四川省成都市2020届高三数学第三次诊断性检测试题理 含答案
- 格式:doc
- 大小:4.69 MB
- 文档页数:11
2020年四川省成都市高考数学三诊试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.设全集U={x∈Z|x2≤2x+3},集合A={0,1,2},则∁U A═()A. {-1,3}B. {-1,0}C. {0,3}D. {-1,0,3}2.复数z=(2+i)(1+i)的共轭复数为()A. 3-3iB. 3+3iC. 1+3iD. 1-3i3.已知函数f(x)=x3+a sin x,a∈R.若f(-1)=2,则f(1)的值等于()A. 2B. -2C. 1+aD. 1-a4.如图,在正方体ABCD﹣A1B l C1D1中,已知E,F,G分别是线段A1C1上的点,且A1E=EF=FG=GC1.则下列直线与平面A1BD平行的是()A. CEB. CFC. CGD. CC15.已知实数x,y满足,则z=2x+y的最大值为()A. 1B. 2C. 3D. 46.若非零实数a,b满足2a=3b,则下列式子一定正确的是()A. b>aB. b<aC. |b|<|a|D. |b|>|a|7.已知sin()=,则sinα的值等于()A. -B. -C.D.8.执行如图所示的程序框图,则输出的n的值为()A. 1B. 2C. 3D. 49.在平面直角坐标系xOy中,已知点A(0,-2),N(l,0).若动点M满足=,则的取值范围是()A. [0,2]B. [0,2]C. [-2,2]D. [-2,2]10.“幻方’’最早记载于我国公元前500年的春秋时期《大戴礼》中.“n阶幻方(n≥3,n∈N*)”是由前,n2个正整数组成的-个n阶方阵,其各行各列及两条对角线所含的n个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如表所示).则“5阶幻方”的幻和为()8163574927565554511.已知双曲线C=1(a>0,b>0)的左,右焦点分别为F1,F2,抛物线y2=2px(p>0)与双曲线C有相同的焦点.设P为抛物线与双曲线C的一个交点,cos∠PF1F2=,则双曲线C的离心率为()A. 或B. 或3C. 2或D. 2或312.已知函数f(x)=.若函数f(x)的极大值点从小到大依次为a1,a2,…,a n,并记相应的极大值为b1,b2,…,b n,则(a i+b i)的值为()A. 250+2449B. 250 +2549C. 249+2449D. 249+2549二、填空题(本大题共4小题,共20.0分)13.在(2+x)5的展开式中,x2的系数为______.(用数字作答)14.已知公差大于零的等差数列{a n}中,a2,a6,a12依次成等比数列,则的值是______.15.某学习小组有4名男生和3名女生.若从中随机选出2名同学代表该小组参加知识竞赛,则选出的2名同学中恰好1名男生1名女生的概率为______.16.三棱柱ABC-A1B1C1中,AB=BC=AC,侧棱AA1⊥底面ABC,且三棱柱的侧面积为3,若该三棱柱的顶点都在同一个球O的表面上,则球O的表面积的最小值为______.三、解答题(本大题共7小题,共82.0分)17.已知△ABC中,角A,B,C所对边的长分别为a,b,c,且a cos B=b+c.(Ⅰ)求角A的大小;(Ⅱ)求sin2B+sin2C+sin B sin C的值.18.如图,在四棱锥P-ABCD中,底面ABCD为菱形,△PAD为正三角形,平面PAD上平面ABCD,E,F分别是AD,CD的中点.(Ⅰ)证明:BD⊥平面PEF;(Ⅱ)若∠BAD=60°,求二面角B-PD-A的余弦值.19.某保险公司给年龄在20~70岁的民众提供某种疾病的一年期医疗保险,现从10000名参保人员中随机抽取100名作为样本进行分析,按年龄段[20,30),[30,40),[40,50),[50,60),[60,70]分成了五组,其频率分布直方图如图所示;参保年龄与每人每年应交纳的保费如表所示.据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元,年龄(单位:岁)[20,30)[30,40)[40,50)[50,60)[60,70]保费(单位:元)x2x3x4x5x(Ⅰ)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值0;(Ⅱ)经调查,年龄在[60,70]之间的老人每50人中有1人患该项疾病(以此频率作为概率).该病的治疗费为12000元,如果参保,保险公司补贴治疗费10000元.某老人年龄66岁,若购买该项保险(x取(Ⅰ)中的x0),针对此疾病所支付的费用为X元;若没有购买该项保险,针对此疾病所支付的费用为Y元,试比较X和Y的期望值大小,并判断该老人购买此项保险是否划算?20.在平面直角坐标系xOy中,已知椭圆C:=l(a>b>0)的短轴长为2,直线l与椭圆C相交于A,B两点,线段AB的中点为M.当M与0连线的斜率为时,直线l的倾斜角为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若|AB|=2,P是以AB为直径的圆上的任意一点,求证:|OP|≤.21.已知函数f(x)=x lnx-2ax2+3x-a,a∈Z.(Ⅰ)当a=1时,判断x=1是否是函数f(x)的极值点,并说明理由;(Ⅱ)当x>0时,不等式f(x)≤0恒成立,求整数a的最小值,22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+)=.(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;(Ⅱ)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.23.已知函数f(x)=x2-a|x-1|-1,a∈R.(Ⅰ)当a=4时,求函数f(x)的值域;(Ⅱ)∃x0∈[0,2],f(x0)≥a|x0+1|,求实数a的取值范围.-------- 答案与解析 --------1.答案:A解析:解:U={x∈Z|x2-2x-3≤0}={x∈Z|-1≤x≤3}={-1,0,1,2,3},则∁U A═{-1,3},故选:A.根据不等式的解法求出U的等价条件,结合补集的定义进行求解即可.本题主要考查集合的基本运算,结合补集的定义是解决本题的关键,比较基础.2.答案:D解析:解:∵z=(2+i)(1+i)=1+3i,∴.故选:D.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:B解析:解:∵函数f(x)=x3+a sin x,a∈R.f(-l)=2,∴f(-1)=(-1)3+a sin(-1)=-1-a sin1=2,∴1+a sin1=-2,∴f(l)=1+a sin1=-2.故选:B.推导出f(-1)=(-1)3+a sin(-1)=-1-a sin1=2,从而1+a sin1=-2,由此能求出f(l).本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.4.答案:B解析:解:如图,连接AC,使AC交BD与点O,连接A1O,CF,在正方体ABCD-A1B l C1D1中,由于A1F AC,又OC=AC,可得:A1F OC,即四边形A1OCF为平行四边形,可得:A1O∥CF,又A1O⊂平面ABD,CF⊄平面ABD,可得CF∥平面ABD.故选:B.连接AC,使AC交BD与点O,连接A1O,CF,由A1F AC,又OC=AC,可证四边形A1OCF为平行四边形,可得A1O∥CF,利用线面平行的判定定理即可得解.本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.解析:【分析】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z的几何意义.作出不等式组表示的平面区域,由z=2x+y可得y=-2x+z,则z表示直线y=-2x+z在y轴上的截距,截距越大,z越大,结合图象即可求解z的最大值.【解答】解:作出实数x,y满足表示的平面区域,如图所示:由z=2x+y可得y=-2x+z,则z表示直线y=-2x+z在y轴上的截距,截距越大,z越大,作直线2x+y=0,然后把该直线向可行域平移,当直线经过B时,z最大,由,可得B(2,0),此时z=4.故选:D.6.答案:C解析:解:令2a=3b=t,则t>0,t≠1,∴a=log2t=,b=log3t=,∴|a|-|b|=-=|lg t|•>0,∴|a|>|b|.故选:C.令2a=3b=t,则t>0,t≠1,将指数式化成对数式得a,b后,然后取绝对值作差比较可得.本题考查了不等式的基本性质,属基础题.7.答案:A解析:解:∵sin()=,∴sinα=-cos(α+)=-cos2()=-[1-2sin2()]=-[1-2×()2]=-.由诱导公式,二倍角的余弦函数公式化简所求即可计算得解.本题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.8.答案:B解析:解:根据程序框图:执行循环前:a=0,b=0,n=0,执行第一次循环时:,a=1,b=2,所以:92+82≤40不成立.继续进行循环,…,当a=4,b=8时,62+22=40,所以:n=1,由于a≥5不成立,执行下一次循环,当a=5时,输出结果n=2故选:B.直接利用程序框图的循环结构和条件结构的应用求出结果.本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考察学生的运算能力和转换能力,属于基础题型.9.答案:D解析:解:设M(x,y),由动点M满足=,得,化简得:x2+(y-2)2=8,由圆的参数方程得:M(2cosθ,2sinθ),则=2cosθ∈[-2,2],故选:D.由平面向量数量积运算及圆的参数方程得:设M(x,y),得,化简得:x2+(y-2)2=8,由圆的参数方程得:M(2cosθ,2sinθ),则=2cosθ∈[-2,2],得解.本题考查了平面向量数量积运算及圆的参数方程,属中档题.10.答案:B解析:解:由1,2,3,4…24,25的和为=325,又由“n阶幻方(n≥3,n∈N*)”的定义可得:“5阶幻方”的幻和为=65,故选:B.先理解“n阶幻方”的定义,再结合等差数列求和公式求解即可.本题考查了对“即时定义”的理解及进行简单的合情推理,属中档题.11.答案:D解析:【分析】设PF1=m,PF2=n,根据cos∠PF1F2=和抛物线性质得出PF2=m,再根据双曲线性质得出m=7a,n=5a,最后根据余弦定理列方程得出a,c间的关系,从而可得出离心率.本题考查了双曲线和抛物线的简单性质,属于中档题.【解答】解:过P分别向x轴和抛物线的准线作垂线,垂足分别为M,N,不妨设PF1=m,PF2=n,则F1M=PN=PF2=PF1cos∠PF1F2=,∵P为双曲线上的点,则PF1-PF2=2a,即m-=2a,故m=7a,n=5a.