2807无穷级数在工程中的应用(精)
- 格式:ppt
- 大小:4.43 MB
- 文档页数:9
无穷级数公式范文无穷级数是指一系列数的和可以无限增加的数列。
无论是数学上的无穷级数公式还是物理实际应用中的无穷级数,都是非常重要的概念和工具。
数学上的无穷级数公式可以分为几种不同的形式。
以下是一些常见的无穷级数公式。
1.等差级数:等差级数是一种最简单的无穷级数,也称为算术级数。
它的公式为:S_n=a+(a+d)+(a+2d)+...+(a+(n-1)d)=(n/2)(2a+(n-1)d)。
其中,S_n是前n个数的和,a是第一个数,d是公差。
2.几何级数:几何级数是一种常见的无穷级数,它的公式为:S = a+ ar + ar^2 + ar^3 + ... = a / (1 - r)。
其中,S是无穷级数的和,a是首项,r是公比。
注意,这个公式的前提是r的绝对值小于13.调和级数:调和级数是一种特殊的无穷级数,它的公式为:S=1+1/2+1/3+1/4+...+1/n+...。
调和级数是发散的,也就是说它的和是无穷大。
4.幂级数:幂级数是一种形如a0 + a1x + a2x^2 + ... + anx^n+ ...的级数,其中x是变量,a0, a1, a2, ... , an是系数。
幂级数常用于函数的展开和逼近。
无穷级数在实际中也有广泛的应用,特别是在物理学中。
下面是几个物理应用中的无穷级数。
1.牛顿-莱布尼茨公式:这个公式是微积分中的重要定理,用于计算曲线下面积。
它的公式为:∫(f(x)dx) = F(x) + C,其中∫表示积分,f(x)是被积函数,F(x)是f(x)的一个原函数,C是常数。
2.泰勒级数:泰勒级数是一种在一个点附近展开函数的无穷级数,它用于近似计算函数值和导数。
泰勒级数的公式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2+...+f^(n)(a)(x-a)^n/n!+...。
其中,f(x)是待求函数,f(a)是函数在点a处的值,f'(a)是函数在点a处的导数。
++++123n123n s s s s u u u u ,第十二章无穷级数无穷级数是高等数学的一个重要组成部分,它是表示函数、研究函数的性质以及进行数值计算的一种工具, 本章先讨论常数项级数,介绍无穷级数的一些基本内容,然后再讨论函数项级数,着重讨论如何将函数展开成幂级数和三角级数的问题, 第一节常数项级数的概念和性质 一,常数项级数的概念 引子人们认识事物在数量方面的特性,往往由近似到精确,在这过程中,会遇到 由有限个数量相加到无限个数量相加的问题,?你在说什么?例如计算半径为R 的圆面积A, 具体做法如下:作圆的内接正六边形,算出这六边形的面积1a , 它是圆面积A 的一个粗糙的近似值, ||为了比较准确地计算出A 的值, 我们以这个正六边形的每一边为底分别作一个顶点在圆周上的等腰三角形(图12-1), 算出这六个等腰三角形的面积之和2a . 那么12a a +就是内接正十二边形的面积 就是A 的一个较好的近似值, ||同样地,在这正十二边形的每一边上,分别作一个顶点在圆周上的等腰三角形, 算出这十二个等腰三角形的面积之和3a , 那么123a a a ++就是内接正二十四边形的面积 就是A 的一个更好的近似值, ||如此继续下去,内接正n 32⨯边形的面积就逐步逼近圆面积:1A a ,≈ 12A a a ,≈+ I 23A a a a ,≈++12n A a a a .≈+++如果内接正多边形的边数无限增多,即n 无限增大, 则和12n a a a +++的极限就是所要求的圆面积A.定义 无穷级数 一般项 这时和式中的项数无限增多,于是出现了无穷多个数量依次相加的数学式子, 一般的,如果给定一个数列123n u ,u ,u ,,u ,则由这数列构成的表达式I 23n u u u u +++++(1)叫做(常数项)无穷级数,,简称(常数项)级数,记为n n 1u ,∞=∑∞==+++++∑n123n n 1uu u u u ,其中第n 项n u 叫做级数的一般项,定义 部分和 收敛 发散 上述级数的定义只是一个形式上的定义, 怎样理解无穷级数中无穷多个数量相加呢? 联系上面关于计算圆面积的例子, 我们可以从有限项的和出发, 观察它们的变化趋势,由此来理解无穷多个数量相加的含义, ||作(常数项)级数(1)的前n 项的和nn 12n i i 1s u u u u ,==+++=∑(2)n s 称为级数(1)的部分和, 当n 依次取1,2,3,…时, 它们构成一个新的数列11s u ,= 212s u u ,=+=++3123s u u u ,,=+++n 12n s u u u ,||根据这个数列有没有极限,我们引进无穷级数(1)的收敛与发散的概念,++++123n123n s s s s u u u u ,定义级数是+++++123n u u u u如果级数n n 1u ∞=∑的部分和数列n {s }有极限s, 数列n {s }就是⋅⋅⋅⋅⋅⋅123n s ,s ,s ,s , 即∞→∞==+++++=1n 2n n 3s u u u u lims s,则称无穷级数n n 1u ∞=∑收敛,这时极限s 叫做这级数的和, 并写成I 2n s u u u =++++⋅||如果n {s }没有极限,则称无穷级数n n 1u ∞=∑发散,定义 级数的余项 误差 显然,当级数收敛时,其部分和s n 是级数的和s 的近似值, 它们之间的差值n n n 1n 2r s s u u ++=-=++叫做级数的余项,用近似值n s 代替和s 所产生的误差是这个余项的绝对值,即误差是n |r |. ||从上述定义可知,级数与数列极限有着紧密的联系, 给定级数++++12n u u u ,就有部分和数列 1u , +12u u , ++123u u u ,, +++12n u u u ,反之,给定数列⋅⋅⋅⋅⋅⋅12n s ,s ,s ,,就有以⋅⋅⋅⋅⋅⋅12n s ,s ,s ,为部分和数列的级数++++12n u u u n n 1u ∞==∑121n n 1s (s s )(s s )-+-++-+∞-=+-∑1n n 1n=2s (s s )其中=11u s ,n n n 1u s s -=-(n 2).≥ 按定义,级数++++12n u u u 与数列n {s }同时收敛或同时发散,∵++++12n u u u 收敛,就是++++12n u u u 趋于常数++++12n u u u =∞s ,就是∞s 趋于常数∴数列∞⋅⋅⋅⋅⋅⋅12n s ,s ,s ,s 就趋于常数例1无穷级数∞=+++++∑n 012n n=0aq aq aq aq aq (3)叫做等比级数(又称为几何级数),其中a 0,≠q 叫做级数的公比, 试讨论级数(3)的收敛性, 解当|≠q |1,则部分和-=+++n n 1a aq aqs n a aq 1q-=-=---n a aq 1q 1q 当<|q |1时,因为nn limq 0,→∞=从而→∞→∞--==-=---n n n n a alim lim 0a aq s 1q 1q ,1q 1q 是常数,因此收敛,当|q |1>时,因为nn limq ,→∞=∞从而→∞→∞--==-∞--n n n n a a alim lim ,1q s q q11q 因此发散,如果|q |1,=当q=1时, =+++n 个n a a a s =na,→∞=∞n n lims , 因此发散;当q=-1时,=-+-+⋅⋅⋅n a a a a a s 因此发散,n s 随着n 为奇数等于a 随着n 为偶数等于0从而n s 的极限不存在,综合上述结果, 我们得到:等比级数(3)的公比为q 如果|q |1,<则级数收敛; 如果≥|q |1,则级数发散, 例2证明级数1+2+3+…+n +…是发散的, 证这级数的部分和为n n(n 1)s 123n 2+=++++=显然,n n lims ,→∞=∞因此所给级数是发散的, 例3 判定无穷级数1111223n(n 1)++++⋅⋅+的收敛性,解 因为n 111u ,n(n 1)n n 1==-++因此=+++n 123n s u u u u=++-+---+111123111(1)()()(n 24n 3)111.n 1=-+ 从而n n n 1lims lim(1)1,n 1→∞→∞=-=+所以这级数收敛, 二、收敛级数的基本性质根据无穷级数收敛、发散以及和的概念, 可以得出收敛级数的几个基本性质, 性质1 乘c 后 收敛性不变如果级数n n=1u ∞∑收敛于和s,则级数n n=1ku ∞∑也收敛,且其和为ks.证设级数n n 1u ∞=∑的部分和为n snn 1ku∞=∑的部分和为n σ,n s =+++12n u u u , 则n 12n n σku ku ku ks ,=+++=于是n n n n n n lim σlimks k lims ks.→∞→∞→∞=== 这就表明级数n n 1ku ∞=∑收敛,且和为ks.||由关系式n n σks =知道, 如果n {s }没有极限且k 0,≠那么{}σ也不可能有极限, 因此我们得到如下结论:级数的每一项同乘一个不为0的常数后, 它的收敛性不变, 性质2如果级数∞=∑n n 1u 收敛于和s,∞=∑nn 1v收敛于和σ,那么级数n n n 1(u v )∞=±∑也收敛,且其和为s σ,± 证设级数n n n 1n 1u ,v ∞∞==∑∑的部分和分别为n n s ,σ,则级数n n n 1(u v )∞=±∑的部分和n 1122n n τ(u v )(u v )(u v )=±+±++±12n 12n (u u u )(v v v )=+++±+++n τn n s σ,=±于是n n n n n lim τlim(s σ)s σ.→∞→∞=±=±这就表明级数n n n 1(u v )∞=±∑收敛,且其和为s σ.±性质2也说成:两个收敛级数可以逐项相加与逐项相减, 性质3在级数中去掉、加上或改变有限项,不会改变级数的收敛牲, 证我们只需证明“在级数前部去掉或加上有限项,不会改变级数的收敛性”, 因为其他情形“在级数中间任意去掉、加上或改变有限项的情形 ” 都可以看成在级数前部先去掉有限项,然后再加上有限项的结果, ||设原级数12k k 1k n u u u u u +++++++++ 去掉前k 项,新级数+++++++k 1k 2k n u u u于是新级数的部分和为++++=+++=-n k 1k 2k n k n k σu u u 原级数s 原级数s ,因为k s 是常数,所以当n →∞时n σ与k n s +同时具有极限,或者同时没有极限, ||类似地,可以证明在级数的前面加上有限项, 不会改变级数的收敛性, 性质4如果级数n n 1u ∞=∑收敛,则对这级数的项 任意加括号后 所成的级数112k 1k 1n n 1n n 1n (u u )(u u )(u u )(4)-++++++++++++仍收敛,且其和不变,加括号后 还是原级数嘛证设级数n n=1u ∞∑(相应于前n 项)的部分和为n s ,加括号后所成的级数(4)(相应于前k 项)的部分和为k A ,1111n n A u u s ,=++= 112221n n 1n n A (u u )(u u )s +=+++++= ………….112k 1k k k 1n n 1n n 1n n A (u u )(u u )(u u )s -++=+++++++++=+++⋅⋅⋅++⋅⋅⋅n123n s u u u u…………. ||可见,数列A 1, A 2,… A k ,…就是数列12k n n n s ,s ,...s ,...数列A 1, A 2,… A k ,…就是数列12k 12n n n s ,s ,...s ,...s ,...s ,...的一个子数列, ∵数列收敛,子数列也收敛 数列n {s }收敛 ∴数列k {A }必定收敛,且有k n k n limA lims ,→∞→∞=即加括号后所成的级数收敛,且其和不变,||注意:如果加括号后的级数收敛,原级数未必收敛, 例如,级数(1-1)+(1-1)+…收敛于0, 但级数1-1+1-1+…却是发散的, 推论如果加括号后的级数发散,则原级数也发散, 反证法假设加括号后的级数发散,原级数收敛 根据性质4,原级数收敛,加括号后的级数收敛, 与假设条件矛盾,∴加括号后的级数发散,原级数必发散性质5 级数收敛−−−−→必发生过n u 趋于0如果级数n n 1u ∞=∑收敛,则它的一般项n u 趋于0,即n n limu 0.→∞=证设级数n n 1u ∞=∑的部分和为n s ,且当∞→∞→→n n n ,s s ,也就是s s则n n limu →∞n n 1n lim(s s )-→∞=-n n 1n n lims lims -→∞→∞=-=∞∞-=-=s s s s 0.由性质5可知,如果级数的一般项不趋于0, 则该级数必定发散, 例如, 级数n 1123n(1),234n 1--+-+-++它的一般项n 1n nu (1)n 1-=-+ 当n →∞时不趋于0, 因此该级数是发散的,||注意级数的一般项趋于0并不是级数收敛的充分条件, 有些级数的一般项趋于0,但仍然是发散的, 例如,调和级数1111,23n +++++(5) 虽然它的一般项如下!;n 1u 0(n ),n =→→∞但是它是发散的,||现在我们用反证法证明如下: 假若级数(5)收敛,设它的部分和为n s ,且n s s(n ).