2016-2017(1)微波遥感-7.1雷达遥感图像的研究与应用
- 格式:pdf
- 大小:166.59 KB
- 文档页数:12
1、遥感定义:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2、遥感信息系统包括:①被测目标的信息特征;②信息获取;③信息的传输与记录;④信息处理;⑤信息的应用。
3、遥感的类型:①按平台分:地面遥感、航空遥感、航天遥感、航宇遥感。
②按传感器的探测波段:紫外遥感--探测波段在0.3~0.38um之间;可见光遥感--探测波段在0.38~0.76um 之间;红外遥感--探测波段在0.76~1000um之间;微波遥感:探测波段在1mm~1m之间;多波段遥感:指探测波段在可见光波段和红外波段范围内,再分成若干窄波段来探测目标。
③按传感器的工作方式分:主动遥感、被动遥感数据。
④按遥感的应用领域分:大的研究领域—外层空间遥感,大气层遥感,陆地遥感,海洋遥感等;具体应用领域—资源遥感,环境遥感,气象遥感,农业遥感,水文遥感等。
4、遥感的特点:大面积的同步观测;时效性;数据的综合性和可比性;经济性;局限性。
5、电磁波或电磁辐射的定义:当电磁振荡进入空间,变化的磁场能激发涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播。
6、电磁波谱:按电磁波在真空传播的波长或频率,递增或递减的规律排列,构成了电磁波谱。
7、绝对黑体:如果一个物体对于任何波长的电磁辐射都全部性吸收的物体。
(黑色的烟煤被认为是最接近绝对黑体的自然物质。
)8、太阳辐射:(1)太阳常数:不受大气影响,在距离太阳一个天文单位(日地平均距离)的区域内,垂直于太阳辐射方向上单位面积和单位时间黑体所接收到的太阳辐射能量。
(2)太阳光谱:是连续的,且辐射特性与绝对黑体辐射特性基本一致。
9、大气层次:对流层;平流层;电离层。
10、大气散射的类型:瑞利散射;米氏散射;非选择性散射。
11、大气窗口:把电磁波通过大气层时较少被反射、吸收或散射的、透过率较高的波段。
12、太阳辐射与地表的相互作用:①太阳电磁辐射:太阳辐射近似于温度为6000K的黑体辐射,主要集中在0.3-2.5μm的紫外、可见光到近红外区段。
遥感在农学中的应用摘要:介绍遥感的物理原理及基本概念,结合自身专业知识联系到遥感在农学中的应用及应用历程回顾,再结合近五年国内外研究现状及进展对遥感在农学中的应用进行细致分析。
关键词:遥感农学农业遥感遥感影像一、遥感的物理原理及基本介绍遥感是通过遥感器这类对电磁波敏感的仪器,在远离目标和非接触目标物体条件下探测目标地物,获取其反射、辐射或散射的电磁波信息(如电场、磁场、电磁波、地震波等信息),并进行提取、判定、加工处理、分析与应用的一门科学和技术。
遥感,从字面上来看,可以简单理解为遥远的感知,泛指一切无接触的远距离的探测;从现代技术层面来看,“遥感”是一种应用探测仪器。
人类通过大量的实践,发现地球上每一个物体都在不停地吸收、发射信息和能量,其中有一种人类已经认识到的形式——电磁波,并且发现不同物体的电磁波特性是不同的。
遥感就是根据这个原理来探测地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。
遥感的实现还需要遥感平台,如卫星、飞机、气球等,它们的作用就是稳定地运载传感器。
当在地面试验时,还会用到地面象三角架这样简单的遥感平台。
针对不同的应用和波段范围,人们已经研究出很多种传感器,探测和接收物体在可见光、红外线和微波范围内的电磁辐射。
传感器会把这些电磁辐射按照一定的规律转换为原始图像。
原始图像被地面站接收后,要经过一系列复杂的处理,才能提供给不同的用户使用。