又F1F2=2c,在△PF1F2中,由余弦定理可得=,化简可得c2-5ac+6a2=0,即e2-5e+6=0,解得e=2或e=3.故选:D.12.答案:C解析:解:∵f(x)=的极大值点从小到大依次为a1,a2,…,a n,相应的极大值为b1,b2,…,b n,∴a1=2,a2=4,…,即是以2为首项,以2为公差的等差数列,且共有50项,即n=50,但是最后一项不是极大值,满足题意的共有49项,∴a n=2n,∵b1=f(2)=1,b2=f(4)=2f(2)=2…是以1为首项,以2为公比的等比数列,b n=2n-1,则(a i+b i)=a i+b i==2449+249.故选:C.结合正弦函数的性质求出极大值的位置及相应的值后,结合等差数列与等比数列的求和公式即可求解.本题主要考查了正弦函数的性质及等差与等比数列的求和公式的简单应用,属于中档试题.13.答案:80解析:解:二项展开式的通项为T r+1=25-r C5r x r令r=2得x2的系数为23C52=80故答案为:80.利用二项展开式的通项公式求出展开式的通项,令r=2,求出展开式中x2的系数.利用二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.答案:解析:解:公差d大于零的等差数列{a n}中,a2,a6,a12依次成等比数列,可得a62=a2a12,即为(a1+5d)2=(a1+d)(a1+11d),化为a1=7d,则===.故答案为:.利用等差数列的通项公式以及等比数列的中项性质,化简求出公差与a1的关系,然后由等差数列的通项公式化简可得所求值.本题考查等差数列的通项公式以及等比数列的中项性质,考查计算能力,是一道基础题.15.答案:解析:解:某学习小组有4名男生和3名女生.从中随机选出2名同学代表该小组参加知识竞赛,基本事件总数n==21,选出的2名同学中恰好1名男生1名女生包含的基本事件个数m==12,∴选出的2名同学中恰好1名男生1名女生的概率为p==.故答案为:.从中随机选出2名同学代表该小组参加知识竞赛,基本事件总数n==21,选出的2名同学中恰好1名男生1名女生包含的基本事件个数m==12,由此能求出选出的2名同学中恰好1名男生1名女生的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.16.答案:4π解析:解:根据题意,如图,设AB=BC=AC=a,AA1=b,该三棱柱的外接球的半径为R,球心O在底面ABC上的射影为O′,O′为底面三角形△ABC的外心,则AO′=×a=,OO′=AA1=,则R2=+,又由三棱柱的侧面积为3,则3ab=3,变形可得ab=,则R2=+≥2=2×=1,即外接球半径的最小值为1,其表面积的最小值S=4πR2=4π;故答案为:4π根据题意,设AB=BC=AC=a,AA1=b,该三棱柱的外接球的半径为R,球心O在底面ABC上的射影为O′,分析可得AO′与OO′的长,据此可得R2=+,又由三棱柱的侧面积为3,则3ab=3,变形可得ab=,结合基本不等式分析可得答案.本题考查多面体外接球表面积最值的求法,涉及球的体积以及基本不等式的性质以及应用,属于基础题.17.答案:解:(I)由正弦定理得sin A cos B=sin A+sin C,又sin C=sin(A+B).∴sin A cos B=sin A+sin A cos B+cos A sin B.即cos A sin B+sin B=0,∴cos A=-,∵0<A<π,∴A=.(II)∵A=,∴由余弦定理可得:a2=b2+c2+bc,∵,∴sin2B+sin2C+sin B sin C=()2+()2+==()2=sin2A=.解析:(Ⅰ)由正弦定理以及两角和差的正弦公式进行化简即可(Ⅱ)利用余弦定理以及正弦定理进行转化求解即可.本题主要考查解三角形的应用,利用正弦定理,余弦定理以及两角和差的三角公式在解三角形中的综合应用,熟练掌握相关公式定理是解决本题的关键,属于中档题.18.答案:证明:(Ⅰ)连接AC,∵PA=PD,且E是AD的中点,∴PE⊥AD,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PE平面PAD,∴PE⊥平面ABCD,∵BD⊂平面ABCD,∴BD⊥PE,又ABCD为菱形,且E,F为棱的中点,∴EF∥AC,BD⊥AC,∴BD⊥EF,又BD⊥PE,PE∩EF=E,PE,EF平面PEF,∴BD⊥平面PEF.解:(Ⅱ)∵四边形ABCD是菱形,且∠BAD=60°,∴EB⊥AD,分别以EA,EB,EP所在直线为x,y,z轴,建立空间直角坐标系,设AD=1,则D(-),B(0,,0),P(0,0,),=(,0),=(),设平面PBD的法向量=(x,y,z),则,∴,取x=,得=(),平面APD的法向量=(0,1,0),∴cos<>==-,由图得二面角B-PD-A的平面角是锐角,∴二面角B-PD-A的余弦值为.解析:本题考查线面垂直的证明,考查二面角的余弦值的求法,考查利用空间向量解决线面关系及空间角度问题,考查空间想象能力、推理论证能力和运算求解能力,属于中档题.(Ⅰ)连接AC,则PE⊥AD,PE⊥平面ABCD,BD⊥PE,EF∥AC,BD⊥AC,从而BD⊥EF,BD⊥PE,由此能证明BD⊥平面PEF.(Ⅱ)推导出EB⊥AD,分别以EA,EB,EP所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角B-PD-A的余弦值.19.答案:解:(Ⅰ)由(0.007+0.016+a+0.025+0.020)×10=1,解得a=0.032.保险公司每年收取的保费为:10000×(0.07x+0.16×2x+0.32×3x+0.25×4x+0.20×5x)=10000×3.35x.∴要使公司不亏本,则10000×3.35x≥1000000,即3.35x≥100,解得x≈29.85,∴x0=30.(Ⅱ)①若该老人购买了此项保险,则X的取值为150,2150.P(X=150)=,P(Y=2150)=.∴E(X)==147+43=190元.②若该老人没有购买此项保险,则Y的取值为0,12000.∵P(Y=0)=,P(Y=12000)=,所以E(Y)==240元,所以E(Y)>E(X).∴年龄为66的该老人购买此保险比较划算.解析:(Ⅰ)由频率和为1求出a,根据a的值以及频率分布直方图求出保险费的平均值,要使公司不亏本,则保费的平均值不小于一万名参保人员支出的各种费用为一百万元,解方程即可.(Ⅱ)分别计算参保和不参保时支出的期望E(X),E(Y)比较大小,即可作出判断.本题考查了频率分布直方图的性质,用频率分布直方图估计平均数,离散型随机变量的期望,利用离散型随机变量的期望做出决策等,属于中档题.20.答案:(Ⅰ)解:由已知得,b=1,设A(x1,y1),B(x2,y2),由,两式作差,得.由已知条件,知当时,,∴,即a=.∴椭圆标准方程为;(Ⅱ)证明:当直线l的斜率不存在时,|OP|=1<,不等式成立;当直线l的斜率存在时,设l:y=kx+m.联立,得(2k2+1)x2+4kmx+2m2-2=0.△=16k2-8m2+8>0.,.∴M(),.由|AB|=,化简得,.∴.令4k2+1=t≥1,则|OM|2=.当且仅当t=时取“=”.∴|OM|.∵|OP|≤|OM|+1,∴|OP|,当且仅当时取“=”.综上,|OP|.解析:(Ⅰ)由已知得,b=1,设A(x1,y1),B(x2,y2),代入椭圆方程,利用点差法结合已知可得,得到a=,则椭圆标准方程可求;(Ⅱ)当直线l的斜率不存在时,|OP|=1<,不等式成立;当直线l的斜率存在时,设l:y=kx+m,联立,得关于x的一元二次方程,利用根与系数的关系及中点坐标公式求得M坐标,再由弦长公式得到,把|OM|2用含有k的代数式表示,再由换元法结合基本不等式求最值,即可证明|OP|.本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,训练了利用换元法与基本不等式求最值,是中档题.21.答案:解:(Ⅰ)当a=1时,f′(x)=ln x-4x+4,令F(x)=f′(x)=ln x-4x+4,则,∴当x>时,F′(x)<0,即f′(x)在(,+∞)内为减函数,且f′(1)=0,∴当x∈(,1)时,f′(x)>0,当x∈(1,+∞)时,f′(x)<0,∴f(x)在(,1)内是增函数,在(1,+∞)内是减函数,综上,x=1是函数f(x)的极大值点.(Ⅱ)由题意得f(1)≤0,即a≥1,现证明当a=1时,不等式f(x)≤0成立,即x lnx-2x2+3x-1≤0,即证ln x-2x+3-≤0,令g(x)=ln x-2x+3-,则g′(x)=+==,∴当x∈(0,1)时,g′(x)>0,当x∈(1,+∞)时,g′(x)<0,∴g(x)在(0,1)内单调递增,在(1,+∞)内单调递减,∴g(x)的最大值为g(1)=0,∴当x>0时,不等式f(x)≤0成立,综上,整数a的最小值为1.解析:(Ⅰ)当a=1时,f′(x)=ln x-4x+4,令F(x)=f′(x)=ln x-4x+4,则,利用导数性质能求出x=1是函数f(x)的极大值点.(Ⅱ)由题意得f(1)≤0,即a≥1,再证明当a=1时,不等式f(x)≤0成立,即证ln x-2x+3-≤0,由此能求出整数a的最小值为1.本题考查导数在研究函数单调性、极值和最值中的综合应用,利用导数证明不等式成立,变换过程复杂,需要很强的逻辑推理能力,是高考的常考点和难点,属于难题.22.答案:解:(Ⅰ)由,得(x-2)2+y2=4,由ρsin(θ+)=,得ρsinθ+ρcosθ=1,∴直线l的直角坐标方程为x +y=1.(Ⅱ)设直线l的参数方程为(t为参数),代入(x-2)2+y2=1得t2+3+1=0,设A,B对应的参数为t1,t2,∴t1+t2=-3<0,t1t2=1>0,t1<0,t2<0,∴|MA|+|MB|=|t1|+|t2|=|t1+t2|=3解析:(Ⅰ)由,得(x-2)2+y2=4,由ρsin(θ+)=,得ρsinθ+ρcosθ=1,∴直线l的直角坐标方程为x +y=1(Ⅱ)根据参数的几何意义可得.本题考查了简单曲线的极坐标方程,属中档题.23.答案:解:(Ⅰ)当a=4时,f(x)=x2-4|x-1|-1=,当x≥1时,f(x)=x2-4x+3=(x-2)2-1≥-1,即此时f(x)≥-1,当x<1时,f(x)=x2+4x-5=(x+2)2-9≥-9,即此时f(x)≥-9,综上f(x)≥-9,即函数f(x)的值域为[-9,+∞).(Ⅱ)由f(x)≥a|x+1|等价为x2-a|x-1|-1≥a|x+1|,即a(|x+1|+|x-1|)≤x2-1,即a≤在区间[0,2]内有解,当0≤x≤1时,a≤==,当0≤x≤1时,-≤≤0.此时a≤0,当1<x≤2时,a≤===(x-),当1<x≤2时,0<(x-)≤,此时a≤,综上a≤,即实数a的取值范围是(-∞,].解析:(Ⅰ)当a=4时,结合绝对值的应用,将函数转化为二次函数,利用二次函数的最值性质进行求解.(Ⅱ)(Ⅱ)∃x0∈[0,2],f(x0)≥a|x0+1|,等价为a≤在区间[0,2]内有解,利用不等式的性质求出的最大值即可.本题主要考查函数与方程的应用,结合绝对值的应用将函数转化为二次函数,结合二次函数的性质是解决本题的关键.。