→→∞ 第二个部分和为2n s ,也有2n s s(n ).→→∞ 于是2n n s s s s 0(n ).-→-=→∞ ||但2n n s s -111n 1n 22n =+++++n 项111...2n 2n 2n >+++1,2= 2n n s s 0(n ).-→∞½||与-→-=→∞2n n s s s s 0(n )收敛矛盾, 这矛盾说明级数(5)必定发散, 第二节常数项级数的审敛法 一,正项级数及其审敛法 定义 正项级数 一般的常数项级数,它的各项可以是正数、负数或者0. ||现在我们先讨论各项都是正数或0的级数, 这种级数称为正项级数, 这种级数特别重要,以后将看到许多级数的收敛性问题可归结为正项级数的收敛性问题, ||设级数12n u u u ++++(1)是一个正项级数n (u 0)≥,它的部分和为n s .显然,数列n {s }是单调增加的,12n s s s ≤≤≤≤如果数列n {s }有界,即n s 总不大于某一常数M, 根据单调有界的数列必有极限的准则, 级数(1)必收敛于和s,且n s s M .≤≤ 反之,如果正项级数(1)收敛于和s, 就是++++→12n u u u s就是∞→s s∴∞⋅⋅⋅⋅⋅⋅12n s ,s ,s ,s 有界 ∴数列n {s }有界,因此,我们得到如下重要的结论, 定理1 收敛的充要条件 ++++12n u u u 收敛就是∞⋅⋅⋅⋅⋅⋅12n s ,s ,s ,s 有界正项级数n n 1u ∞=∑收敛的充分必要条件是:它的部分和数列n {s }有界||由定理1可知, 如果正项级数n n 1u ∞=∑发散,∞→∞s∞⋅⋅⋅⋅⋅⋅12n s ,s ,s ,s 无界 就是发散 ||根据定理1,可得关于正项级数的一个基本的审敛法, 定理2 比较审敛法设∞=∑n n 1u 和∞=∑n n 1v 都是正项级数,且n n u v ≤(n=1,2,…).若级数∞∑n n=1v 收敛,则级数∞=∑n n 1u 收敛;若级数∞=∑n n 1u 发散,则级数∞=∑n n 1v 发散,||求证:∞∑n n=1v 收敛,∞=∑nn 1u收敛证:设级数n n=1v ∞∑收敛于和σ,则级数n n 1u ∞=∑的部分和n 12n s u u u =+++12n v v v σ≤+++≤(n=1,2,…),∴n n=1u ∞∑收敛,||求证n n 1u ∞=∑发散,则n n 1v ∞=∑必发散,证明:使用反证法:设n n 1u ∞=∑发散, 会引发n n 1v ∞=∑收敛,但n n 1v ∞=∑收敛, 会引发n n 1u ∞=∑收敛看n n 1u ∞=∑发散与n n 1u ∞=∑收敛矛盾,∴n n 1u ∞=∑发散,则n n 1v ∞=∑必发散注意到级数的每项同乘不为0的常数k和去掉级数前面部分的有限项不会影响级数的收敛性, 我们可得如下推论: 推论设n n 1u ∞=∑和n n 1v ∞=∑都是正项级数, N 是正整数,k>0如果级数n n 1v ∞=∑收敛,那么n n 1kv ∞=∑收敛,如果当n N ≥时,n n u kv ≤,那么级数N n n=u ∞∑收敛,那么1n n=u ∞∑收敛如果级数n n lv ∞-∑发散,那么n n 1kv ∞=∑发散,如果当n N ≥时,n n u kv ≥,那么级数N n n=u ∞∑发散,那么1n n=u ∞∑发散,例1 讨论p 级数++++++p p p pp111111234n (2)的收敛性,其中常数p>0.解 ||设p 1.≤≥p 11nn , 但调和级数发散,所以p 级数(2)发散, ||设p>1.不会当k 1x k -≤≤时,-≤≤p p p (k 1)(x)(k), 有≥≥-p p p 111(k 1)(x)(k), ≥pp 11(x)(k), p p11,k x ≤--≤⎰⎰k kp p k 1k 111dx dx k x (k=2,3,…),从而级数(2)的部分和nn k n p p k 1k 2k 211s 1+1dx k x -===≤+∑∑⎰11p 1<+-(n=2,3,…), n p 111dx x =+⎰p 1111(1)p 1n -=+--所以n s 11p 1<+-(这是个常数) 这表明数列n {s }有界, 因此级数(2)收敛, 综合上述结果, p 级数++++++p p p p p111111234n当p 1≤时发散, 当p>1时收敛; 例2证明级数∞,证∞=++⋅⋅+⋅⋅⋅因为2n(n 1)(n 1),+<+所以1.n 1>+ 而级数n=11111n 123n 1∞=++++++∑是发散的,根据比较审敛法可知所给级数也是发散的,定理3 比较审敛法的极限形式 设n n 1u ∞=∑和n n=1v ∞∑都是正项级数,(1)如果nn n u lim l(0l ),v →∞=≤<+∞且级数n n 1v ∞=∑收敛,则级数n n 1u ∞=∑收敛 l 就是极限常数(2)如果nn nu lim l(0l ),v →∞=<≤+∞且级数n n=1v ∞∑发散,则级数n n 1u ∞=∑发散, l 就是极限常数证 (1) 当n>N 时,-<nnu l 1,v 那么n n u (l 1)v <+, 因为级数∞-∑n n lv 收敛 所以n n llv ∞-∑收敛, 所以∞-+∑n n l(l 1)v 收敛.因为n n u (l 1)v <+ 所以级数n n 1u ∞=∑收敛,(2) n n n u liml(0l ),v →∞=<≤+∞就是n n nvlim l(0l ),u→∞=≤<+∞因为n v n (l 1)u <+nn 1v∞=∑发散所以n n 1u ∞=∑发散比较审敛法的极限形式的特殊情况:一般项均趋于0, 在两个正项级数的一般项均趋于0的情况下, 其实是比较它们的一般项作为无穷小量的阶, 定理表明, 当n →∞时,(1)如果n u 是与n v 同阶或是比n v 高阶的无穷小,而级数n n 1v ∞=∑收敛,则级数n n 1u ∞=∑收敛; 旁解:n u 与n v 同阶就是=nnu limc v n u 比n v 高阶就是=nnu lim0v (2)如果n u 是与n v 同阶或是比n v 低阶的无穷小,而级数n n 1v ∞=∑发散,则级数n n=1u ∞∑发散 旁解:n u 与n v 同阶就是=nnv limc u n u 比n v 低阶就是=nnv lim0u 证 (1)n u 与n v 高阶就是=nnu lim 0v ∴-<n n u 01v <n nu1v <n n u v ∵n v 收敛 ∴u n 收敛.n u 与n v 同阶就是=nnu lim c v ∴-<n n u c 1v <+n n u1c v <+n n n u v cv ∵n v 收敛 c n v 收敛 ∴n v +c n v 收敛 ∴u n 收敛.n u 与n v 同阶就是=nnv lim c u ∴-<n n v c 1u ,<+n nv1c u ,<+n n v (1c)u ,<+n n v u 1c ,>+n n v u 1c∴>+nn v u 1c∵n v 发散 ∴+nv 1c发散 ∴u n 发散.(2)例3判定级数n 11sin n ∞=∑的收敛性,解∵n 1sinn lim10,1n →∞=>∴n 11limsin ,n n→∞= ∵级数n 11n ∞=∑发散, ∴n 11sin n ∞=∑发散用比较审敛法审敛时,需要选取已知收敛性的级数n n 1v ∞=∑作比较,最常选取的是等比级数和p 级数,将目标正项级数与等比级数比较, 旁解:等比级数∞=+++++∑n 012n n=0aq aq aq aq aq我们能得到很方便的比值审敛法和根值审敛法, 定理4 比值审敛法 感觉过关了 设n n 1u ∞-∑为正项级数,如果n 1n nu limρ,u+→∞=则当ρ1<时级数收敛; 旁解:后面的数比前面的数小 就收敛当ρ1>时级数发散; 旁解:后面的数比前面的数大 就发散 当ρ1=时级数可能收敛也可能发散,证根据极限的定义 n 1n nu limρ,u+→∞=等价于当n m ≥时,+n 1n u u -ε<ρ<+n 1nuu +ε (i)当ρ 1.< 当n m ≥时+n 1nu u -ε<ρ<1 取一个适当的ε +n 1nu u <ρ+ε<1 +n 1nu u <r<1 因此m 1m u ru ,+<2m 2m 1m u ru r u ,++<< ,k m k m u r u ,+<⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅<而级数k m k 1r u ∞=∑收敛(公比r<1), 旁解:动用到等比级数了所以级数n n m 1u ∞=+∑收敛,所以级数n n 1u ∞=∑收敛,(ii)当ρ 1.> 1<ρ<+n 1nu u +ε 取一个适当小的正数ε, 使得 1<ρ-ε<+n 1nu u n u 比n v 低阶就是=nnv lim 0u ∴-<n n v 01u ,<n nv1u ,<n n v u ,>n n u v ∵n v 发散, ∴u n 发散n n 1u u +< 所以当n m ≥时,级数的一般项n u 是逐渐增大的,从而n n limu 0.→∞≠那么级数n n 1u ∞=∑发散;?类似地,可以证明ρ的特殊情况,当n 1n nu lim u +→∞=∞时,级数n n u ∞→∞∑发散(iii)当ρ1=时级数可能收敛也可能发散,解决例如p 级数++++++p p p pp111111234n (2)pn 1n n nP 1u (n 1)limlim1un +→∞→∞+= Ppn n lim(n 1)→∞=+ pn n =lim()n 1→∞+ pn n 11=lim()n 1→∞+-+ pn 1=lim(1)=1n 1→∞-+所以(2)式不论p 为何值,本身都有n 1n nu lim ρ1u+→∞==但我们知道, 当p>1时级数收敛, 当p 1≤时级数发散,因此只根据ρ1=不能判定级数的收敛性, 例4 证明级数11111112123(n 1)!++++++⋅⋅⋅-是收敛的,并估计以级数的部分和n s 近似代替和s 所产生的误差, 解 因为n 1n n n nu (n 1)!1limlim lim 01,u n!n +→∞→∞→∞-===<根据比值审敛法可知所给级数收敛,||以这级数的部分和n s 近似代替和s 所产生的误差为·n 111r n!(n 1)!(n 2)!=++++++0111(10)n!n 1(n 1)(n 2)=+++++++2111(10)n!n n<++++111n!1n <-1.(n 1)(n 1)!<-- 所以n r 1.(n 1)(n 1)!<--例5 判定级数23n112123n!10101010⋅⋅⋅+++++的收敛性,解n n 1n 1n 1n n(n 1)!u (n 1)!10n 110,n!u n!101010++++++==⋅=n 1n n nu n 1lim lim u 10+→∞→∞+==∞ 后面的数比前面的数大 所以发散根据比值审敛法可知所给级数发散, 定理5* 根值审敛法 设n n 1u ∞=∑为正项级数,如果n ρ,=则当ρ1<时级数收敛,1,<当ρ1>时级数发散,当ρ1=时级数可能收敛也可能发散,定理5的证明与定理4相仿,这里从略, 例6判定级数nnn 12(1)2∞=+-∑的收敛性,证nn =n =n 1ln[2(1)]nn 1lim e ,2+-→∞= 因n ln [2(1)]+-有界,所以n n 1lim ln[2(1))0,n→∞+-=从而n 1.2=因此,根据根值审敛法知所给级数收敛,将所给正项级数12n u u u ++++与p 级数++++++p p p pp111111234n 作比较,可得在实用上较方便的极限审敛法, 定理6 特殊的比较审敛法的极限形式 设n n 1u ∞=∑为正项级数,(1)如果p n n limn u l (0l ),→∞=≤<+∞则级数n n 1u ∞=∑收敛, p>1(2)如果→∞=n n limnu l <≤+∞(0l ),则级数n n 1u ∞=∑发散;?证(1)在极限形式的比较审敛法中,p nn n n pu limn u liml (0l ),1n →∞→∞==≤<+∞当p>1时,p 级数p n 11n ∞=∑收敛,所以级数n n 1u ∞=∑收敛(2)在极限形式的比较审敛法中,nn n n u limnu liml 1n→∞→∞==<≤+∞(0l ), 取n 1v ,n=由调和级数n 11n∞=∑发散,,知结论成立,?n 11n ∞=∑它不是收敛吗例7判定级数2n=11ln(1)n ∞+∑的收敛性, 解∵当n →∞时,2211ln(1)~,n n+∴p n n limn u →∞22n 1limn ln(1)n →∞=+22n 1limn n→∞=⋅2n 21n lim 1n →∞=1,= p>1根据极限审敛法,知所给级数收敛, 例8没看判定级数n 1πcos )n ∞=-的收敛性,解因为32n n limn u →∞n πcos )n→∞=-2n 1πlimn ()2n→∞= 21π,2=根据极限审敛法,知所给级数收敛, 二、交错级数及其审敛法 交错级数是级数各项正负交错,1234u u u u ,-+-+(3) 1234u u u u ,-+-+-(4)其中12u ,u ,都是正数,我们按级数(3)的形式来证明关于交错级数的一个审敛法 定理7 级数审敛法如果交错级数1234u u u u ,-+-+满足条件:n n 1(1)u u (n 1,2,3,);+≥= 后面的数小于前面的数n n (2)limu 0,→∞= 后面的数趋于0则级数收敛,且其和1s u ,≤其余项n r 的绝对值n n 1|r |u .