遥感技术的类型往往从以下方面对其进行划分:工作平台层面区分:地面遥感、航空遥感(气球、飞机)、航天遥感(人造卫星、飞船、空间站、火箭)。
根据工作波段层面区分:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感。
根据传感器类型层面区分:主动遥感(微波雷达)、被动遥感(航空航天、卫星)。
根据记录方式层面区分:成像遥感、非成像遥感根据应用领域区分:环境遥感、大气遥感、资源遥感、海洋遥感、地质遥感、农业遥感、林业遥感等。
▶1.3S:R S、G I S、G P S遥感(R e mo t e S e n s i n g),地理信息系统(G e o g r a p h i c I n f o r ma t i o n S y s t e m)与全球定位系统(G l o b a l P o s i t i o n i n g S y s t e m)的英文名称中最后一个单词均含有"S",人们习惯将这三种技术合称之为"3S"技术。
遥感的主要作用是提供对地观测数据和信息,全球定位系统的主要作用是提供空间定位数据,地理信息系统的主要作用是对数据进行空间分析。
2.广义的遥感:广义的角度来理解遥感,泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震)等的探测。
狭义的遥感:狭义的角度来理解遥感,指应用探测仪器,不与探测目标接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
本课程采用的概念:遥感是一种以物理手段、数学方法和地学分析为基础的综合性应用技术。
3.遥感技术系统一般由四部分组成:遥感平台、传感器、遥感数据接收与处理系统、遥感资料分析解译系统。
4.遥感技术过程由数据获取,数据传输、接收和处理,数据解译、分析与应用三部分组成,这三部分是遥感技术过程的相辅相成、不可分割的三个阶段。
5.遥感技术的特点:①大面积的同步观测:遥感平台越高,视角越宽广,可以同步探测到的地面范围越大,从而可观测地物的空间分布规律。
②时效性:遥感技术可以在短时间内对同一地区进行重复探测。
③数据的综合性和可比性:遥感技术获取的数据反映地表的综合特性,包括自然、人文等方面。
④经济性:可节省大量的人力、物力和财力。
⑤局限性:波谱的有限性、电磁波段的准确性、空间分辨率低等。
6.遥感的分类①按遥感平台划分:宇航遥感、航天遥感、航空遥感、地面遥感②按探测的电磁波段划分紫外遥感:波段在0.05-0.4μm可见光/反射红外遥感:可见光波段在0.38-0.76μm,近红外波段在0.7-2.5μm热红外遥感:波段在8-14μm微波遥感:波段在1m m-1m③按传感器的工作原理划分:被动遥感,主动遥感④按应用领域划分:地质遥感、农业遥感、林业遥感、城市遥感、海洋遥感、环境遥感、气象遥感、军事遥感等。
第三章微波图像的特点《微波遥感原理》§3.4典型地物的散射特性《微波遥感原理》第三章微波图像的特点引言不同的地物具有不同的电磁波反射和辐射特性,表现在图像上具有不同的灰利用遥感图像进行度或色调;同一地物在不同波段的图像上的色调也不相同地物分析,识别地物,提取信息像上的色调也不相同。
掌握地物的波谱特性谱对于侧视雷达,地物波谱特性主要表现为地物对于某一波长(包括极化)或几个波地物对于某波长(包括极化)或几个波长的雷达波束的不同散射特性选取有代表性的典型地物量测其微波波谱特性3.4 典型地物的散射特性本节内容安排光滑表面1、光滑表面2、粗糙表面3、农作物4、含水量作物不同的生长期5、作物不同的生长期6、森林土壤7、土壤8、岩石9、海浪10、冰11、雪1、光滑表面平静的水面水泥路面平静的水面、水泥路面 (1)形成镜面反射没(1)形成镜面反射,没有回波,图像上多呈黑色; (2)随入射角变化明显(2)随入射角变化明显,曲线比较陡峭;(3)HH VV差5dB(3)HH、VV差5dB 同极化与交叉极化相差较大可达1015dB 几种光滑表面的散射特性图较大,可达10‾15dB混凝土路面与其它表面散射特性的比较粗糙表面2、粗糙表面绝大多数地物可认为是粗糙表面曲线比较平缓,说明对入射角的敏感小同极化与交叉极化之间的差异变小,大约只有5~15dB 几种粗糙面的散射系数515dB3、不同农作物和草地不同农作物和草地VV与HH,HV与VH之间的差别很小5~15dB同极化与交叉极化之间存在515dB的差异 曲线之间呈平行趋势,对入射角不很敏感(小麦几乎没有变化)水稻在接近垂直入射角时,散射系数增大(由于水稻田中水的反射所致)4、不同含水量不同含水量含水量高时后向散射含水量高时,后向散射系数增大;绿草在入射角为10度以内时,散射系数表现了与土壤镜面反射的叠加波长对散射系数的影响较大,对于波长较长的雷达波束散射系数要雷达波束,散射系数要小。
1.遥感的分类:按遥感平台分类:地面遥感·航空遥感·航天遥感·航宇遥感按传感器的探测波段分类:紫外遥感·可见光遥感·红外遥感·微波遥感按传感器工作方式分类:主动遥感·被动遥感按遥感资料的记录方式分类:成像遥感·非成像遥感2.遥感的特点(1)感测范围大,具有综合、宏观的特点;(2)信息量大,具有手段多、技术先进的特点(3)获取信息快,更新周期短,具有动态监测的特点;(4)具有获取信息受条件限制少的特点。
3.遥感技术系统包括:被测目标信息特征、信息的获取、信息的传输和记录、信息的处理、信息的应用。
4.遥感传感器也叫遥感器,是获取遥感数据的关键设备。
组成:收集器、探测器、处理器和输出器。
5.电磁波在真空中传播时,按波长递增或频率递减的顺序可划分为γ射线、X射线、紫外线、可见光、微波和无线电波,称之为电磁波谱6.红外线中近红外和短波红外主要源于太阳辐射,中红外主要源于太阳辐射及地物热辐射,而远红外主要源于地物热辐射。
7.电磁辐射的度量(1)辐射能量Q(单位:J)电磁辐射的能量。
(2)辐射通量(单位:W)单位时间内通过某一面积的辐射能量(3)辐射通量密度(单位:W /m2)单位时间内通过单位面积的辐射通量(4)辐照度I(单位:W /m2):被辐射的物体表面单位面积上的辐射通量。
(5)辐射出射度M(单位:W /m2)辐射源的物体表面单位面积上的辐射通量(6)辐射亮度L(W/Sr/m2)辐射源在某一方向的单位投影表面、单位立体角内的辐射通量8.斯蒂芬-波耳兹曼定律绝对黑体表面上,单位面积发出的总辐射能与绝对温度的四次方成正比。
M=σ·T49.维恩位移定律黑体辐射光谱中最强辐射的波长与黑体绝对温度成反比λmax·T=b黑体温度越高,其辐射曲线的峰值就越向左移,即往波长短的方向移动。
10.实际物体的比辐射率(发射率):物体的辐射出射度与相同温度相同波长下绝对黑体的辐射出射度的比值ε11.由图可以看出: 1、太阳辐射相当于6000K的黑体辐射; 2、太阳辐射的能量主要集中在可见光,其中0.38~0.76μm的可见光能量占太阳辐射总能量的43.5%。
1.遥感:不直接接触物体本身,从远处通过传感器探测和接受来自目标物体的信息,经过信息传输、加工处理及分析解译,识别物体和现象的属性及其空间分布等特征与变化规律的理论和技术。
2.遥感分类按遥感平台分,包括地面遥感、航空遥感、航天遥感按探测器的工作波段分,包括紫外遥感、可见光遥感、红外遥感、微波遥感、多光谱遥感按遥感应用领域,从大的研究领域可分为外层空间遥感、大气层遥感、陆地遥感、海洋遥感等。