四川省成都市高考数学三诊试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知田径队有男运动员56人,女运动员42人,若按男女比例用分层抽样的方法,从全体运动员中抽出14人参加比赛,则抽到女运动员的人数为()A.2 B.4 C.6 D.82.命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是()A.∀x∉(﹣1,+∞),ln(x+1)<x B.∀x0∉(﹣1,+∞),ln(x0+1)<x0C.∀x∈(﹣1,+∞),ln(x+1)≥x D.∃x0∈(﹣1,+∞),ln(x0+1)≥x03.已知复数z=﹣i(其中i为虚数单位),则|z|=()A.3 B.C.2 D.14.已知α,β是空间中两个不同的平面,m为平面β内的一条直线,则“α⊥β”是“m⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知向量,满足=2,•=﹣3,则在方向上的投影为()A.B. C.D.6.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品需用4个A配件耗时1h,每生产一件乙产品需用4个B配件耗时2h,该厂每天最多可从配件厂获得24个A配件和16个B配件,每天生产总耗时不超过8h.若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为()A.24万元B.22万元C.18万元D.16万元7.执行如图所示的程序框图,若依次输入m=,n=0.6﹣2,p=,则输出的结果为()A.B.C.0.6﹣2 D.8.某学校食堂旱餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为()A.144 B.132 C.96 D.489.定义在(1,+∞)上的函数f(x)同时满足:①对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立;②当x∈(1,3]时,f(x)=3﹣x.记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰好有两个零点,则实数k的取值范围是()A.(2,3)B.[2,3)C.D.10.已知O为坐标原点,双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0)(c>0),以OF为直径的圆交双曲线C的渐近线于A,B,O三点,且(+)=0,若关于x的方程ax2+bx﹣c=0的两个实数根分别为x1和x2,则以|x1|,|x2|,2为边长的三角形的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰直角三角形二、填空题:(大题共5小题,每小题5分,共25分.11.计算:sin65°cos35°﹣sin25°sin35°= .12.一块边长为8cm的正方形铁板按如图1所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O为底面ABCD的中心,则侧棱SC与底面ABCD所成角的余弦值为.13.已知椭圆C:+=1(0<n<16)的两个焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点,若|AF2|+|BF2|的最大值为10,则n的值为.14.若直线2ax+by﹣1=0(a>﹣1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则+的最小值为.15.函数f(x)=(a>0,b>0),因其图象类似于汉字“囧”字,被称为“囧函数”,我们把函数f(x)的图象与y轴的交点关于原点的对称点称为函数f(x)的“囧点”,以函数f(x)的“囧点”为圆心,与函数f (x)的图象有公共点的圆,皆称函数f(x)的“囧圆”,则当a=b=1时,有下列命题:①对任意x∈(0,+∞),都有f(x)>成立;∈(,),使f(x0)<tanx0成立;②存在x③函数f(x)的“囧点”与函数y=lnx图象上的点的最短距离是;④函数f(x)的所有“囧圆”中,其周长的最小值为2π.其中的正确命题有(写出所有正确命题的序号).三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2x+2sin(x+)cos(x+)+.(1)求函数f(x)的单调递增区间;(2)在△ABC中,内角A,B,C的对边分别为a,b,c,角A满足f(A)=1+,若a=3,sinB=2sinC,求b的值.17.如图,在三棱台DEF﹣ABC中,已知底面ABC是以AB为斜边的直角三角形,FC⊥底面ABC,AB=2DE,G,H分别为AC,BC的中点.(1)求证:平面ABED∥平面GHF;(2))若BC=CF=AB=1,求二面角A﹣DE﹣F的余弦值.18.某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如表:语言表达能力一般良好优秀人数逻辑思维能力一般 2 2 1良好 4 m 1优秀 1 3 n由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为.(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X,求随机变量X的分布列及其均值.19.已知数列{a n}的前n项和为S n,且3S n+a n﹣3=0,n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=,求T n=,求使T n≥成立的n 的最小值.20.已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.①求证:直线PQ过定点R,并求出定点R的坐标;②求|PQ|的最小值.21.已知函数f(x)=e x,其中e=2.71828…为自然对数的底数.(1)设函数g(x)=(x2+ax﹣2a﹣3)f(x),a∈R.试讨论函数g(x)的单调性;(2)设函数h(x)=f(x)﹣mx2﹣x,m∈R,若对任意,且x1>x2都有x2h(x1)﹣x1h (x2)>x1x2(x2﹣x1)成立,求实数m的取值范围.四川省成都市高考数学三诊试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知田径队有男运动员56人,女运动员42人,若按男女比例用分层抽样的方法,从全体运动员中抽出14人参加比赛,则抽到女运动员的人数为()A.2 B.4 C.6 D.8【考点】分层抽样方法.【分析】先求出每个个体被抽到的概率,再用女运动员的人数乘以此概率,即得所求.【解答】解:每个个体被抽到的概率等于=,则样本中女运动员的人数为42×=6.故选:C.2.命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是()A.∀x∉(﹣1,+∞),ln(x+1)<x B.∀x0∉(﹣1,+∞),ln(x0+1)<x0C.∀x∈(﹣1,+∞),ln(x+1)≥x D.∃x0∈(﹣1,+∞),ln(x0+1)≥x0【考点】命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:∵全称命题的否定是特称命题,∴命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是:“∃x0∈(﹣1,+∞),ln(x0+1)≥x0”,故选:D.3.已知复数z=﹣i(其中i为虚数单位),则|z|=()A.3 B.C.2 D.1【考点】复数求模.【分析】利用复数代数形式的乘除运算化简,然后代入复数模的公式得答案.【解答】解:∵z=﹣i=,∴|z|=.故选:A.4.已知α,β是空间中两个不同的平面,m为平面β内的一条直线,则“α⊥β”是“m⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义进行判断.【解答】解:由平面与平面垂直的判定定理知如果m为平面β内的一条直线,且m⊥α,则α⊥β,反之,α⊥β时,若m平行于α和β的交线,则m∥α,所以不一定能得到m⊥α,所以“α⊥β”是“m⊥α”的必要不充分条件.故选B.5.已知向量,满足=2,•=﹣3,则在方向上的投影为()A.B. C.D.【考点】平面向量数量积的运算.【分析】根据平面向量数量积的定义与投影的定义,进行计算即可.【解答】解:∵||=2,•(﹣)=﹣3,∴•﹣=•﹣22=﹣3,∴•=1,∴向量在方向上的投影为=.故选:C.6.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品需用4个A配件耗时1h,每生产一件乙产品需用4个B配件耗时2h,该厂每天最多可从配件厂获得24个A配件和16个B配件,每天生产总耗时不超过8h.若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为()A.24万元B.22万元C.18万元D.16万元【考点】简单线性规划.【分析】根据条件建立不等式组即线性目标函数,利用图象可求该厂的日利润最大值.【解答】解:设甲、乙两种产品分别生产x、y件,工厂获得的利润为z又已知条件可得二元一次不等式组:目标函数为z=3x+4y,由,可得,利用线性规划可得x=6,y=1时,此时该厂的日利润最大为z=3×6+4=22万元,故选:B.7.执行如图所示的程序框图,若依次输入m=,n=0.6﹣2,p=,则输出的结果为()A.B.C.0.6﹣2 D.【考点】程序框图.【分析】模拟执行程序,可得该流程图的作用是求出m、n、p中的最小数,化简比较三个数即可得解.【解答】解:根据题意,该流程图的作用是求出m、n、p中的最小数,并将此最小的数用变量x表示并输出,由于,m==,n=0.6﹣2=,p==,可得,>>,即:n>m>p.故选:A.8.某学校食堂旱餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为()A.144 B.132 C.96 D.48【考点】计数原理的应用.【分析】分类讨论:甲选花卷,则有2人选同一种主食,剩下2人选其余主食;甲不选花卷,其余4人中1人选花卷,方法为4种,甲包子或面条,方法为2种,其余3人,有1人选甲选的主食,剩下2人选其余主食,或没有人选甲选的主食,相加后得到结果【解答】解:分类讨论:甲选花卷,则有2人选同一种主食,方法为C42C31=18,剩下2人选其余主食,方法为A22=2,共有方法18×2=36种;甲不选花卷,其余4人中1人选花卷,方法为4种,甲包子或面条,方法为2种,其余3人,若有1人选甲选的主食,剩下2人选其余主食,方法为3A22=6;若没有人选甲选的主食,方法为C32A22=6,共有4×2×(6+6)=96种,故共有36+96=132种,故选:B.9.