+≤ 旁解:n n n 1n 2n 3n 1|r ||s s ||u u u |u .++++=-=-+⋅⋅⋅≤ 证先证明前2n 项的和2n s 的极限存在, 为此把2n s 写成两种形式:2n 12342n 12n s (u u )(u u )(u u )-=-+-++-及2n 123452n 22n 12n s u (u u )(u u )(u u )u .--=--------因为后面的数小于前面的数 所以括号中的差都是非负的,由第一种形式可见数列2n {s }单调增加的, 由第二种形式可见2n 1s u .<有界于是,根据单调有界数列必有极限的准则知道, 当n 无限增大时,2n s 趋于一个极限s,并且s 不大于1u :2n 1n lims s u .→∞=≤再证明前2n+1项的和2n 1s +的极限也是s. 证:2n 12n 2n 1s s u .++=+2n 12n 2n 1n n lims lim(s u )++→∞→∞=+ 旁解:由条件(2)知2n 1n limu 0,+→∞= 由上面可知2n n lims s →∞=2n 2n 1n n lims limu +→∞→∞=+s 0=+ =s所以前2n+1项的和2n 1s +的极限也是s因为级数的前偶数项的和与前奇数项的和趋于同一极限s, 所以当n →∞时n s → s.这就证明了级数n 1n n 1(1)u ∞-=-∑收敛于和s,且1s u .≤最后,当级数为 12n n 1n 2u u u u u ,---+⋅⋅⋅+-+⋅⋅⋅时 r=n 1n 2u u ---+⋅⋅⋅ 当级数为 12n n 1n 2u u u u u ,---+⋅⋅⋅-+-⋅⋅⋅时 r=n 1n 2u u ---⋅⋅⋅ 当级数为12n n 1n 2u u u u u ,---+-⋅⋅⋅+-+⋅⋅⋅时 r=n 1n 2u u ---+⋅⋅⋅ 当级数为12n n 1n 2u u u u u ,---+-⋅⋅⋅-+-⋅⋅⋅时 r=n 1n 2u u ---⋅⋅⋅ 余项n r 可以写成n n l n 2r (u u ),++=±-+其绝对值n n 1n 2|r |u u ,++=-+也是一个交错级数,它也满足收敛的两个条件,所以其和小于级数的第一项, n n 1|r |u .+≤ 证明完毕, 例如,交错级数n 111111(1)234n --+-++-+满足条件 n n 111(1)u u n n 1+=>=+(n=1,2,…)n n n 1(2)limu lim 0,n→∞→∞==所以它是收敛的,且其和s<1. 如果取前n 项的和n 1n 111s 1(1)23n -=-+-+-作为s 的近似值,所产生的误差n n 11|r |(u ).n 1+≤=+ 三、绝对收敛与条件收敛 现在我们讨论一般的级数12n u u u ,++++它的各项为任意实数,如果级数n n 1u ∞=∑各项的绝对值所构成的正项级数n n 1|u |∞=∑收敛,则称级数n n=1u ∞∑绝对收敛;? 如果级数n n 1u ∞=∑收敛,而级数n n 1|u |∞=∑发散,则称级数n n=1u ∞∑条件收敛,?容易知道,原级数222211111234-+-+⋅⋅⋅ ,绝对值级数22221111||||||||1234+-++-+⋅⋅⋅收敛 所以原级数是绝对收敛原级数11111234-+-+⋅⋅⋅ 收敛,绝对值级数1111||||||||1234+-++-+⋅⋅⋅⋅⋅⋅⋅⋅⋅发散,所以原级数是条件收敛,?级数绝对收敛与级数收敛有以下重要关系: 定理8 绝对值级数收敛 对应原级数收敛 如果级数n n 1u ∞=∑绝对收敛,则级数n n 1u ∞=∑必定收敛,证级数n n 1u ∞=∑绝对收敛,就是n n 1|u |∞=∑收敛.令n nn 1v (u |u |)2=+ 旁解:n v 要么是0,要么是正的n u 所以n v 0≥且n n v |u |≤ 因为级数n n 1|u |∞=∑收敛,所以级数n n 1v ∞=∑收敛,所以级数n n 12v ∞=∑收敛,n nn 1v (u |u |)2=+ 所以n n n 2v u |u |=+,所以n n n 2v |u |u -= n n n u 2v |u |,=- nnnn 1n 1n 1u 2v |u|∞∞∞====-∑∑∑因为级数n n 12v ∞=∑收敛,级数n n 1|u |∞=∑收敛,所以级数n n 1u ∞=∑收敛,定理证毕,上述证明中引入的级数n n 1v ∞=∑其一般项n n n 1v (u |u |)2=+=n n n u ,u 0,0,u 0,>⎧⎪⎨≤⎪⎩可见级数n n 1v ∞=∑是把级数n n 1u ∞=∑中的负项换成0而得的,它也就是级数n n 1u ∞=∑中的全体正项所构成的级数,类似可知,令n n n 1w (|u |u ),2=-则n n=1w ∞∑为级数n n 1u ∞=∑中全体负项的绝对值所构成的级数,n w 要么是0,要么是负的n u n u n w 0≤≤ 所以n n 0|w ||u |≤≤ 如果级数n n 1u ∞=∑绝对收敛,就是n n 1|u |∞=∑收敛那么n n=1|w |∞∑收敛那么n n=1w ∞-∑收敛那么n n=1w ∞∑收敛;如果级数条件收敛(n n=1u ∞∑收敛,而n n 1|u |∞=∑发散),则级数n n 1v ∞=∑与n n=1w ∞∑都发散,定理8说明,如果正项级数n n 1|u |∞=∑收敛,那么对应的一般级数n n 1u ∞=∑收敛所以以后可以通过正项级数收敛,来判定一般级数n n 1u ∞=∑收敛定理9 绝对值级数发散 对应原级数未必发散如果级数n n 1|u |∞=∑是在一般情况下发散, 那么级数n n 1u ∞=∑未必发散,如果级数n n 1|u |∞=∑是在特殊情况n 1n n u lim ||ρ1u +→∞=>或n ρ1=>发散,那么n n 1u ∞=∑必定发散这是因为从ρ1>可推知n |u |0(n ),→∞½从而n u 0(n ),→∞½ 因此级数n n 1u ∞=∑是发散的,例9 判定级数2n 1sinn αn ∞=∑的收敛性, 解 因为22sinn α1||,n n ≤而级数2n 11n ∞=∑收敛, 所以级数2n 1sinn αn ∞=∑也收敛, 由定理8知,级数2n 1sinn αn ∞=∑收敛, 倒10判定级数2nn nn 111(1)(1)n 2∞=-+∑的收敛性,解这是交错级数, 记2n n n11u (1),n 2=+当n 1e 1,2=>可知当n n n ,|u |0,u 0,→∞浇因此所给级数发散,第三节 幂级数 一 函数项级数的概念 定义 函数项级数如果有一函数列定义在区间I 上, 这函数列为123n u (x),u (x),u (x),,u (x),那么123n u (x)u (x)u (x)u (x)+++++(1)称为定义在区间I 上的函数项无穷级数,简称函数项级数,定义 收敛点与发散点 收敛域与发散域 如果属于I 的x 确定了,成为确定值0x那么函数项级数(1)就成为常数项级数102030n 0u (x )u (x )u (x )u (x )+++++(2)常数项级数102030n 0u (x )u (x )u (x )u (x )+++++可能收敛也可能发散,如果收敛,那么点0x 称为函数项级数(1)的收敛点; 如果发散,那么点0x 称为函数项级数(1)的发散点, 函数项级数(1)的收敛点的全体称为它的收敛域, 函数项级数(1)的发散点的全体称为它的发散域,定义 和函数s(x) 开始于2013年5月31日14:52:25 在函数项级数的收敛域内任意x 都可让函数项级数成为收敛常数项级数, 同时确定了一个和s. 这样,在收敛域上,函数项级数的和是x 的函数s(x), s(x) 称为函数项级数的和函数,函数s(x)的定义域就是函数项级数的收敛域, 并写成123n s(x)u (x)u (x)u (x)u (x)=+++++把函数项级数(1)的前n 项的部分和记作n s (x) 旁解:n 123n s (x)u (x)u (x)u (x)u (x)=++++则在收敛域上有n n lims (x)s(x).→∞=把n s(x)s (x)-记为n r (x)n r (x)叫做函数项级数的余项(n r (x)只在收敛域才存在), 并有n n limr (x)0.→∞=二 幂级数及其收敛性 定义 幂级数当函数项级数中每项都是幂函数时,把这种函数项级数称为幂级数, 幂级数是特殊的函数项级数 它的形式是①nnn 0a x∞=∑012n 012n a x a x a x a x ,=+++++⋅⋅⋅(3)其中常数012n a ,a ,a ,,a ,叫做幂级数的系数,例如2n 1x x x ,+++++2n 111x x x 2!n!+++⋅⋅⋅++都是幂级数,现在我们来讨论:对于一个给定幂级数, 它的收敛域与发散域是怎样的? 即x 取数轴上哪些点时幂级数收敛, 取哪些点时幂级数发散? 这就是级数的收敛性问题,先看一个例子, 考察幂级数2n 1x x x +++++的收敛性,由第一节例1知逍,当|x |1<时,这级数收敛,且收敛于和1,1-x当|x |1≥时,这级数发散,因此,这幂级数的收敛域是开区间(-1,1), 并且2n 11x x x 1-x=+++++同时,这幂级数的发散域是(-oo,-1]及[1,),+∞ 在这个例子中我们看到, 这个幂级数的收敛域是一个区间事实上,这个结论?对于一般的幂级数是成立的,我们有如下定理, 定理1(阿贝尔定理)(1)如果级数n n n=0a x ∞∑当0x x =时收敛,那么当0|x ||x |<时,这幂级数绝对收敛, 0(x 0)≠(2)如果级数n n n=0a x ∞∑当0x x =时发散,那么当0|x ||x |>时,这幂级数发散求证(1)如果级数n n n=0a x ∞∑当0x x =时收敛,那么当0|x ||x |<时,这幂级数绝对收敛, 0(x 0)≠①幂级数的一般形式是2n 01020n 0a a (x x )a (x x )a (x x )+-+-++-+只要作代换t=0x x ,-就可以把它化成(3)的形式, 所以取(3)式来讨论,并不影响一般性,证 第1步设0x 是幂级数(3)012n 012n a x a x a x a x +++++⋅⋅⋅的收敛点,∴级数2n 01020n 0a a x a x a x +++++收敛,∴n n 0n lima x 0,→∞= ∴n n 0|a x |常数M ≤(n=0,1,2,…). 第2步幂级数(3)的一般项的绝对值nnnn n 0n 0x |a x ||a x |x =⋅n n n n 000x x |a x |||M ||x x =⋅≤ n n |a x |nx M ||x ≤ |因为当0|x ||x |<时, 公比ox||1x < 所以等比级数nn=0ox M ||x ∞∑收敛, 所以级数n n n=0|a x |∞∑收敛,也就是级数n n n=0a x ∞∑绝对收敛,求证(2)如果级数n n n=0a x ∞∑当0x x =时发散,那么当0|x ||x |>时,幂级数发散证明用反证法,设级数n n n=0a x ∞∑当0x x =时发散,有点1x ,10|x ||x |>,幂级数收敛,∵1|x |使幂级数收敛01|x |<|x | ∴0|x |使幂级数收能 ∴ 0x 使幂级数收敛 与条件当0x x =时发散矛盾. 定理得证,定理1的更具体说法,如果幂级数在0x x =处收敛,那么当x∈00(|x |,|x |)-时, 幂级数都收敛; 如果幂级数在0x x =处发散,那么当x∈00[|x |,|x |]-外时,幂级数都发散;设已给幂级数在数轴上既有收敛点也有发散点, 现在从原点起,沿数轴的右方走, 最初只遇到收敛点, 然后只遇到发散点,这两部分的界点可能是收敛点也可能是发散点, 从原点起,沿数轴的左方走也是如此, |两个界点P 与P '在原点的两侧,由定理1可以证明它们到原点的距离是一样的(图12-13). 从上面的几何说明,得到下述重要推论: 推论如果幂级数n n n=0a x ∞∑不是仅在x=0一点收敛,也不是在整个数轴上都收敛,那么存在一个确定的正数R, 当|x|<R 时,幂级数绝对收敛; 当|x|>R 时,幂级数发散;当x=R 与x=-R 时,幂级数可能收敛也可能发散, |因此,正数R 叫做幂级数(3)的收敛半径, 开区间(-R,R)叫做幂级数(3)的收敛区间,再由幂级数在x R =±处的收敛性就可以决定它的收敛域是(-R,R)、[-R,R)、(-R,R]或[-R,R]这四个区间之一 |如果幂级数(3)只在x=0处收敛, 那么收敛域只有一点x=0; 规定收敛半径R=0;|如果幂级数(3)对所有的x 收敛, 那么收敛域是(-∞,+∞) 规定收敛半径R=+∞,这时. 这两种情形确实都是存在的, 见下面的例2及例3. 