按遥感资料的记录方式可分为成像遥感和非成像遥感按传感器工作方式可分为主动遥感和被动遥感3.遥感过程:信息源——》信息获取(传感器)——》信息记录与传输——》信息处理(地面站)——》信息应用4.5.辐射能量Q:以电磁波形式传递的能量辐射通量Φ:单位时间通过某一面积的辐射能量Φ=dQ/dt✧辐射通量密度E:单位时间内通过单位面积的辐射能量,E=dΦ/dS✧辐照度I:被辐射的物体表面单位面积上的辐射通量I=dΦ/dS✧辐射出射度M:辐射源物体表面单位面积上的辐射通量6.朗伯源:辐射量度L与观察角θ无关的辐射源,严格的说,只有绝对黑体才是朗伯源7.绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体称为绝对黑体。
8.黑体辐射的三个特性a)与曲线下的面积成正比的总辐射通量密度W随温度T的增加而迅速增加。
(绝对黑体表面上,单位面积发出的总辐射能与绝对温度的四次方成正比,称为斯蒂芬-玻耳兹曼定律)热红外遥感就是利用这一原理探测和识别目标物的。
b)波谱辐射能量密度的峰值波长λmax随温度的增加向短波方向移动。
c)每根曲线彼此不相交,故温度T越高,所有波厂商的波谱辐射通量密度也越大。
9.太阳常数:指不受大气影响,在距太阳一个天文单位内,太阳辐射在大气上界处的垂直入射辐射通量密度(即单位面积单位时间黑体所接受的太阳辐射能量)。
10.地物光谱发射率单位面积上地物发射的某一波长的辐射通量密度与同温下很提在同一波长上的辐射通量密度之比,称为地物光谱发射率记为绝对黑体灰体选择性辐射体理想反射体(绝对白体)11.任何物体的发射率等于其吸收率12.根据能量守恒定理,入射到地表面的电磁波能量为E,被物体反射的能量为Eρ,被物体吸收的能量为Eα,透射过物体的电磁波能量为Eτ,有13.红外波段中的太阳辐射与地物发射情况1a.近红外0.76-3.0um,太阳辐射通量密度与地物的辐射通量之比约为1000:1,因此,在此波段只反映地物对太阳辐射的反射,而基本上不反映地物本身热辐射的高低。
1.《遥感应用分析原理与方法》,赵英时等著,科学出版社,2003年第一版内容简介本书是一本全面系统地论述遥感原理及其应用分析方法的基础理论著作。
全书共15章.包括三大部分内容。
第一部分:第1至第5章为遥感基础。
重点闻述遥感系统的基本理论、物理概念、遥感数据源的获取、传输机理、成像规律及各类遥感信息的特征;并分别介绍可见光-红外、暖红外、微波遥感的特点及其研究入展等。
第二部分:第6至第10章为遥感分析方法。
主要阐述迢感图像的解译、数字图像处理、遥感综合分析方法、数据融合、地理信息系统;并着重介绍遥感定量分析的方法及其模型等。
第三部分:第11至第15章为迢感专题应用。
这一部分以理论、方法、实例相结合,择用国内外典型实例,从土地、植被、水体和海洋、地表能量平衡与土壤水分、地质等方面入行总结,反映遥感信息科学的广阔应用前景。
本书内容丰富,具基础性、前沿性,有广泛的适用性,可作为地学、环境、空间信息等地球系统科学领域的研究生教材,也可作为有关高等学校师生及各专业领域的广大遥感科学工作者的参考书。
2.《遥感导论》,梅安新、彭望琭、秦其明、刘慧平著,高等教育出版社,2001年第一版内容提要本书是教育部“高等教育面向21世纪教学内容和课程体系改革计划”的研究成果,是“面向21世纪课程教材”,也是全国高等学校地理类专业公共核心课深教材。
教材注重反映现代遥感技术的最新成果,结合经济建设实际,注意反映遥感应用内容。
全书以较大的篇幅系统介绍了计算机遥感图像处理的内容.并且在诸如地物光谱多光谱成像仪、微波遥感,特别是3S(RS、GIS、GPS)集成等世界领先技术方面,注重适当引入。
主要内容包括:遥感基本概念、电磁辐射和地物波语、遥感成像原理、逐感图像特征、遥感图像分析的原理与方法、图像信息的提取与分类处理、遥感的应用及实例、3S集成,以及新型遥感平台与传感器等。
书后还附有遥感缩写字母表和常用词汇选编。
本教材在教学看念和教学方法上也注意了能力的培养。