定义在(1,+∞)上的函数f(x)同时满足:①对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立;②当x∈(1,3]时,f(x)=3﹣x.记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰好有两个零点,则实数k的取值范围是()A.(2,3)B.[2,3)C.D.【考点】函数零点的判定定理.【分析】根据题中的条件得到函数的解析式为:f(x)=3m+1﹣x,x∈(3m,3m+1],在直角坐标系中画出f(x)的图象和直线y=k(x﹣1),根据函数的图象、题意、斜率公式求出实数k的范围.【解答】解:因为对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立,所以f(t)=3f(),取x∈(3m,3m+1],则∈(1,3],因为当x∈(1,3]时,f(x)=3﹣x,所以f()=3﹣,则f(x)=…=3m f()=3m+1﹣x,且y=k(x﹣1)的函数图象是过定点(1,0)的直线,在直角坐标系中画出f(x)的图象和直线y=k(x﹣1):因为函数g(x)=f(x)﹣k(x﹣1),且函数g(x)恰好有两个零点,所以f(x)的图象和直线y=k(x﹣1)恰好由两个交点,由图得,直线y=k(x﹣1)处在两条红线之间,且过(3,6)的直线取不到,因,,所以k的范围是[,3),故选:D.10.已知O为坐标原点,双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0)(c>0),以OF为直径的圆交双曲线C的渐近线于A,B,O三点,且(+)=0,若关于x的方程ax2+bx﹣c=0的两个实数根分别为x1和x2,则以|x1|,|x2|,2为边长的三角形的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰直角三角形【考点】双曲线的简单性质.【分析】运用向量的加减运算和数量积的性质可得|AF|=|AO|,△AOF为等腰直角三角形,求得渐近线的斜率,进而得到c=a,方程ax2+bx﹣c=0即为x2+x﹣=0,求得两根,求得平方,运用余弦定理,即可判断三角形的形状.【解答】解:由(+)=0,可得(+)•(﹣)=0,即有2﹣2=0,即|AF|=|AO|,△AOF为等腰直角三角形,可得∠AOF=45°,由渐近线方程y=±x,可得=1,c=a,则关于x的方程ax2+bx﹣c=0即为x2+x﹣=0,即有x1x2=﹣,x1+x2=﹣1,即有x12+x22=1+2<4,可得以|x1|,|x2|,2为边长的三角形的形状是钝角三角形.故选:A.二、填空题:(大题共5小题,每小题5分,共25分.11.计算:sin65°cos35°﹣sin25°sin35°= .【考点】两角和与差的正弦函数.【分析】由条件利用诱导公式、两角而和的余弦公式,求得所给式子的值.【解答】解:sin65°cos35°﹣sin25°sin35°=cos25°cos35°﹣sin25°sin35°=cos(25°+35°)=cos60°=,故答案为:.12.一块边长为8cm的正方形铁板按如图1所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O为底面ABCD的中心,则侧棱SC与底面ABCD所成角的余弦值为.【考点】直线与平面所成的角.【分析】连接OC,则∠SCO为侧棱SC与底面ABCD所成角,根据图1可知棱锥底面边长为6,斜高为4,从而棱锥的侧棱长为5.于是cos∠SCO=.【解答】解:由图1可知四棱锥的底面边长为6,斜高为4.∴棱锥的侧棱长为5.连接OC,∵SO⊥平面ABCD,∴∠SCO为侧棱SC与底面ABCD所成的角.∵AB=BC=6,∴OC=AC=3.∴cos∠SCO==.故答案为:.13.已知椭圆C:+=1(0<n<16)的两个焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点,若|AF2|+|BF2|的最大值为10,则n的值为12 .【考点】椭圆的简单性质.【分析】由题意可知椭圆是焦点在x轴上的椭圆,利用椭圆定义得到|BF2|+|AF2|=16﹣|AB|,再由过椭圆焦点的弦中通径的长最短,可知当AB垂直于x轴时|AB|最小,把|AB|的最小值,代入|BF2|+|AF2|=16﹣|AB|,由|BF2|+|AF2|的最大值等于10,列式求n的值.【解答】解:由0<n<16可知,焦点在x轴上,由过F1的直线l交椭圆于A,B两点,由椭圆的定义可得|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=16,即有|BF2|+|AF2|=16﹣|AB|.当AB垂直x轴时|AB|最小,|BF2|+|AF2|值最大,此时|AB|===,即为10=16﹣,解得n=12.故答案为:12.14.若直线2ax+by﹣1=0(a>﹣1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则+的最小值为.【考点】基本不等式.【分析】曲线y=cosπx+1(0<x<1)的对称中心为,可得:a+b=1.(a>﹣1,b>0).再利用“乘1法”与基本不等式的性质即可得出.【解答】解:曲线y=cosπx+1(0<x<1)的对称中心为,∴+b﹣1=0,化为:a+b=1(a>﹣1,b>0).∴+=(a+1+b)=≥=,当且仅当a=2﹣3,b=4﹣2时取等号.故答案为:.15.函数f(x)=(a>0,b>0),因其图象类似于汉字“囧”字,被称为“囧函数”,我们把函数f(x)的图象与y轴的交点关于原点的对称点称为函数f(x)的“囧点”,以函数f(x)的“囧点”为圆心,与函数f (x)的图象有公共点的圆,皆称函数f(x)的“囧圆”,则当a=b=1时,有下列命题:①对任意x∈(0,+∞),都有f(x)>成立;∈(,),使f(x0)<tanx0成立;②存在x③函数f(x)的“囧点”与函数y=lnx图象上的点的最短距离是;④函数f(x)的所有“囧圆”中,其周长的最小值为2π.其中的正确命题有②③④(写出所有正确命题的序号).【考点】函数的图象.【分析】利用特殊值法,研究函数的值域,单调性,和零点问题,以及导数的几何意义,利用数形结合的方法进行判断.【解答】解:当a=1,b=1时,函数f(x)=,①当x=时,f()==﹣2,=2,故f(x)>不成立,故①不正确;=时,f()=<0,tan=1,故存在x0∈(,),使f(x0)<tanx0成立,故②正②当x确;③则函数f(x)=与y轴交于(0,﹣1)点,则“囧点”坐标为(0,1),设y=lnx,则y′=,设切点为(x0,lnx0),∴切线的斜率k=,当“囧点”与切点的连线垂直切线时,距离最短,∴•=﹣1,解得x0=1,∴切点坐标为(1,0),故函数f(x)的“囧点”与函数y=lnx图象上的点的最短距离是=,故③正确,④令“囧圆”的标准方程为x2+(y﹣1)2=r2,令“囧圆”与f(x)=图象的左右两支相切,则切点坐标为(,)、(﹣,)、此时r=;令“囧圆”与f(x)=图象的下支相切则切点坐标为(0,﹣1)此时r=2,故函数f(x)的所有“囧圆”中,其周长的最小值为2π,故④正确,综上所述:其中的正确命题有②③④,故答案为:②③④三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2x+2sin(x+)cos(x+)+.(1)求函数f(x)的单调递增区间;(2)在△ABC中,内角A,B,C的对边分别为a,b,c,角A满足f(A)=1+,若a=3,sinB=2sinC,求b的值.【考点】三角函数中的恒等变换应用;余弦定理.【分析】(1)由诱导公式与辅助角公式得到f(x)的解析式,由此得到单调增区间.(2)由f(A)=1+,得A=,由恒等式得到B=,所以得到b.【解答】解:(1)∵f(x)=sin2x+2sin(x+)cos(x+)+.=sin2x+sin(2x+)+.=2sin(2x+)+,由﹣+2kπ≤2x+≤2kπ+,得:﹣+kπ≤x≤kπ+,(k∈Z),∴函数f(x)的单调递增区间是[﹣+kπ,kπ+],(k∈Z).(2)∵f(A)=1+,∴A=,∵sinB=2sinC=2sin(﹣B),∴cosB=0,即B=,∴由正弦定理得:=,∴b=.17.如图,在三棱台DEF﹣ABC中,已知底面ABC是以AB为斜边的直角三角形,FC⊥底面ABC,AB=2DE,G,H分别为AC,BC的中点.(1)求证:平面ABED∥平面GHF;(2))若BC=CF=AB=1,求二面角A﹣DE﹣F的余弦值.【考点】二面角的平面角及求法;平面与平面平行的判定.【分析】(1)推导出四边形BHFE是平行四边形,从而BE∥HF,从而∥平面GHF,BE∥平面GHF,由此能证明平面ABED∥平面GHF.(2)以C为原点,分别以CA,CB,CF所在的直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣DE﹣F的余弦值.【解答】证明:(1)由已知得三棱台DEF﹣ABC中,AB=2DE,∴,∵G,H分别为AC,BC的中点.,∴AB∥GH,EF∥BH,EF=BH,∴四边形BHFE是平行四边形,∴BE∥HF,∵AB⊄平面GHF,HF⊂平面GHF,∴AB∥平面GHF,BE∥平面GHF,又AB∩BE=B,AB,BE⊂平面ABED,∴平面ABED∥平面GHF.解:(2)由已知,底面ABC是以AB为斜边的直角三角形,即AC⊥BC,又FC⊥底面ABC,∴以C为原点,分别以CA,CB,CF所在的直线为x轴,y轴,z轴,建立空间直角坐标系,取AB=2,由BC=CF=,得BC=CF=1,AC=,则A(),C(0,0,0),B(0,1,0),F(0,0,1),E(0,,1),D(,0,1),平面DEF的一个法向量=(0,0,1),设平面ABED的法向量=(x,y,z),,=(﹣,),由,取x=2,得=(2,2),cos<>===,由图形得二面角A﹣DE﹣F的平面角是钝角,∴二面角A﹣DE﹣F的余弦值为﹣.18.某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如表:语言表达能力一般良好优秀人数逻辑思维能力一般 2 2 1良好 4 m 1优秀 1 3 n由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为.(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X,求随机变量X的分布列及其均值.【考点】离散型随机变量及其分布列;列举法计算基本事件数及事件发生的概率.【分析】(1)语言表达能力优秀或逻辑思维能力优秀的学生共有(6+n)名,由题意得,从而n=2,m=4,由此利用对立事件概率计算公式能求出从参加测试的语言表达能力良好的学生中任意抽取2名,其中至少有一名逻辑能力优秀的学生.(Ⅱ)随机变量X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列及E(X).