关于幂级数的收敛半径求法, 有下面的定理,定理2 收敛半径R 的求法如果n 1n n a lim ||ρ,a +→∞=其中n n 1a ,a +是幂级数n n n=0a x ∞∑的相邻两项的系数,那么这幂级数的收敛半径R=111ρ0时,,ρρρ11ρ0时,,ρ010ρ时,0,⎧≠=⎪⎪⎪+∞==+∞⎨⎪⎪=+∞=⎪+∞⎩ 证对幂级数(3)的各项取绝对值 得到新级数2n 012n |a ||a x ||a x ||a x |+++++(4)这级数相邻两项之比为n 1n 1n 1n 1n 1n n n n n |a x ||a ||x |a |x |.a |a x ||a ||x |+++++== (1)如果n 1n 1n n n |a x |limρ|x |(ρ0)|a x |++→∞=≠存在, 根据比值审敛法,当ρ|x |1<即1|x |ρ<时,那么级数(4)收敛, 所以级数(3)绝对收敛; 当ρ|x |1>即1|x |ρ>时,那么级数(4)发散,并且从某一个n 开始n 1n n 1n |a x ||a x |++>?为什么?因此一般项n n |a x |不能趋于零, 所以一般项n n a x 也不能趋于零, 所以级数(3)发散,综上所述1|x |ρ<时,幂级数n n n=0a x ∞∑收敛 1|x |ρ>时,幂级数n n n=0a x ∞∑发散于是1R ρ=(2)如果n 1n 1n n n |a x |limρ|x ||a x |++→∞=,ρ0,=x 0,≠ 那么ρ|x |=01<那么级数(4)收敛,所以级数(3)绝对收敛, 旁解:非零x 都可以使级数(3)绝对收敛 于是R =+∞(3)如果n 1n 1n n n |a x |limρ|x ||a x |++→∞=ρ,=+∞ 当x=0时,ρ|x |=01< 那么级数(4)收敛,所以级数(3)绝对收敛,当x 0≠时, 级数(3)必发散,否则由定理1知道将有点x 0≠使级数(4)收敛,? 于是R=0. 例1求幂级数23nn 1x x x x (1)23n--+-+-+的收敛半径与收敛域,解因为n 1n 1n 11n n n n n n n 1x x 1|(1)|||n n 1n 1n 1lim lim lim |x |lim |x ||x |,1n 1x x |(1)|||n n n+++-→∞→∞→∞→∞--+++====+- 当|x|<1时收敛当|x|>1时发散 所以R 1.=对于端点x=1,,级数成为交错级数n 11111(1),23n --+-+-+此级数收敛; 对于端点x=-1,级数成为调和级数1111,23n ------此级数发散,因此,收敛域是(-1,1]. 例2求幂级数2n111x x x 2!n!+++++的收敛域,解因为n 1naρlim ||a +=n 1n 1lim 1n→∞+=n 1lim0,n 1→∞==+ 所以收敛半径R ,=+∞ 所以收敛域是(,).-∞+∞ 例3求级数n n 1n!x ∞=∑的收敛半径(规定0!=1).解因为n 1na ρlim ||a +=n (n 1)!limn!→∞+==+∞ 所以收敛半径R=0,所以级数域是x=0, 例4 求幂级数2n2n=0(2n)!x (n!)∞∑的收敛半径 解级数缺少奇次幂的项,所以不能直接应用定理2, 我们根据比值审敛法来求收敛半径:2(n 1)2n 2n2[2(n 1)]!x[(n 1)!]lim (2n)!x (n!)+→∞++24|x |= 当24|x |1<即1|x |2<时级数收敛; 当24|x |1>即1|x |2>时级数发散,所以收敛半径1R .2=例5 求幂级数nnn=1(x 1)2n ∞-⋅∑的收敛域, 解 令t=x-1,上述级数变为nn n=1t 2n ∞⋅∑因为n 1n a ρlim ||a +=n n 1n 2n 1lim ,22(n 1)+→∞⋅==+ 所以收敛半径R=2. 收敛区间为|t|<2,即-1<x<3.当x=3时, 级数成为n 11,n ∞=∑ 这级数发散;当x=-1时,级数成为nn 1(1),n ∞=-∑这级数收敛,因此原级数的收敛域为[-1,3). 三、幂级数的运算 设幂级数2n 012n a a x a x a x +++++ 在区间(-R , R) 内收敛 及幂级数2n 012n b b x b x b x +++++在区间(R ,R )''-内收敛,对于这两个幂级数,可以进行下列四则运算:加法2n 012n (a a x a x a x )+++++2n 012n (b b x b x b x )++++++2n 001122n n (a b )(a b )x (a b )x (a b )x =+++++++++ 减法2n 012n (a a x a x a x )+++++2n 012n (b b x b x b x )-+++++2n 0o 1122n n (a b )(a b )x (a b )x (a b )x =-+-+-++-+根据收敛级数的基本性质2,上面两式在(-R,R)与(R ,R )''-中较小的区间内收敛, 乘法2n 012n (a a x a x a x )+++++2n 012n (b b x b x b x )⋅+++++20001100211200n 1n 1a b (a b a b )x (a b a b a b )x (a b a b -=++++++++n n 0a b )x ++这是两个幂级数的柯西乘积,可以证明:上式在(-R,R)与(R ,R )''-中较小的区间内收敛, 收敛×收敛=收敛 收敛×发散=发散 除法2n 012n 2n 012n a a x a x a x b b x b x b x ++++++++++2n 012n c c x c x c x ,=+++++这里假设0b 0.≠为了决定系数012n c ,c ,c ,,c ,,⋅⋅⋅可以将级数nn n=0b x ∞∑与n n n 0c x ∞=∑相乘, 旁解:如果0b 0.≠到时不存在常数0a .并令乘积中各项的系数分别等于级数n n n 0a x ∞=∑中同次幂的系数,即得000a b c ,= 可求出0c 11001a b c b c ,=+ 可求出1c2201102a b c b c b c ,=++ 可求出2c ………………..由这些方程就可以顺序地求出012n c ,c ,c ,,c ,相除后所得的幂级数n n n 0c x ∞=∑的收敛区间可能比原来两级数的收敛区间小得多①①例如2n 11x x x 1x=+++++-级数nnn n=0a x 10x 0x ∞=++++∑与n 2n n n 0b x 1x 0x 0x ∞==-++++∑在整个数轴上收敛,但级数nn n n 0n 0C x x ∞∞===∑∑仅在区间(-1,1)内收敛,幂级数的和函数s(x)性质 证明见本章第六节二 性质1连续幂级数n n n=0a x ∞∑的和函数s(x)在其收敛域I 上连续,性质2可积幂级数n n n=0a x ∞∑的和函数s(x)在其收敛域I 上可积,并有逐项积分公式xs(x)dx ⎰xn n 0n 0a x dx ∞=⎡⎤=⎢⎥⎣⎦∑⎰x n n 0n 0a x dx ∞==∑⎰n 1n n 0a x (x I),n 1∞+==∈+∑(5)逐项积分后得到的新幂级数和原级数有相同的收敛半径, 性质3可导幂级数n n n 0a x ∞=∑的和函数s(x)在其收敛域(-R,R)内可导,并有逐项求导公式nn n 0s (x)(a x )∞=''=∑nn n 0(a x )∞='=∑n 1n n 1na x (|x |R),∞-==<∑(6)逐项求导后得到的新幂级数和原级数有相同的收敛半径, 反复应用性质3可得:幂级数n n n 0a x ∞=∑的和函数s(x)在其收敛区间(-R,R)内具有任意阶导数,例6求幂级数nn 0x n 1∞=+∑的和函数,解先求收敛域, 由n 1n n na n 1limlim 1,a n 2+→∞→∞+==+得收敛半径R=1, 在端点x=-1处,幂级数成为交错级数nn (1),n 1∞→∞-+∑是收敛的;在端点x= 1处,幂级数成为调和级数n 1,n 1∞→∞+∑是发散的, 因此收敛域为I=[-1,1).[-1,1)每一点x →一个常数项级数→一个和s 所以s 与x 有函数关系 设和函数为s(x),即nn 0x s(x),n 1∞==+∑x ∈[-1,1). 于是n 1n 0x xs(x).n 1+∞==+∑ 利用性质3,逐项求导,[xs(x)]'n 1n=0x ()n 1+∞'=+∑ =n n 0x ∞=∑2n =1x x x (1x 1),+++++-<<11x=-.对[xs(x)]'从0到x 积分, 得到xs(x)x01dx 1x =-⎰ln (1x)=--(-1≤x<1).xs(x)ln (1x)=--(-1≤x<1) s(x)ln(1x)x--=(-1≤x<1) 当x 0≠时,1s(x)ln(1x).x=--当x=0时,0s(0)a 1==, 所以s(x)=1ln(1x),x [1,0)(0,1),x1,x 0.⎧--∈-⎪⎨⎪=⎩第四节 函数展开成幂级数 开始于2013年5月31日20:36:40 前面讨论幂级数的收敛域与和函数的性质, 现在我们要考虑下面的问题给定一个函数f(x),能否把它在某个区间内“展开成幂级数”, 如果能,那么我们就说在该区间内,函数f(x)能展开成幂级数, 在该区间内,幂级数也能表达函数f(x).假设在0U(x )内,函数f(x)能展开成幂级数, 就是2n 01020n 0f(x)a a (x x )a (x x )a (x x ),=+-+-++-+⋅⋅⋅0x U (x )∈(1)根据和函数的性质,f(x)在0U(x )内具有任意阶导数,。
谈WRC107和WRC297公报在化工设备设计中的应用赵栓柱在工程设计中,柱壳或球壳局部受外载荷的作用,在壳体上产生一定的局部应力,如果应力太大,就会引起壳体局部屈服,影响设备安全,所以必须充分考虑局部应力的影响。
WRC107公报第一版是美国焊接研究会于1965年8月发表的,自发表以来做了多次修改,1979年3月发表了目前的版本, WRC107用于外载通过圆形附件、方形附件、矩形附件对柱壳及通过接管、方形附件、圆形附件对球壳产生的局部应力的计算,WRC297是作为WRC107公报关于接管根部局部应力计算的补充于1987年9月出版的,用于外载通过接管对柱壳产生局部应力的计算。
目前,国内外尚无关于壳体局部应力计算的标准规范,多年来大家广泛应用这两个公报解决工程设计中的局部应力计算问题。
WRC107和WRC297公报中每一条曲线都有一定的使用界限,只有清楚其使用条件及其变化规律,才能在实际设计中灵活应用这两个公报,由于WRC107和WRC297公报内容繁多,不太好理解,现把WRC公报的实际应用及注意事项分类归纳如下,供大家参考。
1. 应用WRC107公报用于外载通过附件对柱壳引起局部应力的计算:1.1 柱壳上圆形附件边缘壳体局部应力的计算工程设计中经常遇到柱形壳体的圆形附件(例如接管、搅拌器的凸缘)受到外载的作用(见图1),在附件边缘处的壳体上产生局部应力。
图1WRC107使用条件如下:受外力矩作用时(即Mx,My,MT之一大于零时), 圆形附件至邻近封头切线或壳体端部的距离L ≥ 0.5Rm+d/2。
受外力作用时(即Vx,Vy,Fz之一大于零时), 圆形附件中心至邻近封头切线或壳体端部的距离L ≥ Rm+d/2,这是因为在封头的切线或壳体端部附近,壳体受力情况比较复杂,很难用较简单的方法进行计算,必须借助较高级的应力分析方法进行解决。
其中: Rm 为柱壳的平均半径; d 为圆形附件直径。
几何系数β=0.875*(d/2)*Rm应使 0.01 ≤β≤ 0.5式中: d 为圆形附件或接管外径, Rm 为柱壳的平均半径。
高等数学数学实验报告实验人员:院(系) _电子科学与工程学院_ 学号_06211623_ 姓名_吴晓锋_ 实验地点:计算机中心机房实验一一、实验题目观察∑∞=1!n n n n 的部分和序列的变化趋势,并求和二、实验目的和意义学会如何利用幂级数的部分和对函数进行逼近以及函数值的近似计算。
三、计算公式∑∞=1!n n n n四、程序设计(1)逼近(2)求和五、程序运行结果N[Sum[n!/n n,{n,Infinity}],50]Output= 1.87985386217525853349六、结果的讨论和分析通过利用mathematics可以直观的看出逼近图像,利用Table命令可以生成部分和的序列的数据点,同时控制点的疏密程度以利于观测。
利于软件求部分和十分快速,精确,不失为一种求和的好方法。
实验二一、实验题目观察函数,0()1,0x xf xxππ--≤<⎧=⎨≤<⎩展成的Fourier级数的部分和逼近()f x的情况。
二、实验目的和意义本实验的目的是用Mathematica显示级数部分和的变化趋势;学会如何利用幂级数的部分和对函数进行逼近以及函数值的近似计算;展示Fourier级数对周期函数的逼近情况。
三、计算公式⎰=ππ-f(x )dx π1a ⎰=ππ-nx dx x )cos (f π1n a ⎰=ππ-nx dx x )sin (f π1n b四、程序设计五、程序运行结果六、结果的讨论和分析如初值对结果的影响;不同方法的比较;该方法的特点和改进;整个实验过程中(包括程序编写,上机调试等)出现的问题及其处理等广泛的问题,以此扩大 知识面和对实验环节的认识。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
