包括松散状杂填土,素填土和软塑状耕土,厚度为0.40~2.20;软土层包括流塑状淤泥和淤泥质土,厚度为1.51~9.39,沿线厚度变化大;下伏层包括粘性土和砂层.堆载预压时间从1995年到2003年,大约7~8年. 袋装砂井:对于软土厚度大、路堤稳定、填土高的软土路基,采用袋装砂井,可增加软土竖直方向的排水能力,缩短水平方向的排水距离,加速软土的强度。砂袋灌入砂后,砂井可采用锤击法或振动法施工。它的施工工艺复杂,费用相对较高,所用的时间较长,可采用矩形或梅花形布桩。 珠江地区某市公路的地质勘探表明,地基土质分布比较均匀,除表层1。0m左右耕植土外,接着为8.6m厚的高含水量、高压缩性、低强度,高含粘性的超软弱淤泥。第三层为厚约1.0m的贝壳粉砂土;第四层又为7.6m厚的淤泥质粘土;以下分别是0.5m厚粘土和3.0m厚粉细砂。往下为击数(SPT)大于19击的含砾粗砂层,再往下土质更好。地基土质为20m左右深厚的淤泥,含水量高达85.7%,十字板剪切强度仅4Kpa,且淤泥分布深度大致由前方向后方陆域倾斜,前浅后深,前方相对有利。在这样大面积超软弱的淤泥地基上筑路需作软基深层处理,以防止施工期软基沉降缓慢,引起工程完工后仍有较大剩余沉降量,同时不致因加载引起地基失稳破坏。这一带因软基不当而出现工程质量或安全事故是较常见的,就设计采用Ф7cm袋装砂井加砂垫层堆载预压排水固结进行软基加固,目的是通过打设砂井使第二、四层淤泥土排水固结后,土质强度获得提高、减少工程投产后的沉降,保证工程的正常使用,满足工程设计要求。 塑料排水板:排水原理与袋装砂井相同,由于是工厂制作,它的质量稳定、重量轻、运输保管方便,施工工艺比较简单,投入劳力少,费用相对较低,并且渗滤吸水性好,具有一定的强度和延伸率,对土的扰动小,预压时间较长,在工程中得到广泛应用,但对于提高土层的抗剪能力不如袋装砂井。 Overview of Soft Subgrade Treatment Abstract: The reinforcement of soft soil roadbed There are many ways, several to explain the reinforcement mechanism of the role, scope, and individual project example elaboration. New reinforcement materials and new technology development and utilization of soft subgrade reinforcement played an important role to do with the simple description. When road works are often encountered in soft soil subgrade, the carrying capacity of the foundation have become increasingly demanding due to the development of highway, railway, natural soft ground is far from meeting these high-grade structures are the foundation bearing force requirements. 1980s and 1990s, due to population expansion of land resources are becoming increasingly tense, soft soil subgrade reinforcement technology has made great progress, and economic conditions have improved, a variety of soft soil reinforcement theory has been fully Application and verification of soft base reinforcement technology has made rapid progress in different areas are covered; to the 1990s, a variety of soft foundation treatment technology has been widely used in various road projects. Foundation in soft soil, usually in soft new moon or under the state of the flow of new moon of the clay. Which is characterized by the natural water content, void ratio, compressibility factor, low strength and creep, thixotropy, and other special engineering geological properties, poor engineering geological conditions. Selection of soft soil roadbed application must be put forward practical measures.Soil, such as in the construction of the base of the embankment or bridge and culvert structures, optimum moisture content is not easy to grasp, is extremely difficult to achieve the required degree of compaction can not meet the density requirements after the opening, often a roadbed instability or excessive settlement. Its obvious dangers, therefore prohibiting the use. Construction of embankment on soft ground, especially Bridge Approach, if not take effective measures for the reinforcement, it will have varying degrees of