【解答】解:(1)用A表示“从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生”,∵语言表达能力优秀或逻辑思维能力优秀的学生共有(6+n)名,∴P(A)=,解得n=2,∴m=4,用B表示“从参加测试的语言表达能力良好的学生中任意抽取2名,其中至少有一名逻辑能力优秀的学生”,∴P(B)=1﹣=.(Ⅱ)随机变量X的可能取值为0,1,2,∵20名学生中,语言表达能力优秀或逻辑思维能力优秀的学生人数共有名,∴P(X=0)==,P(X=1)==,P(X=2)==,∴X的分布列为:X 0 1 2PE(X)==.19.已知数列{a n}的前n项和为S n,且3S n+a n﹣3=0,n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=,求T n=,求使T n≥成立的n 的最小值.【考点】数列的求和;数列递推式.【分析】(1)通过3S n+a n﹣3=0与3S n﹣1+a n﹣1﹣3=0作差,进而可知数列{a n}是首项为、公比为的等比数列,利用公式计算即得结论;(2)通过(1)及3S n+a n﹣3=0计算可知b n=﹣n﹣1,裂项可知=﹣,进而并项相加即得结论.【解答】解:(1)∵3S n+a n﹣3=0,∴当n=1时,3S1+a1﹣3=0,即a1=,又∵当n≥2时,3S n﹣1+a n﹣1﹣3=0,∴3a n+a n﹣a n﹣1=0,即a n=a n﹣1,∴数列{a n}是首项为、公比为的等比数列,故其通项公式a n=•=3•;(2)由(1)可知,1﹣S n+1=a n+1=,∴b n==﹣n﹣1,∵==﹣,∴T n==﹣+﹣+…+﹣=﹣,由T n≥可知,﹣≥,化简得:≤,解得:n≥2016,故满足条件的n的最小值为2016.20.已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.①求证:直线PQ过定点R,并求出定点R的坐标;②求|PQ|的最小值.【考点】轨迹方程.【分析】(1)利用一动圆经过点M(2,0),且在y轴上截得的弦长为4,建立方程,即可求曲线C的方程;(2)①设A,B两点坐标分别为(x1,y1),(x2,y2),直线l1的方程为y=k(x﹣1)(k≠0),与抛物线方程联立,利用韦达定理可求点P,Q的坐标,进而可确定直线PQ的方程,即可得到结论.②由①|PQ|2=(2k﹣)2+(2k+)2=4[(k2+)2+(k2+)﹣2],换元利用基本不等式求|PQ|的最小值.【解答】解:(1)设圆心C(x,y),则x2+4=(x﹣2)2+y2,化简得y2=4x,∴动圆圆心的轨迹的方程为y2=4x.(2)①设A,B两点坐标分别为(x1,y1),(x2,y2),由题意可设直线l1的方程为y=k(x﹣1)(k≠0),与y2=4x联立得k2x2﹣(2k2+4)x+k2=0.△=(2k2+4)2﹣4k4=16k2+16>0,x1+x2=2+,y1+y2=k(x1+x2﹣2)=.所以点P的坐标为(1+,).由题知,直线l2的斜率为﹣,同理可得点Q的坐标为(1+2k2,﹣2k).当k≠±1时,有1+≠1+2k2,此时直线PQ的斜率k PQ=.所以,直线PQ的方程为y+2k=(x﹣1﹣2k2),整理得yk2+(x﹣3)k﹣y=0,于是,直线PQ恒过定点E(3,0);当k=±1时,直线PQ的方程为x=3,也过点E(3,0).综上所述,直线PQ恒过定点E(3,0).②由①|PQ|2=(2k﹣)2+(2k+)2=4[(k2+)2+(k2+)﹣2],记k2+=t∵k2+≥2,∴t≥2,∴|PQ|2=4[(t+)2﹣],∴t=2,即k=±1时,|PQ|的最小值为4.21.已知函数f(x)=e x,其中e=2.71828…为自然对数的底数.(1)设函数g(x)=(x2+ax﹣2a﹣3)f(x),a∈R.试讨论函数g(x)的单调性;(2)设函数h(x)=f(x)﹣mx2﹣x,m∈R,若对任意,且x1>x2都有x2h(x1)﹣x1h (x2)>x1x2(x2﹣x1)成立,求实数m的取值范围.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(1)先求函数g(x)的解析式,求导,根据a的取值,分别解关于x的不等式g′(x)>0,g′(x)<0即可;(2)根据已知条件将其转化成,+x1>+x2,且x1>x2,构造辅助函数F(x)=﹣(m﹣1)x﹣1,求导,分离变量求得m≤+1,在x∈[,2]上恒成立,构造辅助函数,求导,利用函数的单调性,求得函数的最小值,即可求得m的取值范围.【解答】解:(1)g(x)=e x(x2+ax﹣2a﹣3),a∈R.∴g′(x)=e x[x2+(a+2)x﹣a﹣3],=a(x﹣1)(x+a+3),当a=﹣4时,g′(x)=a(x﹣1)2≥0,∴g(x)在R上单调递减,当a>﹣4时,由g′(x)>0,解得x<﹣a﹣3或x>1,∴g(x)在(﹣∞,﹣a﹣3),(1,+∞)上单调递增,由g′(x)>0,解得﹣a﹣3<x<1,∴g(x)在(﹣a﹣3,1)上单调递减;当a<﹣4时,由g′(x)>0,解得x<1或x>﹣a﹣3,∴g(x)在(﹣∞,1),(﹣a﹣3,+∞)上单调递增,由g′(x)>0,解得1<x<﹣a﹣3,∴g(x)在(1,﹣a﹣3)上单调递减,综上所述:当a=﹣4时,g(x)在R上单调递减;当a>﹣4时,g(x)在(﹣∞,﹣a﹣3),(1,+∞)上单调递增,在(﹣a﹣3,1)上单调递减;当a<﹣4时,g(x)在(﹣∞,1),(﹣a﹣3,+∞)上单调递增,在(1,﹣a﹣3)上单调递减.(2)h(x)=f(x)﹣mx2﹣x=e x﹣mx2﹣x,,∴x2h(x1)﹣x1h(x2)>x1x2(x2﹣x1),∴﹣>x2﹣x1,不等式﹣>x2﹣x1,等价于+x1>+x2,且x1>x2,记F(x)==﹣(m﹣1)x﹣1,∴F(x)在[,2]上单调递增,F′(x)=﹣(m﹣1)≥0在x∈[,2]上恒成立,m≤+1,在x∈[,2]上恒成立,记P(x)=+1,∴P′(x)=>0,∴P(x)在[,2]上单调递增,P(x)min=P()=1﹣2.∴实数m的取值范围为(﹣∞,1﹣2].。
绝密★启用前2020届四川省成都市高三第三次诊断性检测数学(理科)注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,}{0,,{02,4}A x B ==,若A ←B ,则实数x 的值为 (A)0或2 (B)0或4 (C)2或4 (D)0或2或42.若复数z 满足zi =2+5i (i 为虚数单位),则z 在复平面上对应的点的坐标为 (A)(2,5) (B)(2,-5) (C)(-5,2) (D)(5,-2) 3.命题“∃x 0∈R ,x 02-x 0+1≤0的否定是0(),A x ∃∈R x 02-x 0+1>0 (B)∀x ∈R ,x 2-x +1≤0(0)C x ∃∈R ,x 02-x 0+1≥0 (D) ∀x ∈R ,x 2-x +1>04.如图是某几何体的正视图和侧视图,则该几何体的俯视图不可能是5.已知函数2(2)f x x x --=,则()2log 3f = (A)2 (B)83 (C)3 (D)1036.已知实数x,y 满足10,20,50x x x y -≥⎧⎪-≥⎨⎪+-⎩…则z =2x +y 的最大值为(A)4 (B)6 (C)8 (D)107.在等比数列{a n }中,已知19nn n a a +=,则该数列的公比是(A )-3 (B)3 (C )±3 (D)98.已知函数f (x )=x 3-3x ,则“a>-1”是“f (a )>f (-1)”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件9.已知F 1,F 2是双曲线()222210,0x y a b a b-=>>的左,右焦点,经过点F 2且与x 轴垂直的直线与双曲线的一条渐近线相交于点A ,且1264F AF ππ∠剟,则该双曲线离心率的取值范围是()A [5,13] ()B [5,3] (C) [3,13] (D)[7,3]10.为迎接大运会的到来,学校决定在半径为202m ,圆心角为π4的扇形空地OPQ 的内部修建一平行四边形观赛场地ABCD ,如图所示则观赛场地的面积最大值为 (A )200m 2()B 400(2-2)m 2(C)400(3-1)m 2(D)400(2-1)m 211.在三棱锥P ABC —中,,AB BC P ⊥在底面ABC 上的投影为AC 的中点D , DP = DC= 1, 有下列结论: ①三棱锥 P — A B C 的三条侧棱长均相等; ②∠PAB 的取值范围是(π4,π2)③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为2π3④若 A B = B C ,E 是线段PC 上一动点,则+DE BF 的最小值为6+22其中正确结论的个数是(A)1 (B)2 (C) 3 (D)4 12.已知函数()sin 10,01, )4f x A x A πωω⎛⎫=+-><< ⎪⎝⎭(588f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且f (x )在区间30,4π⎛⎫⎪⎝⎭上的最大值为2.若对任意的x 1,x 2∈[0,t ],都有()()122f x f x ≥成立,则实数t 的最大值是(A)3π4 (B)2π3 (C)712π (D)π2第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上 13.已知向量(1,),(2,3),λ==a b 且,⊥a b 则实数λ的值为 ▲14.某实验室对小白鼠体内x ,y 两项指标进行研究,连续五次实验所测得的这两项指标数据如下表:已知y 与x 具有线性相关关系,利用上表中的五组数据求得回归直线方程为$$,y bx a $=+若下一次实验中x=170,利用该回归直线方程预测得$117,y =则b$的值为 ▲ 15.设数列{a n }的前n 项和为S n ,若a 1=1.S 5=35,112(211n n n S S S n n n n -+=+-+且且…n +N ,∈则12231011111a a a a a a +++L 的值为 ▲ 16.已知点F 为抛物线y 2=2px (p >0)的焦点,经过点F 且倾斜角为02παα⎛⎫<<⎪⎝⎭的直线与抛物线相交于A ,B 两点,(OAB O ∆为坐标原点)的面积为2sin 2α,线段AB 的垂直平分线与x 轴相交于点M ,则|FM|的值为 ▲三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤。