第7章拉普拉斯变换及其逆变换拉普拉斯变换是为了解决工程计算中遇到的一些基本问题而发明的一种“运算法”(算子法).这种方法的基本思想就是通过积分运算,把一种函数变成另一种函数,从而使运算变得更加简洁方便.拉普拉斯变换在电学、力学等众多的工程与科学技术领域得到广泛应用,特别是在电路分析和工程控制理论的研究中,在相当长的时期内,人们几乎无法将它们与拉普拉斯变换分开来谈论.本章将简要地介绍拉普拉斯变换的基本概念、主要性质、拉普拉斯变换的逆变换及拉普拉斯变换的简单应用.7.1 拉普拉斯变换7.1.1 拉氏变换的基本概念定义7.1 设函数f(t)在区间\-在s的某一取值范围内收敛,则此积分就确定了一个以s为自变量的函数,记为F (s),即F(s)=∫+∞0f(t)e-函数F(s)称为f(t)的拉普拉斯变换(简称拉氏变换),记为F(s)=L\,函数F(s)也称为f(t)的像函数.若函数F(s)是f(t)的拉氏变换,则称f(t)是F(s)的拉氏逆变换(或称为F(s)的像原函数),记为-1\,即f(t)=L-1\.对拉氏变换的定义作如下说明:(1)在许多有关物理与无线电技术的问题中,一般总是把所研究的问题的初始时间定为t=0,当t<0时没有过程或无实际意义,因此在定义中只要求函数f(t)在区间\ (2)拉氏变换中的参数s是可以在复数域中取值的,但为了方便和问题的简化,本章只讨论s是实数的情况,所得结论也适用于s是复数的情况. (3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换.一般说来,在科学技术中遇到的函数的拉氏变换总是存在的.7.1.2 几种常用函数的拉氏变换根据拉氏变换的定义容易求得下列常用函数的拉氏变换.1. 指数函数f(t)=e at(t≥0,为常数)的拉氏变换L\=∫+∞0e at e-st d t=∫+∞0e-(s- -1s--(s-该积分在s>a时收敛,并且有L\=∫+∞0e at e- -a, s>幂函数f(t)=t n(t≥0,是正整数)的拉氏变换L\=∫+∞0t n e-st d t=-t ns e-----\特别地,L\=1sL\=1sL\,所以L\=nsL\3.三角函数f(t)=sinωt与f(t)=cosωt(t≥0)的拉氏变换L\=∫+∞0--(s>同理,L\>0).7.2 自动控制技术中常用的几个函数的拉氏变换1) 单位阶梯函数及其拉氏变换函数u(t)=0,t<01,t≥0称为单位阶梯函数(也称单位阶跃函数).单位阶梯函数的拉氏变换为L\=∫+∞0u(t)e-st d t=∫+∞0e- -- s>2) 斜坡函数f(t)=at(t≥0,a为常数)的拉氏变换L\=∫+∞0at e-st d t=a∫+∞0t e-\ s>3) 狄拉克函数(单位脉冲函数)及其拉氏变换在许多实际问题中,常会遇到强度极大但持续时间极短的冲击性现象,如闪电、猛烈碰撞,等等,这种瞬间作用的量不能用通常的函数表示,为此引入了狄拉克(Dirac)函数.下面以碰撞为例说明狄拉克函数的概念.设打桩机在打桩时,质量为m的锤以速度撞击钢筋混凝土桩,在极短的时间(0,τ)(τ为一个很小的正数)内,锤的速度由变为0,由物理学中的动量定律知,桩所受到的冲击力为所以作用时间越短(即τ的值越小),冲击力就越大.为了便于讨论,不妨设,若将冲击力F看做时间t的函数,可以近似表示为Fτ(t)=0,t<01τ,0≤t≤τ.对于上述碰撞现象最恰当的处理方法是令τ→0,如果t≠0,则;如果t=0,则F τ(t)→∞,即F(t)=limτ→0Fτ(t)=0,t≠0,对于函数的极限,已经不能用已学过的普通函数来表示,对于具有这种特性的式子给出如下定义.定义7.2 设δτ(t)=0,t<0, 1τ,0≤t≤τ,0,t>τ其中τ是个很小的正数,如图7-1所示当τ→0时,的极限称为狄拉克函数(或单位脉冲函数),简称δ-函数,记为δ(t)=limτ→0δτ(t)=0,t≠0∞,t=0,如图7-2所示图 7-1图 7-2因为对任何τ>0,有∫+∞-∞δτ(t)d t=∫0-所以规定∫+∞-∞δ(t)d t=1.狄拉克函数δ(t)具有以下性质:(1) 设g(t)是(-∞,+∞)上的连续函数,那么g(t)δ(t)在(-∞,+∞)上的积分等于函数g(t)在t=0处的函数值,即∫+∞-从而∫+∞-∞g(t)δ(t-t0)d t=g(t0).(2) 狄拉克函数δ(t)是偶函数.(3)狄拉克函数δ(t)的拉氏变换为L\=limτ→0L\=limτ→0∫+∞0δτ(t)e----周期函数的拉氏变换设f(t)是一个周期为T的周期函数,即f(t)=f(t+kT)(k为整数),则L\=∫+∞0f(t) e -st d t=∫T0f(t)e-st d t+∫2T Tf(t)e---令-s(τ+----=11--- (t>-sT<所以,周期函数的拉氏变换为L\=11-e-sT∫T0f(t)e- 例1 周期三角波函数f(t)=t,0≤t<b 2b-t,b≤t<2b,以2b为周期,求L\.解由周期函数的拉氏变换可得L\=11-e-2bs∫2b0f(t)e-st d t=11-e-2bs∫b0t e-st d t+∫2b b(2b-t)e-st d t]=11-------常用函数的拉氏变换公式在实际工作中,为了应用的方便,对于一些常用函数的拉氏变换,列表如下(表7-1).表7-1常用函数的拉氏变换表序号f(t)F(s)序号--∈N)n!s n+115sin at·sin bt2abs\\5e at1s-------b(s-a)(s-∈N)n!(s-a)n+119sinωt--cos at)1s(s2+ω2)10cosωtss2+ω2212tπ1ss11sin(ωt+φ)s例2求函数的拉氏变换.解根据拉氏变换表中的第15式,取a=2,b=3,可得L\12s(s2+52)(s2+12)=12s(s2+25)(s2+1).7.1.4 拉普拉斯变换的性质利用拉普拉斯变换的性质可以计算较为复杂的函数的拉氏变换.为了叙述方便,假定在这些性质中,凡是涉及的函数,其拉氏变换都存在.性质1(线性性质)若α,β是常数,且L\\,则L\=αL\+βL\=αF1(s)+βF2(s).性质1表明,函数的线性组合的拉氏变换等于各函数的拉氏变换的线性组合.该性质 可以推广到有限个函数的线性组合的情形.例3 求函数的拉氏变换.解 L\=5L\+2L\+3L\,查拉氏变换表得L\=5·2s 2+22+2·2!s 2+1+3·1s=10s 2+4+4s 3+3s.性质2(平移性质) 若L\=F(s), a 为常数,则L\=F(s-a).这个性质指出,像原函数f(t)乘以的拉氏变换等于其像函数作位移a ,因此称这个 性质为平移性质.例4 求函数-2的拉氏变换.解 因为因此,根据平移性质有L e -2t sin 4t+π2]=s-(-2)\2+16=s+2(s+2)2+16. 拉氏变换表7-1中的公式8、16、17等都可以利用此性质推出.性质3(延滞性质) 若L\=F(s),常数a≥0,则L\=e -asF(s).若t 表示时间,性质3表明,时间延滞了a 个单位,相当于它的拉氏变换F(s)乘以指数因子-as ,如图7-3所示.例5 求函数u(t-a)=0,t <a 1,t≥a 的拉氏变换.解 由L\=1s 及性质3可得L\=1s e -as. 例6 求阶梯函数<a >>0)的拉氏变换.解 如图7-4所示,因为当t≥a 时,f(t)在的基础上增加了-,即--a),所以 --a),于是L\=c 1s+c 2-c 1s e -as.图 7-3图 7-4将例6推广,若f(t)=c 1,0≤t <<-1≤t <其中<…<为常数,则f(t)可以用单位阶梯函数表示成f(t)=c 1u(t)+(c 2------1)u(t-其拉氏变换为L\=1s\------\].性质4(微分性质) 若L\=F(s),则L\=sF(s)-f(0).性质4表明,函数求导后的拉氏变换,等于参数s 乘以函数的拉氏变换后,再减去该函 数的初始值.一般地,若L\=F(s),则L\=s nF(s)-s n-1f(0)-s n-2f ′(0)-…-f (n-1)(0).特别地,当f(0)=f′(0)=f" -1)(0)=0时,有L\=s nF(s).通过性质4可以将函数f(t)的微分方程化为像函数F(s)的代数方程,从而为求解微分 方程提供了一种简便的方法.例7 利用拉氏变换的微分性质,求下列函数的拉氏变换. (1) (2)解 (1) 因为f(0)=1, f′(0)=0,f" (t)=-,所以L\=L\=-ω2L\.由拉氏变换的微分性质可知L\=s 2F(s)-sf(0)-f ′(0)=s 2L\-s 所以-\\-s,可得L\=ss 2+ω 2. (2) 因为f(0)=f′(0)=f" - 1)(0)=0,所以L\=s nF(s)=s nL\,又L []=L\即s nL\所以L\=n!s n+1. 性质5(积分性质)若L\=F(s)(s≠0),且f(t)连续,则L ∫t 0f(x)d x]=F(s)s.性质5表明,函数积分后的拉氏变换,等于函数的拉氏变换除以参数s.例8 利用拉氏变换的积分性质,求函数的拉氏变换.解 因为L\所以L\=L5∫t 0cos 5x d x]=5·1s·ss 2+25=5s 2+25.性质6(相似性质) 若L\=F(s),常数a >0,则L\=1aFsa.性质6表明,像原函数的自变量扩大a 倍,像函数的自变量反而缩小同样的倍数.性质7(像函数的微分性质) 若L\=F(s),则L []=(- 或[(-] 例9 利用像函数的微分性质,求函数的拉氏变换.解 因为L\,所以L []=(-1)·F′(s)=-性质8(像函数的积分性质)若L\=F(s),且lim t →0f(t)t 存在,则Lf(t)t]=∫+∞sF(s)d s. 例10 利用像函数的积分性质,求函数的拉氏变换,并求∫+∞0sin tt d t.解因为L\,且lim t →0sin tt=1,所以L sin tt]=∫+∞s1s 2 -arctan s.由拉氏变换的定义可知,∫+∞0sin tt e -st d t=π2-arctan s ,当s=0时,表7-2给出了拉氏变换的性质.表7-2 拉氏变换的性质性 质设L\=F(s)1.线性性质L [] 平移性质L [e atf(t)]=F(s-a)3.延滞性质L [f(t-a)]-asF(s) (a>0)4. 微分性质L [f′(t)]=sF(s)-f(0)L []-[---1)(0)\]5. 积分性质L ∫t 0f(t)d t]=F(s)s 6. 相似性质L [f(at)]=1aFsa(a>0)7.像函数的微分性质L []=(-像函数的积分性质Lf(t)t]=∫+∞sF(s)d s 习 题 7.17.3 求下列函数的拉氏变换.(1) -4t; (2) -2 ;(3) - (4) f(t)=(t-(5) (6)(7) - (8) f(t)=-1,0≤t<4 1,t≥4.7.4 设,验证f" ,并利用此结果求L\. 7.1.3 拉普拉斯变换的逆变换2.节主要讨论了由已知函数f(t)求它的像函数F(s)的问题,但是在实际应用中常常会碰到与此相反的问题,即由已知像函数F(s)求它的像原函数f(t),这就是拉普拉斯逆变换的问题.对于常见的简单像函数F(s),可以通过查表7-1直接得其像原函数f(t).而对于一些较为复杂不能直接查表求得其拉氏逆变换的像函数F(s),可以先将F(s)作恒等变形,然后再利用拉氏变换的性质结合查表求得像原函数f(t).这里将常用的拉氏变换的性质用逆变换的形式列出.性质1(线性性质) 若α,β是常数,且L\(s),L\,则L-1\=αL-1\+βL-1\性质2(平移性质) 若L\=F(s), a为常数,则L-1[F(s-a)]-1\性质3(延滞性质) 若L\=F(s),常数a≥0,则L-1\例1 求下列函数的拉氏逆变换. (1) F(s)=5s+2; (2) F(s)=1(s-(3) - (4)解 (1) 由性质1及表7-1中公式5,取a=-2,得f(t)=L-15s+2]=5L-11s-(- -(2) 由表7-1中公式7,取a=3,得f(t)=L-11(s-(3) 由性质1及表7-1中公式2、4,得f(t)=L-14s3--11s]----(4) 由性质1及表7-1中公式9、10,得f(t)=L-12s+3s2+9]=2L-1ss2+32]+L-例2 求--2s+5].解--2s+5]-13(s-1)+5(s--1s-1(s--12(s---在利用拉氏逆变换解决工程技术中的实际问题时,经常会遇到像函数F(s)是有理分式的情形,一般可采用待定系数法进行恒等变形,将其分解为简单的有理分式之和,然后再利用拉氏变换的性质结合查表求得像原函数f(t).例3 求-解先将像函数分解为几个简单分式之和.设s+10s2+7s+12=s+10(s+3)(s+4)=As+3-Bs+4,用待定系数法求得A=7,B=6.所以f(t)=L-1s+10s2+7s+12]=L-17s+3-6s+4] -11s+3]---3t--例4 求-解先将像函数分解为几个简单分式之和.