遥感基础学习知识原理与应用知识点一、遥感的基本概念与分类1.遥感的定义:遥感是指通过遥远距离采集并记录地球表面信息的科学技术。
2.遥感的分类:按照遥感的数据类型可分为光学遥感、微波遥感和热红外遥感;按照数据获取平台可分为航空遥感和卫星遥感。
二、遥感的基本原理1.辐射传输原理:地球表面物体受到太阳辐射照射后,会发生反射、散射和吸收,这些辐射经过大气层的传输和变化后达到遥感仪器,形成遥感数据。
2.遥感数据的获取原理:通过遥感仪器记录地球表面物体的辐射或能量信息,如通过遥感卫星的光学传感器记录地球表面反射光谱。
3.遥感数据的处理原理:遥感数据需要经过预处理、解译和分析等过程,以提取有价值的信息。
三、遥感的主要技术与方法1.遥感图像解译:通过对遥感图像进行目视或计算机辅助解译,识别和判读地表物体。
2.遥感数字化:遥感图像通过扫描或数字相机获取,然后通过数字化处理,得到数字图像。
3.遥感分类:将遥感图像中的地表物体划分成不同的类别或类型,如土地利用分类、植被类型分类等。
4.遥感定量分析:通过对遥感图像进行数学模型和算法的分析,提取地表物体的数量信息,如土地覆盖变化分析、物质迁移分析等。
5.遥感辅助决策:通过利用遥感图像数据进行地表资源调查、规划设计和决策支持等。
四、典型遥感应用领域1.地质勘探与矿产资源:通过遥感技术可以探测到地下的地质信息和矿产资源分布情况。
2.土地利用与土地覆盖:通过遥感图像可以对土地利用类型进行分类和监测,了解土地利用变化和土地覆盖的动态变化情况。
3.植被监测与农业信息提取:通过遥感技术可以获取到植被的生长状况、植被类型和叶面积指数等信息,对农业生产进行监测和评估。
4.城市规划与环境监测:通过遥感技术可以获取到城市的用地分布、建筑物高度和环境污染等信息,对城市规划和环境保护进行监测和分析。
5.自然灾害监测与评估:通过遥感技术可以实时获取地震、火灾、洪水等自然灾害的信息,进行监测和评估,为应急救灾提供支持。
第一章 绪论1、遥感定义?遥感分类?(遥感平台、电磁波段、辐射源(工作方式)?)1. RS-Remote sensing is the science(and to some extent, art) of acquiring information about theEarth's surface without actually being in contact with it. This is done by sensing and recordingreflected or emitted energy and processing, analyzing, and applying that information.遥感分类有不同的标准。
● 工作平台层面:地面遥感,航空遥感,航天遥感● 按辐射源:被动遥感,主动遥感● 遥感波段分类:紫外遥感ultraviolet (0.05-0.38um ),可见光遥感visible (0.38-0.76),红外遥感 infrared remote sensing (0.76-1000),微波遥 infrared remote sensing(1mm-1m ),多光谱Multi-spectral (高光谱Hyperspectral )遥感● 记录方式分类:成像遥感(航空相片,卫星影像),非成像遥感(激光雷达测量,微波辐射计遥感)● 应用领域分类:城市遥感,环境遥感,地质遥感,气象遥感,军事遥感等2、遥感基本特点有哪些?空间特性(探测范围大);波谱特性(信息丰富);时相特性(周期短);收集资料方便,不受地形限制;经济特性;数字处理特性;3、描述遥感过程及遥感系统组成?