四川省成都市2020届高三数学第三次诊断性检测试题 理第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,}{0,,{02,4}A x B ==,若A ←B ,则实数x 的值为 (A)0或2 (B)0或4 (C)2或4 (D)0或2或42.若复数z 满足zi =2+5i (i 为虚数单位),则z 在复平面上对应的点的坐标为 (A)(2,5) (B)(2,-5) (C)(-5,2) (D)(5,-2) 3.命题“∃x 0∈R ,x 02-x 0+1≤0的否定是0(),A x ∃∈R x 02-x 0+1>0 (B)∀x ∈R ,x 2-x +1≤0(0)C x ∃∈R ,x 02-x 0+1≥0 (D) ∀x ∈R ,x 2-x +1>04.如图是某几何体的正视图和侧视图,则该几何体的俯视图不可能是5.已知函数2(2)f x x x --=,则()2log 3f = (A)2 (B)83 (C)3 (D)1036.已知实数x,y 满足10,20,50x x x y -≥⎧⎪-≥⎨⎪+-⎩…则z =2x +y 的最大值为(A)4 (B)6 (C)8 (D)107.在等比数列{a n }中,已知19nn n a a +=,则该数列的公比是(A )-3 (B)3 (C )±3 (D)98.已知函数f (x )=x 3-3x ,则“a>-1”是“f (a )>f (-1)”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件9.已知F 1,F 2是双曲线()222210,0x y a b a b-=>>的左,右焦点,经过点F 2且与x 轴垂直的直线与双曲线的一条渐近线相交于点A ,且1264F AF ππ∠剟,则该双曲线离心率的取值范围是()A [5,13] ()B [5,3] (C) [3,13] (D)[7,3]10.为迎接大运会的到来,学校决定在半径为202m ,圆心角为π4的扇形空地OPQ 的内部修建一平行四边形观赛场地ABCD ,如图所示则观赛场地的面积最大值为 (A )200m 2()B 400(2-2)m 2(C)400(3-1)m 2(D)400(2-1)m 211.在三棱锥P ABC —中,,AB BC P ⊥在底面ABC 上的投影为AC 的中点D , DP = DC= 1, 有下列结论: ①三棱锥 P — A B C 的三条侧棱长均相等; ②∠PAB 的取值范围是(π4,π2)③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为2π3④若 A B = B C ,E 是线段PC 上一动点,则+DE BF 的最小值为6+22其中正确结论的个数是(A)1 (B)2 (C) 3 (D)4 12.已知函数()sin 10,01, )4f x A x A πωω⎛⎫=+-><< ⎪⎝⎭(588f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且f (x )在区间30,4π⎛⎫⎪⎝⎭上的最大值为2.若对任意的x 1,x 2∈[0,t ],都有()()122f x f x ≥成立,则实数t 的最大值是(A)3π4 (B)2π3 (C)712π (D)π2第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上13.已知向量(1,),(2,3),λ==a b 且,⊥a b 则实数λ的值为 ▲14.某实验室对小白鼠体内x ,y 两项指标进行研究,连续五次实验所测得的这两项指标数据如下表:已知y 与x 具有线性相关关系,利用上表中的五组数据求得回归直线方程为$$,y bx a $=+若下一次实验中x =170,利用该回归直线方程预测得$117,y =则b$的值为 ▲ 15.设数列{a n }的前n 项和为S n ,若a 1=1.S 5=35,112(211n n n S S S n n n n -+=+-+且且…n +N ,∈则12231011111a a a a a a +++L 的值为 ▲ 16.已知点F 为抛物线y 2=2px (p >0)的焦点,经过点F 且倾斜角为02παα⎛⎫<<⎪⎝⎭的直线与抛物线相交于A ,B 两点,(OAB O ∆为坐标原点)的面积为2sin 2α,线段AB 的垂直平分线与x 轴相交于点M ,则|FM|的值为 ▲三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤。
2020年四川省成都市高考数学三诊试卷1一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={x|1≤x ≤3},B ={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A. [3,+∞)B. (3,+∞)C. [−∞,3]D. [−∞,3)2. 已知复数z =1+ai i(i 为虚数单位)在复平面上对应的点位于第四象限,则实数a 的取值范围为( )A. (0,+∞)B. (−∞,1)C. (1,+∞)D. (−∞,0)3. 命题“|x|≥0(x ∈R)”的否定是( )A. “∀x ∈R ,使|x|<0”B. “∃x ∈R ,使|x|<0”C. “∃x ∉R ,使|x|<0”D. “∃x ∈R ,使|x|≤0”4. 一个几何体的正视图与侧视图相同,均为下图所示,则其俯视图可能是( )A.B.C.D.5. 已知函数f (x)={3x ,x ≤1,−x,x >1,若f (x)=2,则x 等于( )A. log 32B. −2C. log 32或−2D. 26. 已知实数x ,y 满足不等式组{x −2y +1≥ 0x ≤ 3x +y −1≥0,则z =x −y +3的取值范围是( ) A. [83,8)B. [83,8]C. [4,8]D. [43,4]7. 在如图所示的锐角三角形空地中,有一内接矩形花园(阴影部分),其一边长为x(单位:m).将一颗豆子随机地扔到该空地内,用A 表示事件:“豆子落在矩形花园内”,则P(A)的最大值为( )A. 14 B. 512 C. 12 D. 348. 已知数列{a n }是等比数列,a 3=1,a 5=4,则公比q 等于( )A. 2B. −2C. ±12D. ±29.已知x∈R,则“x<1”是“x2<1”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件10.已知双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线经过点(3,√3),则双曲线的离心率为()A. 2√33B. 2 C. 2√33或2 D. √3或211.如图,直三棱柱ABC−A1B1C1中,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心为O,点E是侧棱BB1上的一个动点.有下列判断:①直线AC与直线C1E是异面直线;②A1E一定不垂直AC1;③三棱锥E−AA1O的体积为定值;④AE+EC1的最小值为2√2.其中正确的个数是()A. 1B. 2C. 3D. 412.函数f(x)=2sin(ωx+π3)(ω>0)的图象在[0,1]上恰有两个最大值点,则ω的取值范围为()A. [2π,4π]B. [2π,9π2) C. [13π6,25π6) D. [2π,25π6)二、填空题(本大题共4小题,共20.0分)13.已知向量a⃗=(2,4),b⃗ =(1,1),若向量b⃗ ⊥(a⃗+λb⃗ ),则实数λ的值是________.−1.65,则实数m的值为________.x1234y0.5m 4.87.515.数列{a n}满足a1+2a2+⋯…+na n=4−n+22n−1(n∈N∗),则数列{a n}的前n项和T n=______.16.直线l过抛物线C:y2=2px(p>0)的焦点F且与C相交于A,B两点,且AB的中点M的坐标为(3,2),则抛物线C的方程为______ .三、解答题(本大题共7小题,共82.0分)17.1,A2,A3,…,A12的12名篮球运动员在某次篮球比赛中的得分记录如下:运动员编号A1A2A3A4A5A6A7A8A9A10A11A12得分510121682127156221829得分区间频数频率[0,10)31 4[10,20)[20,30)合计12 1.00内的运动员中随机抽取2人,求这2人得分之和大于25的概率.18.在△ABC中,内角A,B,C的对边分别是a,b,c,已知a2−b2=bc,2sinB−sinC=0,求角A的大小.19.如图,在几何体ABCDEF中,平面ADE⊥平面ABCD,四边形ABCD为菱形,且∠DAB=60°,EA=ED=AB=2EF=2,EF//AB,M为BC中点.(1)求证:FM//平面BDE;(2)求几何体ABCDEF的体积.20.已知函数g(x)=(x+1)lnx+1(Ⅰ)求g(x)的单调区间;(Ⅱ)设f(x)=xlnx−1e x 的最小值为M,证明:M∈(−1−2e2,−1e)21. 已知椭圆C :x 2a 2+y2b 2=1(a >b >0)的焦距为2√3,且C 与y 轴交于A(0,−1),B(0,1)两点.(1)求椭圆C 的标准方程;(2)设P 点是椭圆C 上的一个动点且在y 轴的右侧,直线PA ,PB 与直线x =3交于M ,N 两点.若以MN 为直径的圆与x 轴交于E ,F 两点,求P 点横坐标的取值范围.22. 在平面直角坐标系xOy 中,曲线C 的参数方程是{x =1+2cosθy =2sinθ,以原点为极点,x 轴的正半轴为极轴建立极坐标系,若直线ι的极坐标方程是ρsin(θ+π4)=√2a ,直线ι与曲线C 相交于A ,B 两点,若AB =2√3,求实数a 的值.23. 已知函数f(x)=√x 2−4x +4−|x −1|.(1)解不等式f(x)>12;(2)若正数a ,b ,c ,满足a +2b +4c =f(12)+2,求√1a+2b+4c的最小值.-------- 答案与解析 --------1.答案:B解析:解:∵集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则a>3,故选:B.根据集合的包含关系判断即可.本题考查了集合的包含关系,考查不等式问题,是一道基础题.2.答案:A解析:【分析】本题考查复数的基本运算和复数的几何意义,属于基础题.【解答】解:由z=a−i,又∵复数z在复平面内对应的点位于第四象限,有a>0.∴实数a的取值范围为(0,+∞)故选A.3.答案:B解析:解:全称命题的否定为特称命题,命题“|x|≥0(x∈R)”否定为“∃x∈R,使|x|<0”.故选:B.利用全称命题特称命题的否定是特称命题,写出结果即可.本题考查命题的否定,注意量词的变化,基本知识的考查.4.答案:B解析:【分析】本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.直接从几何体的正视图和侧视图判断几何体的形状,从而可知俯视图的可能情况.【解答】解:一个几何体的正视图和侧视图都是等腰三角形加上一个正方形,其对应的几何体的上部分可能是正四棱锥,下部分有可能是圆柱,则其俯视图可能是:.故选:B.5.答案:A解析:【分析】本题主要考查的是分段函数求函数值的问题,属于基础题.直接利用分段函数解析式进行求值即可.【解答】解:当x ≤1时,3x =2,∴x =log 32; 当x >1时,−x =2,∴x =−2(舍去).