设s2+1(s+1)(s2+s+1)=As+1-Bs+Cs2+s+1, 用待定系数法求得A=2,B=1,C=1,所以s2+1(s+1)(s2+s+1)=2s+1-s+1s2+s+1=2·1s+1--=2·1s+1-s+12s-于是L--t----例5 求--解由例3知--3t--4t,因此,由延滞性质,得L-1e-ass+10s2+7s+12]=f(t-a)u(t-a)=\u(t- 习题 7.2求下列各函数的拉氏逆变换.7.5 F(s)=2s-3; 2. F(s)=ss-2;7.1.4 4.3. F(s)=s(s+3)(s+5); 6. F(s)=2s-4. 拉普拉斯变换的应用在电路分析和自动控制的理论中,对一个线性系统进行分析和研究,首先是建立系统的数学模型.在很多情况下,它的数学模型是一个线性微分方程或线性微分方程组,这样求解线性微分方程就不可避免.本节将举例说明拉氏变换在解常微分方程中的应用.例1 求方程y" (t)+4y(t)=0满足初始条件y(0)=-2,y′(0)=4的特解.解设L\=Y(s),对方程两边取拉氏变换,得s2Y(s)-sy(0)-y′(0)+4Y(s)=0.图 7-5将初始条件代入,得s2Y(s)+2s-4+4Y(s)=0,解得Y(s)=4s2+4-再取拉氏逆变换,得y(t)=L-1[Y(s)]----由例1可以看出用拉氏变换解常微分方程的基本思路如图7-5所示.例2 求微分方程组x′-x-2y=t,y′-2x-y=t满足初始条件x(0)=2y(0)=4的特解.解对方程组两个方程两端取拉氏变换,设L\=X(s), L\=Y(s),得\-X(s)-2Y(s)=1s 2\-2X(s)-从以上方程求出像函数,得X(s)=289·1s-3-1s+1-13s2- 19sY(s)=289·1s-3+1s+1--再取拉氏逆变换,得x(t)=289e3t-e-t- 13t-19-t-13t-例3 在图7-6所示电路中,在t=0时接通电路,求输出信号解根据基尔霍夫定律可知,任一闭合电路上的电压降之和等于电动势,则u R(t)+uC(t)=E.图 7-6由u C(t)=1C∫t-∞i(t)d t, 可知i(t)=C d u C(t)d t,从而得微分方程RC d u C(t)d t+u C初始条件为u C(0)=0.设L\=F(s),对方程两边取拉氏变换,得RCsF(s)+F(s)=Es,即F(s)=Es(RCs+1)=E1s-取拉氏逆变换,得u C(t)=L-1\=E(1-e-1RC).从上面的例子可以看出,微分方程经过拉氏变换后,初始条件都一并考虑进去了,从而避免了微分方程一般解法中,先求出通解后再根据初始条件确定任意常数的复杂运算.一个线性系统可以用一个常系数线性微分方程来描述.如例3中的RC串联电路就是一个常系数线性微分方程.一般地,可以将外加电动势E看成是这个系统(即RC回路)的随时间t变化的输入函数E(t),称为激励,而把电容器两端的电压看成是这个系统的随时间t变化的输出函数,称为响应.这样,RC串联的闭合回路就可看成是一个有输入端和输出端的线性系统.在实际应用中,大部分情况下线性系统可以用线性微分方程表示,在分析和研究线性系统时,常常是对系统的激励和响应感兴趣,而并不关心系统的内部结构.比如在计算一个电路系统时,只要能计算出输入和输出信号,就达到了计算的目的和要求,至于其中的结构情况则是另一个领域工程技术人员的事情.因此,我们关心的只是系统的激励和响应之间的关系,而非其内部的物理结构.为此,引入传递函数的概念.设有一个线性系统,它的激励为X(t),响应为Y(t),由于它们的关系经拉氏变换后为线性关系,则有像函数方程Y(s)=W(s)X(s)+G(s),其中,Y(s)=L\,X(s)=L\,G(s)由初始条件决定,W(s)叫做系统的传递函数,它表达了系统的特性,与初始条件无关.当已知激励和传递函数时就可以求出系统的响应.特别地,当初始条件全为零时,即G(s)=0时有传递函数W(s)=Y(s)X(s)=L\L\.例4 在图7-7所示的RC电路中,和分别为电路的输入和输出电压,设t=0时电路没有电流通过,求它的传递函数.图 7-7解由电工学知识可得如下方程组u i(t)=Ri(t)+1C∫t0i(t)d t设U i(s)=L\, \,i(s)=L\将方程组中两个式子两边分别取拉氏变换,得U i(s)=Ri(s)+1Csi(s )将上边两个式子的两边分别相除,得U o(s)U i(s)= Ri(s)Ri(s)+1Csi(s)=RCsRCs+1,若令,则系统的传递函数可以表示为W(s)=U o(s)U i(s)=T0sT0s+1.习题 7.37.6 用拉氏变换解下列微分方程.(1) d i d t+5i=12e-3t,i(0)=0;(2) y" -t,y(0)=y′(0)=0;(3) x" (t)+2x′(t)+5x(t)=0,x(0)=1,x′(0)=5;(4) y" (t)- y(0)=-1, y′(0)=-2.7.7 解下列微分方程组.(1) y′+3x-x′+x-且x(0)=y(0)=1; (2) x" +2y=0y′+x+y=0,且x(0)=0, x′(0)=y(0)=1.数学实验8用MATLAB进行拉普拉斯变换1. 拉普拉斯变换运算函数laplace()拉普拉斯变换主要应用于连续系统中,可用来求解微分方程的初值问题。
第四篇 无穷级数第七章 无穷级数无穷级数是高等数学课程的重要内容,它以极限理论为基础,是研究函数的性质及进行数值计算方面的重要工具. 本章首先讨论常数项级数,介绍无穷级数的一些基本概念和基本内容,然后讨论函数项级数,着重讨论如何为将函数展开成幂级数和三角级数的问题,最后介绍工程中常用的傅里叶级数.第1节 常数项级数的概念与性质1.1常数项级数的概念一般的,给定一个数列,,,,,321n u u u u则由这数列构成的表达式+++++n u u u u 321叫做(常数项)无穷级数, 简称(常数项)级数, 记为∑∞=1n n u , 即3211⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n u u u u u ,其中第n 项n u 叫做级数的一般项.作级数∑∞=1n n u 的前n 项和n ni i n u u u u u s +⋅⋅⋅+++==∑= 3211称为级数∑∞=1n n u 的部分和. 当n 依次取1,2,3…时,它们构成一个新的数列11s u =,212s u u =+,3123s u u u =++,…,12...n n s u u u =+++,…根据这个数列有没有极限,我们引进无穷级数的收敛与发散的概念。
定义 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞→lim , 则称无穷级数∑∞=1n nu 收敛, 这时极限s 叫做这级数的和, 并写成3211+++++==∑∞=n n n u u u u u s ;如果}{n s 没有极限, 则称无穷级数∑∞=1n n u 发散.当级数∑∞=1n n u 收敛时, 其部分和n s 是级数∑∞=1n n u 的和s 的近似值, 它们之间的差值12n n n n r s s u u ++=-=++叫做级数∑∞=1n n u 的余项.例1 讨论等比级数(几何级数)n n aq ∑∞=0(a ≠0)的敛散性.解 如果1≠q , 则部分和qaq q a q aq a aqaq aq a s n n n n ---=--=+⋅⋅⋅+++=-111 12. 当1<q 时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞=0收敛, 其和为q a -1.当1>q 时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞=0发散.如果1=q , 则当1=q 时, n s na =→∞ , 因此级数n n aq ∑∞=0发散;当1-=q 时, 级数n n aq ∑∞=0成为+-+-a a a a ,因为n s 随着n 为奇数或偶数而等于a 或零, 所以n s 的极限不存在, 从而这时级数n n aq ∑∞=0发散.综上所述, 如果1<q , 则级数nn aq ∑∞=0收敛, 其和为q a -1; 如果1≥q , 则级数n n aq ∑∞=0发散.例2 判别无穷级数∑∞=+1)11ln(n n 的收敛性. 解 由于n n nu n ln )1(ln )11ln(-+=+=,因此)1(ln )ln )1(ln( )ln3ln4()ln2ln3()1ln 2(ln +=-++⋅⋅⋅+-+-+-=n n n s n ,而 ∞=∞→n n S lim ,故该级数发散.例3 判别无穷级数∑∞=+1)1(1n n n 的收敛性. 解 因为111)1(1+-=+=n n n n u n ,所以)1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n , 从而1)111(lim lim =+-=∞→∞→n s n n n , 所以这级数收敛, 它的和是1.1.2 收敛级数的基本性质根据无穷级数收敛、发散的概念,可以得到收敛级数的基本性质.性质1如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k 所得的级数∑∞=1n n ku 也收敛, 且其和为ks .证明 设∑∞=1n n u 与∑∞=1n n ku 的部分和分别为n s 与n σ, 则) (lim lim 21n n n n ku ku ku ⋅⋅⋅++=∞→∞→σks s k u u u k n n n n ==⋅⋅⋅++=∞→∞→lim ) (lim 21,这表明级数∑∞=1n n ku 收敛, 且和为ks .性质2 如果级数∑∞=1n n u 、∑∞=1n n v 分别收敛于和s 、σ, 则级数)(1n n n v u ±∑∞=也收敛, 且其和为σ±s .证明 如果∑∞=1n n u 、∑∞=1n n v 、)(1n n n v u ±∑∞=的部分和分别为n s 、n σ、n τ, 则)]( )()[(lim lim 2211n n n n n v u v u v u ±+⋅⋅⋅+±+±=∞→∞→τ)] () [(lim 2121n n n v v v u u u +⋅⋅⋅++±+⋅⋅⋅++=∞→σσ±=±=∞→s s n n n )(lim .性质3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性.比如, 级数)1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 是收敛的;级数)1(1 43132121110000⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅+n n 也是收敛的;级数)1(1 541431⋅⋅⋅+++⋅⋅⋅+⋅+⋅n n 也是收敛的.性质4 如果级数∑∞=1n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数(1-1)+(1-1) +⋅ ⋅ ⋅收敛于零, 但级数1-1+1-1+⋅ ⋅ ⋅却是发散的.推论 如果加括号后所成的级数发散, 则原来级数也发散. 性质5 如果∑∞=1n n u 收敛, 则它的一般项n u 趋于零, 即0lim 0=→n n u .证明 设级数∑∞=1n n u 的部分和为n s , 且s s n n =∞→lim , 则0lim lim )(lim lim 110=-=-=-=-∞→∞→-∞→→s s s s s s u n n n n n n n n n .注: 级数的一般项趋于零并不是级数收敛的充分条件.例6 证明调和级数13121111⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n是发散的.证明 假若级数∑∞=11n n收敛且其和为s , ns 是它的部分和.显然有s s n n =∞→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s .但另一方面,2121 212121 21112=+⋅⋅⋅++>+⋅⋅⋅++++=-n n n n n n s s n n ,故0)(lim 2≠-∞→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n必定发散.习题7-11. 写出下列级数的前四项:(1) ∑∞=1!n n n n ; (2)∑∞=⎥⎦⎤⎢⎣⎡+---121)1(1)1(n n n n . 2. 写出下列级数的一般项(通项):(1) -+-+-8141211 ; (2)+-+-97535432a a a a ; (3) ++++7151311. 3. 根据级数收敛性的定义,判断下列级数的敛散性: (1)∑∞=⎪⎭⎫⎝⎛+111ln n n ; (2) ++++6sin 62sin 6sin πππn . 4. 判断下列级数的敛散性: (1)∑∞=+131n n ; (2) +++++n 31916131; (3)∑∞=+112n n n (4) +-+-+-+-2)1(2222n.第2节 常数项级数的收敛法则2.1 正项级数及其收敛法则现在我们讨论各项都是正数或零的级数,这种级数称为正项级数. 设级数+++++n u u u u 321 (7-2-1)是一个正项级数,它的部分和为n s .