(1)能源-大气传播-地表反射或发射-大气传播-平台,传感器-接收-遥感图像处理与信息提取-应用(2)空间信息收集系统;地面接收和预处理系统;信息分析应用系统第二章 遥感物理基础1黑体辐射规律(普朗克公式、斯蒂芬-玻尔兹曼定律、维恩位移定律)?普朗克公式:斯蒂芬-玻尔兹曼定律:公式见P6:绝对黑体表面上,单位面积发出的总辐射能与绝对温度的四次方成正比维恩位移定律:公式见P7:它表明:黑体的最大辐射强度多对应的波长max 与黑体的 绝对温度成反比2什么是太阳常数?太阳辐射的特点有哪些? 112),(M /52-∙=kT hc e hc T λλλπλ025/04()211hc kT M M d hc M d e M T λλλλπλλσ∞∞==∙-=⎰⎰bT =·m ax λ3什么是发射率?4光谱反射率8遥感辐射传输方程概念?(与辐射校正一起看)(1)地物反射太阳辐射(2)地物本身辐射练习一一、名词解释:遥感2、电磁波3、电磁波谱4、绝对黑体5、绝对白体6、灰体7、绝对温度8、光谱辐射通量密度9、大气窗口10、发射率11、光谱反射率12、光谱反射特性曲线二、填空题:1、电磁波谱按频率由高到低排列主要由 r-射线、X-射线、紫外线、可见光、红外波段、微波、无线电等组成。
遥感影像的波段组合及用途高光谱遥感数据最佳波段的选择根据自己对具体影像解译的要求进行波段的选择,以提高解译的速度和精度。
若要获得丰富的地质信息和地表环境信息,可以选择TM(7、4、1)波段的组合,TM(7、4、1)波段组合后的影像清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚;若要获得监测火灾前后变化分析的影像,可以选择TM(7、4、3)波段的组合,它们组合后的影像接近自然彩色,所以可通过TM(7、4、3)彩色合成图的分析来掌握林火蔓延与控制及灾后林木的恢复状况;若要获得砂石矿遥感调查情况,可以选择TM(5、4、1)波段组合;用TM影像编制洲地芦苇资源图时,宜用TM(3、4、5)波段组合的影像,分辨率最高,信息最丰富;用MSS图像编制土地利用地图,通常采用MSS(4、5、7)波段的合成影像;若要再区分林、灌、草,则需要选用MSS(5、6、7)波段的组合影像。
遥感影像时相的选择:遥感影像的成像季节直接影响专题内容的解译质量。
对其时相的选择,既要根据地物本身的属性特征,又要考虑同一地物不同地域间的差异。
例如解译农作物的种植面积最好选在8、9月份,因为这时作物成熟了,但还没有收割,方便各种作物的区别;解译海滨地区的芦苇地及其面积宜用5、6月份的影像;解译黄淮海地区盐碱土分布图宜用3、4月份的影像。
高分辨率影像的选择:分辨率的选择要符合自己的实际需要,分辨率高对解译速度和精度都有很大帮助。
随着科技的不断发展,已经有了15~30m分辨率的ETM/TM影像、2.5~5.0m分辨率的SPORT影像、2m分辨率的福卫二号、lm分辨率的ORBVIEW一3/IKONOS、0.6m分辨率的QUICK BIRD等。
法国SPOT-5卫星影像分辨率可达到2.5m,并可获得立体像对,进行立体观测。
SPOT一5卫星上的主要遥感设备是2台高分辨率几何成像仪(HRVIR),其工作谱段有4个,主要任务是监测自然资源分布,特别是监测农业、林业和矿产资源,观测植被生长状态与农田含水量等项,对农作物进行估产,了解城市建设与城市土地利用状况等。
(1)电磁波:电磁振动在空间的传播。
(2)电磁波谱:将电磁波按照波长或频率递增或递减顺序排列,称为电磁波谱。
(3)太阳常数:在距离地球一个天文单位内,太阳辐射在大气上界处的垂直入射的辐射通量密度称为太阳常数。
(4)比辐射率:指单位面积上地物发射的某一波长的辐射通量密度与同温度下黑体在同一波长上的辐射通量密度之比,又称发射率。
(5)瑞利散射:引起散射的大气粒子直径远小于入射电磁波波长,称为瑞利散射,也称为分子散射。