∴x =log 32.故选A . 6.答案:B解析:解:作出不等式组对应的平面区域如图:联立{x =3x +y −1=0解得A(3,−2).联立{x −2y +1=0x +y −1=0解得B(13,23),z =x −y +3,平移经过A 时取得最大值:8;经过B 时取得最小值:83, 则z =x −y +3的取值范围是:[83,8]故选:B .作出不等式组对应的平面区域,平移目标函数,推出最优解,得到最值即可.本题主要考查线性规划的应用,作出平面区域,利用z 的几何意义,是解决本题的关键. 7.答案:C解析:解:三角形的面积S 1=12×40×40=800, 矩形花园的另一边长为h ,则40−ℎ40=x 40,∴ℎ=40−x ,∴矩形花园的面积S 2=ℎx =(40−x)x =−x 2+40x , ∴P(A)=S 2S 1=−x 2+40x 800,∵0<x <40,∴当x =20时,P(A)取得最大值400800=12.故选C .利用相似求出矩形的另一边,根据几何概型得出P(A)关于x 的解析式,根据二次函数的性质得出P(A)的最大值.本题考查了几何概型的概率计算,二次函数的性质,属于基础题. 8.答案:D解析:【解答】解:∵a 3=1,a 5=4, ∴q 2=a5a 3=4,∴q =±2, 故选:D【分析】利用等比数列的通项公式及其性质即可得出.本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于基础题.9.答案:B解析:【分析】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.x2<1,解得−1<x<1.即可判断出关系.【解答】解:x2<1,解得−1<x<1.∴“x<1”是“x2<1”的必要不充分条件.故选:B.10.答案:A解析:【分析】求出双曲线的渐近线方程,推出ab关系,然后求解离心率.本题考查双曲线的简单性质的应用,考查计算能力.【解答】解:双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线经过点(3,√3),可得3a =√3b,即b2a2=13,可得c2−a2a2=13,解得e=2√33.故选:A.11.答案:C解析:解:如图,∵直线AC经过平面BCC1B1内的点C,而直线C1E在平面BCC1B1内不过C,∴直线AC与直线C1E是异面直线,故①正确;当E与B重合时,AB1⊥A1B,而C1B1⊥A1B,∴A1B⊥平面AB1C1,则A1E垂直AC1,故②错误;由题意知,直三棱柱ABC−A1B1C1的外接球的球心为O是AC1与A1C的交点,则△AA1O的面积为定值,由BB1//平面AA1C1C,∴E到平面AA1O的距离为定值,∴三棱锥E−AA1O的体积为定值,故③正确;设BE=x,则B1E=2−x,∴AE+EC1=√1+x2+√1+(2−x)2.由其几何意义,即平面内动点(x,1)与两定点(0,0),(2,0)距离和的最小值知,其最小值为2√2,故④正确.∴正确命题的个数是3个.故选:C.。
成都2020届第三次高考模拟理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在一次抛硬币实验中,甲、乙两人各抛一次硬币一次,设命题p 是“甲抛的硬币正面向上”,q 是“乙抛的硬币正面向上”,则命题“至少有一人抛的硬币是正面向下”可表示为( ) A .()()p q ⌝∨⌝ B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .()p q ⌝∨2.已知集合{}{}2|11,|10A x x B x x =-<=-<,则AB =( )A . ()1,1-B .()1,2-C .()1,2D .()0,1 3.若1122aii i+=++,则a =( ) A .5i -- B .5i -+ C .5i - D . 5i +4.设()f x 是定义在R 上周期为2的奇函数,当01x ≤≤时,()2f x x x =-,则52f ⎛⎫-= ⎪⎝⎭( ) A .14-B . 12- C. 14 D .125.某几何体的三视图如图所示,则该几何体的表面积为( )A .3612π+B .3616π+ C. 4012π+ D .4016π+ 6.设D 为ABC ∆中BC 边上的中点,且O 为AD 边上靠近点A 的三等分点,则( ) A .5166BO AB AC =-+ B . 1162BO AB AC =- C. 5166BO AB AC =- D .1162BO AB AC =-+ 7.执行如图的程序框图,则输出x 的值是( )A . 2016B .1024 C.12D .-1 8. 已知()00,P x y 是椭圆22:14x C y +=上的一点,12,F F 是C 的两个焦点,若120PF PF <,则0x 的取值范围是( )A .⎛ ⎝⎭ B .⎛ ⎝⎭ C. ⎛ ⎝⎭ D .⎛ ⎝⎭ 9. 等差数列{}n a 中的24032a a 、是函数()3214613f x x x x =-+-的两个极值点,则()2220174032log a a a =( )A .624log + B .4 C. 323log + D .324log + 10. 函数()()2sin 4cos 1f x x x =-的最小正周期是( ) A .3πB . 23π C. π D .2π11.某医务人员说:“包括我在内,我们社区诊所医生和护士共有17名。
2020年四川省成都市高考数学三诊试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合A={0,1},B={−1,0,a+2},且A⊆B,则实数a=()A. 0B. −1C. −2D. −32.i为虚数单位,复数z=2i+1在复平面内对应的点的坐标为()A. ( −1 , 1 )B. ( 1 , 1 )C. ( 1 , −1 )D. ( −1 , −1 )3.命题p:∃x0∈R,x02−x0+1⩽0的否定是()A. ∃x0∈R,x02−x0+1>0B. ∀x∈R,x2−x+1⩽0C. ∀x∈R,x2−x+1>0D. ∃x0∈R,x02−x0+1<04.如图是某几何体的正视图和侧视图,则该几何体的俯视图不可能是()A.B.C.D.5.设alog34=2,则4−a=()A. 116B. 19C. 18D. 166.若实数x,y满足{x−4y+3⩽0,3x+5y−25⩽0,x⩾1,则函数z=2x+y的最大值为()A. 12B. 325C. 3D. 157.已知数列{a n}是等比数列,a1=2,公比q=2,则a5=()A. 16B. 32C. 64D. 1288. 已知函数f(x)=x 2+2x−1x(x ≥2),若f(x)>a 恒成立,则a 的取值范围是( )A. (−∞,72]B. [72,+∞)C. (−∞,72)D. (72,+∞)9. 已知直线x =2a 与双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线交于点P ,双曲线C 的左、右焦点分别为F 1,F 2,且cos∠PF 2F 1=−14,则双曲线C 的离心率为( )A. 53B. 1611C. 53或3D. 1611或410. 如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ11. 在三棱锥P −ABC 中,AB ⊥BC ,P 在底面ABC 上的投影为AC 的中点D ,DP =DC =1有下列结论: ①三棱锥P −ABC 的三条侧棱长均相等; ②∠PAB 的取值范围是(π4,π2); ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为2π3; ④若AB =BC ,E 是线段PC 上一动点,则DE +BE 的最小值为√6+√22.其中所有正确结论的编号是( )A. ① ②B. ② ③C. ① ② ④D. ① ③ ④12.,满足f(2π3−x)=−f(x),且对任意x ∈R ,都有f(x)⩾f(π4).当ω取最小值时,函数f(x)的单调递减区间为( )A. [π12+kπ3,π4+kπ3],k ∈Z B. [π12+2kπ,π4+2kπ],k ∈Z C. [−π12+kπ3,π12+kπ3],k ∈Z D. [−π12+2kπ,π12+2kπ],k ∈Z二、填空题(本大题共4小题,共20.0分)13.若向量a⃗=(1,1),b⃗ =(1,2),且(a⃗−λb⃗ )⊥b⃗ ,则实数λ的值为________.14.已知具有线性相关关系的两个量x,y之间的一组数据如表:且回归直线方程是ŷ=0.95x+2.6,则m的值为______.15.已知S n是数列{a n}的前n项和,若a1=1,a n+1+S n S n+1=0,则数列{S n S n+1}的前10项和为_________ .16.已知抛物线y2=2px(p≠0)及定点A(a,b),B(−a,0),ab≠0,b2≠2pa,M是抛物线上的点.设直线AM、BM与抛物线的另一个交点分别为M1、M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为__________.三、解答题(本大题共7小题,共82.0分),17.小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是12且是否休假互不影响.若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.18.在△ABC中,内角A,B,C的对边分别是a,b,c,且(a−c)sin(A+B)=(a−b)(sinA+sinB).(Ⅰ)求角B的大小;(Ⅱ)若b=4,求a+c的最大值.19.等腰直角三角形ABC中,∠BAC=90°,D为AC的中点,正方形BCC1B1与三角形ABC所在的平面互相垂直.(1)求证:AB1//平面DBC1;(2)若AB=2,求点D到平面ABC1的距离.20.已知函数.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若−1<x<1时,均有f(x)≤0成立,求实数a的取值范围.21.已知圆O1:(x+1)2+y2=8上有一动点Q,点O2的坐标为(1,0),四边形QO1O2R为平行四边形,线段O1R的垂直平分线交O2R于点P.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)过点O2作直线与曲线C交于A,B两点,点K的坐标为(2,1),直线KA,KB与y轴分别交于M,N两点,求证:线段MN的中点为定点,并求出△KMN面积的最大值.22.在直角坐标系xOy中,曲线C的参数方程为为参数),直线l的方程为y=kx.以坐标原点为极点x轴正半轴为极轴建立极坐标系.(Ⅰ)求曲线C的极坐标方程;(Ⅱ)曲线C与直线l交于A,B两点,若|OA|+|OB|=2√3,求k的值.23.已知函数f(x)=|x−2|+|2x−1|.