显然,数列{}n s 是一个单调增加数列,即:≤≤≤≤n s s s 21如果数列{}n s 有界,即n s 总不大于某一常数M ,根据单调有界的数列必有极限的准则,级数(7-2-1)必收敛于和s ,且M s s n ≤≤. 反之,如果正项级数(7-2-1)收敛于和s .根据有极限的数列是有界数列的性质可知,数列{}n s 有界. 因此,有如下重要结论:定理 1 正项级数∑∞=1n n u 收敛的充分必要条件是它的部分和数列{n s }有界.定理2 (比较审敛法) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且n n u v ≤ ),2,1( =n . 若级数∑∞=1n n v 收敛, 则级数∑∞=1n n u 收敛; 反之, 若级数∑∞=1n n u 发散, 则级数∑∞=1n n v 发散.证明 设级数∑∞=1n n v 收敛于和σ, 则级数∑∞=1n n u 的部分和),2,1(21321 =≤++≤++++=n v v v u u u u s n n n σ即部分和数列{}n s 有界, 由定理1知级数∑∞=1n n u 收敛.反之, 设级数∑∞=1n n u 发散, 则级数∑∞=1n n v 必发散. 因为若级数∑∞=1n n v 收敛, 由上已证明的结论, 将有级数∑∞=1n n u 也收敛, 与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果级数∑∞=1n n v 收敛, 且存在自然数N , 使当N n ≥时有)0(>≤k kv u n n 成立, 则级数∑∞=1n n u 收敛; 如果级数∑∞=1n n v 发散, 且当N n ≥时有)0(>≥k kv u n n 成立, 则级数∑∞=1n n u 发散.例1 讨论p -级数1 413121111⋅⋅⋅++⋅⋅⋅++++=∑∞=pp p p p n n n 的收敛性, 其中常数0>p .解 设1≤p . 这时n n p 11≥, 而调和级数∑∞=11n n 发散, 由比较审敛法知, 当1≤p 时级数pn n 11∑∞=发散.设1>p . 此时有⎪⎪⎭⎫⎝⎛---=≤=----⎰⎰11111)1(111111p p n n p n n p p n n p dx x dx n n ),3,2( =n . 对于级数⎪⎪⎭⎫⎝⎛----∞=∑1121)1(1p p n n n , 其部分和 111111)1(11)1(11 3121211------+-=⎪⎪⎭⎫ ⎝⎛+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=p p p p p p n n n n s . 因为1)1(11lim lim 1=⎪⎪⎭⎫ ⎝⎛+-=-∞→∞→p n n n n s . 所以级数⎪⎪⎭⎫⎝⎛----∞=∑1121)1(1p p n n n 收敛. 从而根据比较审敛法的推论1可知, 级数pn n 11∑∞=当1>p 时收敛.综上所述, p -级数p n n11∑∞=当1>p 时收敛, 当1≤p 时发散.例2 证明级数∑∞=+1)1(1n n n 是发散的. 证明 因为11)1(1)1(12+=+>+n n n n , 而级数 11 3121111⋅⋅⋅+++⋅⋅⋅++=+∑∞=n n n 是发散的, 根据比较审敛法可知所给级数也是发散的.定理3 (比较审敛法的极限形式)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果)0(lim +∞<<=∞→l l v u n nn , 则级数∑∞=1n n u 和级数∑∞=1n n v 同时收敛或同时发散.证明 由极限的定义可知, 对l 21=ε, 存在自然数N , 当N n >时, 有不等式l l v ul l n n 2121+<<-, 即n n n lv u lv 2321<<.再根据比较审敛法的推论1, 即得所要证的结论.例3 判别级数∑∞=11sinn n的收敛性. 解 因为111sin lim =∞→nn n , 而级数∑∞=11n n 发散, 根据比较审敛法的极限形式, 级数∑∞=11sin n n 发散.用比较审敛法审敛时,需要适当地选取一个已知其收敛性的级数∑∞=1n nv作为比较的基准.最常选用做基准级数的是等比级数和p -级数.定理4 (比值审敛法, 达朗贝尔判别法) 若正项级数∑∞=1n n u 的后项与前项之比值的极限等于ρ,即ρ=+∞→n n n u u 1lim,则当1<ρ时级数收敛;当1>ρ (或∞=+∞→nn n u u 1lim)时级数发散; 当1=ρ时级数可能收敛也例4 判别级数∑∞=1!1n n 收敛性. 解 因为1011lim !1)!1(1lim lim1<=+=+=∞→∞→+∞→n n n u u n n nn n , 根据比值审敛法可知,所给级数收敛. 例5 判别级数∑∞=13!n n n 的收敛性. 解 因为,31lim 3!3)!1(lim lim11+∞=+=+=∞→+∞→+∞→n n n u u n nn n nn n ,根据比值审敛法可知,所给级数发散. 定理5 (根值审敛法, 柯西判别法)设∑∞=1n n u 是正项级数, 如果它的一般项n u 的n 次根的极限等于ρ,即ρ=∞→n n n u lim ,则当1<ρ时级数收敛; 当1>ρ (或+∞=∞→n n n u lim )时级数发散; 当1=ρ时级数可能收敛也可能发散.定理6(极限审敛法)设∑∞=1n n u 为正项级数,(1)如果0lim >=∞→l nu n n (或+∞=∞→n n nu lim ),则级数∑∞=1n n u 发散;(2)如果1>p ,而l u n n pn =∞→lim (+∞<≤l 0),则级数∑∞=1n n u 收敛.证明 (1)在极限形式的比较审敛法中,取n v n 1=,由调和级数∑∞=11n n发散,知结论成立.(2)在极限形式的比较审敛法中,取p n n v 1=,当1>p 时,p -级数∑∞=11n p n收敛,例6 判定级数)11ln(12∑∞=+n n的收敛性. 解 因)(1~)11ln(22+∞→+n nn ,故 11lim )11ln(lim lim 22222=⋅=+=∞→∞→∞→n n n n u n n n n n ,根据极限审敛法,知所给级数收敛.2.2 交错级数及其审敛法则下列形式的级数,4321 u u u u -+-称为交错级数. 交错级数的一般形式为n n n u ∑∞=--11)1(, 其中0>n u .定理7(莱布尼茨定理)如果交错级数n n n u ∑∞=--11)1(满足条件:(1) 1(1,2,3,)n n u u n +≥= ;(2) 0lim =∞→n n u ,则级数收敛, 且其和1u s ≤, 其余项n r 的绝对值1+≤n n u r .证明 设前n 项部分和为n s ,由)()()(21243212n n n u u u u u u s -+-+-=- ,及n n n n u u u u u u u u s 21222543212)()()(--+-+--=-- ,看出数列{}n s 2单调增加且有界)(12u s n ≤, 所以收敛.设)(2∞→→n s s n , 则也有)(12212∞→→+=++n s u s s n n n ,所以)(∞→→n s s n ,从而级数是收敛的, 且1u s <.因为 +-≤++21n n n u u r |也是收敛的交错级数, 所以1+≤n n u r .2.3 绝对收敛与条件收敛对于一般的级数:,21 ++++n u u u若级数∑∞=1n nu收敛,则称级数∑∞=1n nu绝对收敛;若级数∑∞=1n nu收敛, 而级数∑∞=1n nu发散, 则称级数∑∞=1n nu条件收敛.级数绝对收敛与级数收敛有如下关系: 定理8 如果级数∑∞=1n nu绝对收敛, 则级数∑∞=1n nu必定收敛.证明 令)(21n n n u u v +=),2,1( =n . 显然0≥n v 且n n u v ≤ ),2,1( =n .因级数∑∞=1n nu收敛,故由比较审敛法知道,级数∑∞=1n nv,从而级数∑∞=12n nv也收敛.而n n n u v u -=2,由收敛级数的基本性质可知:∑∑∑∞=∞=∞=-=1112n n n n n nu v u,所以级数∑∞=1n nu收敛.定理8表明,对于一般的级数∑∞=1n nu,如果我们用正项级数的审敛法判定级数∑∞=1n nu收敛,则此级数收敛.这就使得一大类级数的收敛性判定问题,转化成为正项级数的收敛性判定问题.一般来说,如果级数∑∞=1n nu发散, 我们不能断定级数∑∞=1n nu也发散. 但是, 如果我们用比值法或根值法判定级数∑∞=1n nu发散, 则我们可以断定级数∑∞=1n nu必定发散. 这是因为, 此时|u n |不趋向于零, 从而n u 也不趋向于零, 因此级数∑∞=1n nu也是发散的.例7 判别级数∑∞=12sin n nna 的收敛性. 解 因为|221|sin n n na ≤, 而级数211n n ∑∞=是收敛的, 所以级数∑∞=12|sin |n nna 也收敛, 从而级数∑∞=12sin n nna 绝对收敛.例8 判别级数∑∞=13n nna (a 为常数)的收敛性.解 因为)(1)1(33311∞→→⎪⎭⎫⎝⎛+=+=++n a a n n n a n au u n n nn ,所以当1±=a 时,级数∑∞=±13)1(n n n均收敛;当1≤a 时,级数∑∞=13n nn a 绝对收敛;当1>a 时,级数∑∞=13n nna 发散.习题7-21. 用比较审敛法判定下列级数的收敛性: (1)∑∞=+12121n n; (2)∑∞=++1)2)(1(1n n n ;(3)∑∞=+11n n n; (4)∑∞=12sin n n π; (5)∑∞=>+1)0(11n na a.2. 用比值审敛法判定下列级数的敛散性:(1)∑∞=1!2n n n ; (2)∑∞=⋅1!3n nn n n ; (3)∑∞=+1)12(n n n n ; (4)∑∞=+112tan n n n π.3. 判定下列级数的敛散性:(1)∑∞=12n n n ; (2)∑∞=+1)1(n nn n ;(3)∑∞=13sin 2n n nπ; (4)∑∞=14!n n n ;(5)∑∞=++121)1(n n n n . 4. 判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛? (1)∑∞=+-111)1(n n n; (2)∑∞=-+-11)1ln(1)1(n n n ;(3)∑∞=--111sin )1(n n n ; (4)∑∞=--11ln )1(n n n n.第3节 幂级数3.1 函数项级数的概念给定一个定义在区间I 上的函数列{})(x u n , 由这函数列构成的表达式+++++)()()()(321x u x u x u x u n ,称为定义在区间I 上的(函数项)级数, 记为∑∞=1)(n n x u .对于区间I 内的一定点0x , 若常数项级数∑∞=10)(n n x u 收敛, 则称点0x 是级数∑∞=1)(n n x u 的收敛点. 若常数项级数∑∞=10)(n nx u发散, 则称点0x 是级数∑∞=1)(n n x u 的发散点.函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域.在收敛域上, 函数项级数∑∞=1)(n n x u 的和是x 的函数)(x s , )(x s 称为函数项级数∑∞=1)(n n x u 的和函数, 并写成∑∞==1)()(n n x u x s . 函数项级数)(x u n ∑的前n 项的部分和记作)(x s n , 即)()()()()(321x u x u x u x u x s n n ++++= .在收敛域上有)()(lim x s x s n n =∞→.函数项级数∑∞=1)(n n x u 的和函数)(x s 与部分和)(x s n 的差)()()(x s x s x r n n -=叫做函数项级数∑∞=1)(n n x u 的余项. 并有0)(lim =∞→x r n n .3.2 幂级数及其收敛性函数项级数中简单而常见的一类级数就是各项都是幂函数的函数项级数, 这种形式的级数称为幂级数, 它的形式是+++++=∑∞=n n n n nx a x a x a a x a22100,其中常数 ,,,,,210n a a a a 叫做幂级数的系数.定理1(阿贝尔定理) 对于级数∑∞=0n n nx a,当)0(00≠=x x x 时收敛, 则适合不等式0x x <的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当0x x =时发散, 则适合不等式0x x >的一切x 使这幂级数发散.证 先设0x 是幂级数∑∞=0n nn x a的收敛点, 即级数∑∞=0n nnx a 收敛. 根据级数收敛的必要条件,有0lim 0=∞→nn n x a , 于是存在一个常数M , 使),2,1(0 =≤n M x a nn .