(6)米氏散射:引起散射的大气粒子的直径约等于入射波长,称为米氏散射,也称为大颗粒散射。
(7)绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收而毫无反射和透射,则称其为绝对黑体。
简称黑体。
(8)大气效应:当太阳辐射经过大气层时与大气层中的离子、分子、颗粒、水汽等发生吸收、散射、反射和透射等物理过程,这个过程称为大气效应。
(9)光谱反射率:地物在某波段的反射通量与该波段的入射通量之比。
(10)光谱反射曲线:将地物的反射波谱特性与波长的关系在直角坐标系中描绘出的曲线。
(11)地物光谱特性:不同地物的表面性质和内部结构不同,对入射的电磁辐射能有不同程度的反射、吸收和透射,不同的地物也发射不同波长的电磁波,这就是地物的波谱特性。
(12)大气窗口:电磁波辐射在大气传输中透过率较高(≥60%)的波段称为大气窗口。
(1)构像方程:是指地物点在图像上的图像坐标(x,y)和其在地面对应点的大地坐标(X,Y,Z)之间的数学关系。
(2)几何变形:由于受到传感器成像特性、遥感平台姿态变化、大气折射、地球曲率、地形起伏、地球自转等因素的影响,导致原始遥感图像存在几何变形。
(3)几何校正:由于受到传感器成像特性、遥感平台姿态变化、大气折射、地球曲率、地形起伏、地球自转等因素的影响,导致原始遥感图像存在几何变形,消除这些几何变形的过程称为遥感图像的几何校正。
(4)多项式纠正:回避成像的空间几何过程,直接对图像变形的本身进行数学模拟,用一个适当的多项式来描述纠正前后图像相应点之间的坐标关系。
雷达遥感雷达遥感(微波遥感)可分为主动和被动两种方式。
被动方式与可见光和红外遥感类似,是由微波扫描辐射计接收地表目标的微波辐射。
目前多数星载雷达采用主动方式,即由遥感平台发射电磁波,然后接收辐射和散射回波信号,主要探测地物的后向散射系数和介电常数。
它发射的电磁波波长一般较长,在1mm至1m之间。
合成孔径雷达(SAR)概念的提出是相对真实孔径雷达天线而提出的。
对于真实孔径雷达,当雷达随载体(飞机或卫星)飞行时,向地表发射雷达波束,然后接受地面反射信号,这样便得到了地表雷达图像。
我们知道卫星雷达天线越长,对地物的观测分辨率就越高。
由于受雷达天线长度的限制,真实孔径雷达的地表分辨率往往很低,难以满足应用要求。
而合成孔径雷达正是解决了利用有限的雷达天线长度来获取高分辨率雷达图像的问题。
合成孔径雷达(SAR,Synthetic Aperture Radar)技术是干涉合成孔径雷达(INSAR,Interferometric Synthetic Aperture Radar ,简称:干涉雷达)技术和差分干涉合成孔径雷达(D-INSAR,Differential Interferome- tric Synthetic Aperture Radar ,简称:差分干涉雷达)技术的基础,它涉及到侧视雷达系统、雷达波信号处理技术以及雷达图像的生成等诸方面。
而干涉雷达技术和差分干涉雷达技术则是基于合成孔径雷达技术的图像处理方法和模型,是合成孔径雷达技术的应用延伸和扩展。
合成孔径雷达干涉测量技术(INSAR,Interferometric Synthetic Aperture Radar;简称:干涉雷达测量)是以同一地区的两张SAR图像为基本处理数据,通过求取两幅SAR 图像的相位差,获取干涉图像,然后经相位解缠,从干涉条纹中获取地形高程数据的空间对地观测新技术。
差分干涉雷达测量技术(D-INSAR)是指利用同一地区的两幅干涉图像,其中一幅是通过形变事件前的两幅SAR获取的干涉图像,另一幅是通过形变事件前后两幅SAR图像获取的干涉图像,然后通过两幅干涉图差分处理(除去地球曲面、地形起伏影响)来获取地表微量形变的测量技术。