(1)求不等式f(x)≥3的解集;a+b+c=m,求a2+b2+c2的最(2)记函数f(x)的最小值为m,若a,b,c均为正实数,且12小值.-------- 答案与解析 --------1.答案:B解析:解:集合A={0,1},B={−1,0,a+2},且A⊆B,可得a+2=1,解得a=−1.故选:B.利用集合的关系列出方程求解即可.本题考查集合的包含关系的应用,是基础题.2.答案:C解析:本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.利用复数代数形式的乘除运算化简z,求得z的坐标得答案.解:复数z=2i+1=2(i−1)(i+1)(i−1)=2(i−1)−2=1−i,故复数z在复平面内对应的点的坐标为( 1 ,−1 ),故选C.3.答案:C解析:本题考查命题的否定,存在量词命题与全称量词命题的否定关系,属于基础题.直接利用存在量词命题的否定是全称量词命题写出结果即可.解:因为存在量词命题的否定是全称量词命题,所以,命题的否定为∀x∈R,x2−x+1>0.故选:C.4.答案:A解析:本题考查三视图还原,属于基础题.结合选项逐一检验即可.解:如果是选项A,则正视图中间线条应该是虚线,所以A不可能是原图的俯视图;检验BCD,可知满足题意,故选A.5.答案:B解析:【试题解析】本题考查了对数和指数的运算性质,属于基础题.直接根据对数和指数的运算性质即可求出.解:因为alog34=2,则log34a=2,则4a=32=9,则4−a=14 a =19,故选B.6.答案:A解析:本题考查线性规划的应用,利用目标函数的几何意义,运用数形结合的数学思想是解决此类问题的基本方法.作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最大值.解:作出不等式组对应的平面区域如图(阴影部分):由z=2x+y得y=−2x+z,平移直线y=−2x+z,由图象可知当直线y=−2x+z经过点A时,直线y=−2x+z的截距最大,此时z最大.由{x −4y +3=0,3x +5y −25=0,解得{x =5,y =2,即A(5,2),代入目标函数z =2x +y ,得z =2×5+2=12. 即目标函数z =2x +y 的最大值为12. 故选A .7.答案:B解析:本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于基础题. 利用等比数列的通项公式即可得出.解:∵数列{a n }是等比数列,a 1=2,公比q =2, ∴a 5=2×24=32. 故选:B .8.答案:C解析:本题主要考查利用导数判断函数的单调性和求最值.解:∵f′(x)=x 2+1x =1+1x >0,故函数f(x)在[2,+∞)上单调递增;∴f (x )min =f (2)=4+4−12=72,∴a <72, 故选C .9.答案:B。
四川省成都市2020届高三第三次诊断性检测
数学试题 理
第Ⅰ卷(选择题,共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,}{0,,{02,4}A x B ==,若A ←B ,则实数x 的值为 (A)0或2 (B)0或4 (C)2或4 (D)0或2或4
2.若复数z 满足zi =2+5i (i 为虚数单位),则z 在复平面上对应的点的坐标为 (A)(2,5) (B)(2,-5) (C)(-5,2) (D)(5,-2) 3.命题“∃x 0∈R ,x 02-x 0+1≤0的否定是
0(),A x ∃∈R x 02-x 0+1>0 (B)∀x ∈R ,x 2-x +1≤0
(0)C x ∃∈R ,x 02-x 0+1≥0 (D) ∀x ∈R ,x 2-x +1>0
4.如图是某几何体的正视图和侧视图,则该几何体的俯视图不可能是
5.已知函数2(2)f x x x --=,则()2log 3f = (A)2 (B)83 (C)3 (D)10
3
6.已知实数x,y 满足10,
20,50x x x y -≥⎧⎪
-≥⎨⎪+-⎩
…则z =2x +y 的最大值为
(A)4 (B)6 (C)8 (D)10
7.在等比数列{a n }中,已知19n
n n a a +=,则该数列的公比是
(A )-3 (B)3 (C )±3 (D)9
8.已知函数f (x )=x 3-3x ,则“a>-1”是“f (a )>f (-1)”的
(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件
9.已知F 1,F 2是双曲线()22
2210,0x y a b a b
-=>>的左,右焦点,经过点F 2且与x 轴垂直的直线与双曲线
的一条渐近线相交于点A ,且
12
6
4
F AF π
π
∠剟,则该双曲线离心率的取值范围是
()A [5,13] ()B [5,3] (C) [3,13] (D)[7,3]
10.为迎接大运会的到来,学校决定在半径为202m ,圆心角为π
4的扇形空地OPQ 的内部修建一平行四边
形观赛场地ABCD ,如图所示则观赛场地的面积最大值为 (A )200m 2 ()B 400(2-2)m 2 (C)400(3-1)m 2 (D)400(2-1)m 2
11.在三棱锥P ABC —中,,AB BC P ⊥在底面ABC 上的投影为AC 的中点D , DP = DC= 1, 有下列结论: ①三棱锥 P — A B C 的三条侧棱长均相等; ②∠P AB 的取值范围是(π4,π2
)
③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为2π
3
④若 A B = B C ,E 是线段PC 上一动点,则+DE BF 的最小值为6+2
2
其中正确结论的个数是
(A)1 (B)2 (C) 3 (D)4 12.已知函数()sin 10,01, )4f x A x A πωω⎛⎫
=+
-><< ⎪⎝
⎭(588f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且f (x )在区间30,4
π
⎛⎫
⎪⎝⎭
上的最大值为2.若对任意的x 1,x 2∈[0,t ],都有()()122f x f x ≥成立,则实数t 的最大值是
(A)3π4 (B)2π3 (C)712
π (D)π
2
第Ⅱ卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上 13.已知向量(1,),(2,3),λ==a b 且,⊥a b 则实数λ
的值为 ▲
14.某实验室对小白鼠体内x ,y 两项指标进行研究,连续五次实验所测得的这两项指标数据如下表:
已知y 与x 具有线性相关关系,利用上表中的五组数据求得回归直线方程为$$,y bx a $=+若下一次实验中x =
170,利用该回归直线方程预测得$117,y =则b
$的值为 ▲ 15.设数列{a n }的前n 项和为S n ,若a 1=1.S 5=35,11
2(211
n n n S S S n n n n -+=+-+且
且…n +N ,∈则12231011
111
a a a a a a +++L 的值为 ▲ 16.已知点F 为抛物线y 2=2px (p >0)的焦点,经过点F 且倾斜角为02παα⎛
⎫
<<
⎪⎝
⎭
的直线与抛物线相交于A ,B 两点,(OAB O ∆为坐标原点)的面积为2sin 2α,线段AB 的垂直平分线与x 轴相交于点M ,则|FM|的值为 ▲
三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)
某公司为加强对销售员的考核与管理,从销售部门随机抽取了2019年度某一销售小组的月均销售额,该小组各组员2019年度的月均销售额(单位:万元)分别为:3.35,3.35,3.38,3.41,3.43,3.44,3.46,3.48,3.51,3.54,3.56,3.56,3.57,3.59,3.60,3.64,3.64,3.67,3.70,3.70.
(Ⅰ)根据公司人力资源部门的要求,若月均销售额超过3.52万元的组员不低于全组人数的65%,则对该销售小组给予奖励,否则不予奖励.试判断该公司是否需要对抽取的销售小组发放奖励;
(Ⅱ)在该销售小组中,已知月均销售额最高的5名销售员中有1名的月均销售额造假,为找出月均销售额造假的组员,现决定请专业机构对这5名销售员的月均销售额逐一进行审核,直到能确定出造假组员为止.设审核次数为X ,求X 的分布列及数学期望. 18.(本小题满分12分)
在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且(a -c )sin(A +B )=(a -b )(sin A +sin B ). (I) 求角B 的大小;
(II) (Ⅱ)若b=4,求a+c 的最大值
19.(本小题满分12分)
如图,在多面体ABCDEF 中,ADEF 为矩形,ABCD 为等腰梯形,BC ∥AD , BC= 2 ,AD=4 ,且,AB BD ⊥平面ADEF ⊥平面ABCD ,M ,N 分别为EF ,CD 的中点。
(Ⅰ)求证:MN ∥平面ACF ;
(Ⅱ)若直线FC 与平面ADEF 所成的角的正弦值为
3
4
,求多面体ABCDEF 的体积.
20.(本小题满分12分)
已知函数f (x )=ae x -m
,其中,.a m ∈R
(Ⅰ)当a =m =1时,设g (x )=f (x )-ln x 求函数g(x)的单调区间; (Ⅱ)当a =4,m =2时,证明:()(1ln )f x x x >+
21.(本小题满分12分)
已知椭圆C:()22
2210x y a b a b
+=>>的左焦点F 1(-3,0)点3Q 在椭圆C 上. (I)求椭圆C 的标准方程;
(Ⅱ)经过圆O:2
2
5x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点
(i)求证:0;OM ON +=u u u u r u u u r
(ii)求△OAB 的面积的取值范围
请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑。
22.(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-83+22
t y =43+22t (t 为参数)以坐标原点O 为极点,x 轴的正半
轴为极轴建立极坐标系,曲线C 的极坐标方程为2
6cos ,a ρρθ+=其中a >0. (Ⅰ)写出直线l 的普通方程和曲线C 的直角坐标方程;
(Ⅱ)在平面直角坐标x oy 中,设直线l 与曲线C 相交于A ,B 两点,若点84,33P ⎛⎫
- ⎪⎝⎭
恰为线段AB 的三等分点,求a 的值.
23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x -1|-|x +2|. (Ⅰ)求不等式f (x )<x 的解集;
(Ⅱ)记函数f(x)的最大值为M .若正实数a ,b ,c 满足a +4b +9c =1
3
M ,求
193c a c
ab ac
--+的最小值.
11。