这样级数∑∞=0n n nx a的的一般项的绝对值n n nn n n nn nn x x M x x x a x x x a x a ||||||||||00000⋅≤⋅=⋅=.因为当0x x <时, 等比级数nn x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n n n x a 收敛, 也就是级数∑∞=0n n nx a绝对收敛. 定理的第二部分可用反证法证明.倘若幂级数当0x x =时发散而有一点1x 适合01x x >使级数收敛, 则根据本定理的第一部分, 级数当0x x =时应收敛, 这与所设矛盾. 定理得证.推论 如果级数∑∞=0n n nx a不是仅在点0=x 一点收敛, 也不是在整个数轴上都收敛,则必有一个完全确定的正数R 存在, 使得 当R x <时, 幂级数绝对收敛; 当R x >时, 幂级数发散;当R x =与R x -=时, 幂级数可能收敛也可能发散. 正数R 通常叫做幂级数∑∞=0n nnx a的收敛半径. 开区间),(R R -叫做幂级数∑∞=0n n n x a 的收敛区间. 再由幂级数在x R =±处的收敛性就可以决定它的收敛域. 幂级数∑∞=0n nnx a的收敛域是),(R R -或),[R R -、],(R R -、],[R R -之一.若幂级数∑∞=0n nnx a只在0=x 收敛, 则规定收敛半径0=R , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径+∞=R , 这时收敛域为),(+∞-∞.定理2 如果ρ=+∞→||lim 1nn n a a , 其中n a 、1+n a 是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R .证明|| ||||lim ||lim 111x x a a x a x a nn n n n n n n ρ=⋅=+∞→++∞→.(1) 如果+∞<<ρ0, 则只当1<x ρ时幂级数收敛, 故ρ1=R .(2) 如果0=ρ, 则幂级数总是收敛的, 故+∞=R .(3) 如果+∞=ρ, 则只当0=x 时幂级数收敛, 故0=R .例1 求幂级数 ∑∞=12n nnx 的收敛半径与收敛域.解 因为1)1(lim lim 221=+==∞→+∞→n n a a n nn n ρ,所以收敛半径为11==ρR . 即收敛区间为)1,1(-.当1±=x 时, 有221)1(n n n =±,由于级数∑∞=121n n 收敛,所以 级数∑∞=12n n nx 在1±=x 时也收敛.因此, 收敛域为]1,1[-.例2 求幂级数∑∞=0!1n nx n = !1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x 的收敛域.解 因为0)!1(!lim !1)!1(1lim ||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ,所以收敛半径为+∞=R , 从而收敛域为),(+∞-∞.例3 求幂级数∑∞=0!n nxn 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为0=R , 即级数仅在0=x 处收敛. 例4 求幂级数∑∞=022)!()!2(n nx n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径:幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当142<x即21||<x 时级数收敛; 当142>x 即21||>x 时级数发散, 所以收敛半径为21=R .3.3 幂级数的运算 设幂级数∑∞=0n nn xa 及∑∞=0n n n x b 分别在区间),(R R -及),(R R ''-内收敛, 则在),(R R -与),(R R ''-中较小的区间内有加法:∑∑∑∞=∞=∞=+=+000)(n n n n n nn n nn x b a x b x a .减法: ∑∑∑∞=∞=∞=-=-00)(n n n n n nn n nn x b a x b x a .乘法: )()(0∑∑∞=∞=⋅n n n n nn x b x a ++++++=2021120011000)()(x b a b a b a x b a b a b a+++++-n n n n x b a b a b a )(0110.除法: .221022102210+++++=++++++++++n n nn n n x c x c x c c x b x b x b b x a x a x a a 关于幂级数的和函数有下列重要性质:性质1 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛域I 上连续.性质2 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xnn xn nn x x n a dx x a dx x a dx x s )(I x ∈,逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛区间),(R R -内可导, 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n nn n nn x na x a x a x s ()x R <,逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n nx n 的和函数.解 求得幂级数的收敛域为)1,1[-. 设和函数为)(x s , 即∑∞=+=011)(n n x n x s , )1,1[-∈x .显然1)0(=s . 在∑∞=++=0111)(n n x n x xs 的两边求导得:()x x x n x xs n n n n -=='⎪⎭⎫⎝⎛+='∑∑∞=∞=+1111)(001.对上式从0到x 积分, 得)1ln(11)(0x dx xx xs x--=-=⎰.于是, 当0≠x 时, 有)1ln(1)(x xx s --=. 从而[)()⎪⎩⎪⎨⎧=⋃∈--=,0 1 ,1,01,0- )1ln(1)(x x x xx s . 提示: 应用公式)0()()(0F x F dx x F x-='⎰, 即⎰'+=xdx x F F x F 0)()0()(.11132++++++=-n x x x x x. 习题7-31.求下列幂级数的收敛区间(1)∑∞=1n nnx ; (2)∑∞=-1)1(n nn x n ;(3)∑∞=⋅+12)2(n nn n x ; (4)∑∞=++-11212)1(n n n n x ; (5)∑∞=-1)5(n n n x ; (6)∑∞=+1212n n nx n ;(7)∑∞=-1)1(2n nn x n ; (8)∑∞=-1)5(n n n x . 2. 利用逐项求导法或逐项积分法,求下列级数的和函数 (1)∑∞=-1122n n nx1<x ; (2)∑∞=--11212n n n x .第4节 函数展开成幂级数4.1函数展开成幂级数给定函数)(x f , 要考虑它是否能在某个区间内“展开成幂级数”, 就是说, 是否能找到这样一个幂级数, 它在某区间内收敛, 且其和恰好就是给定的函数)(x f . 如果能找到这样的幂级数, 我们就说,函数)(x f 能展开成幂级数, 而该级数在收敛区间内就表达了函数)(x f .如果)(x f 在点0x 的某邻域内具有各阶导数),(),(x f x f ''' ),()(x f n ,则当∞→n 时, )(x f 在点0x 的泰勒多项式n n n x x n x f x x x f x x x f x f x p )(!)( )(!2)())(()()(00)(200000-+⋅⋅⋅+-''+-'+=成为幂级数)(!2)())(()(200000⋅⋅⋅+-''+-'+x x x f x x x f x f )(!)(00)(⋅⋅⋅+-+n n x x n x f这一幂级数称为函数)(x f 的泰勒级数.显然, 当0x x =时,)(x f 的泰勒级数收敛于)(0x f .需要解决的问题: 除了0x x =外, )(x f 的泰勒级数是否收敛? 如果收敛, 它是否一定收敛于)(x f ?定理 设函数)(x f 在点0x 的某一邻域)(0x U 内具有各阶导数, 则)(x f 在该邻域内能展开成泰勒级数的充分必要条件是)(x f 的泰勒公式中的余项)(x R n 当n →∞时的极限为零, 即lim ()0 n n R x →∞= 0(())x U x ∈.证明 先证必要性. 设)(x f 在)(0x U 内能展开为泰勒级数, 即)(!)( )(!2)())(()()(00)(200000⋅⋅⋅+-+⋅⋅⋅+-''+-'+=n n x x n x f x x x f x x x f x f x f , 又设)(1x s n +是)(x f 的泰勒级数的前1+n 项的和,则在)(0x U 内)(1x s n +)(x f →)(∞→n .而)(x f 的n 阶泰勒公式可写成)()()(1x R x s x f n n +=+,于是=)(x R n 1()()0n f x s x +-→)(∞→n .再证充分性. 设)(0)(∞→→n x R n 对一切)(0x U x ∈成立.因为)(x f 的n 阶泰勒公式可写成)()()(1x R x s x f n n +=+, 于是=+)(1x s n )(x f )()(x f x R n →-,即)(x f 的泰勒级数在)(0x U 内收敛, 并且收敛于)(x f .在泰勒级数中取00=x , 得⋅⋅⋅++⋅⋅⋅+''+'+ !)0( !2)0()0()0()(2nn x n f x f x f f ,此级数称为)(x f 的麦克劳林级数.要把函数)(x f 展开成x 的幂级数,可以按照下列步骤进行: 第一步 求出)(x f 的各阶导数: ),(,),(),(),()(x f x f x f x f n ''''''.第二步 求函数及其各阶导数在00=x 处的值:),0(,),0(),0(),0()(n f f f f '''''' .第三步 写出幂级数!)0( !2)0()0()0()(2⋅⋅⋅++⋅⋅⋅+''+'+nn x n f x f x f f ,并求出收敛半径R .第四步 考察在区间(),(R R -内时是否)(0)(∞→→n x R n .1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ 是否为零. 如果)(0)(∞→→n x R n , 则)(x f 在),(R R -内有展开式!)0( !2)0()0()0()()(2+++''+'+=nn x n f x f x f f x f )(R x R <<-.例1 试将函数x e x f =)(展开成x 的幂级数. 解 所给函数的各阶导数为),2,1()()( ==n e x f x n , 因此),2,1(1)0()( ==n f n .得到幂级数⋅⋅⋅+⋅⋅⋅+++ !1 !2112n x n x x , 该幂级数的收敛半径+∞=R .由于对于任何有限的数ξ,x (ξ介于0与x 之间), 有)!1(||)!1( |)(|1||1+⋅<+=++n x e x n e x R n x n n ξ, 而0)!1(||lim1=++∞→n x n n , 所以0|)(|lim =∞→x R n n , 从而有展开式 2111 2!!x n e x x x n =+++⋅⋅⋅+⋅⋅⋅ ()x -∞<<+∞. 例2 将函数x x f sin )(=展开成x 的幂级数. 解 因为⎪⎭⎫ ⎝⎛⋅+=2 sin )()(πn x x fn ),2,1( =n ,所以)0()(n f顺序循环地取),3,2,1,0(,1,0,1,0 =-n , 于是得级数⋅⋅⋅+--+⋅⋅⋅-+--- )!12()1( !5!312153n x x x x n n , 它的收敛半径为+∞=R .对于任何有限的数ξ,x (ξ介于0与x 之间), 有11(1)sin ||2|()| 0(1)!(1)!n n n n x R x x n n πξ+++⎛⎫+⎪⎝⎭=≤→++ n →∞.因此得展开式35211sin(1)3!5!(21)!n n x x x x x n --=-+-+-+- ()x -∞<<+∞.例3 将函数m x x f )1()(+=展开成x 的幂级数, 其中m 为任意常数. 解 )(x f 的各阶导数为1)1()(-+='m x m x f,)1)(1()(2-+-=''m x m m x f,)1)(1()2)(1()()(n m n x n m m m m x f -++---=所以),1()2)(1()0(,),1()0(,)0(,1)0()(+---=-=''='=n m m m m f m m f m f f n且()0n R x → 于是得幂级数++-⋅⋅⋅-++-++nx n n m m m x m m mx !)1( )1( !2)1(12. 以上例题是直接按照公式计算幂级数的系数,最后考察余项是否趋于零.这种直接展开的方法计算量较大,而且研究余项即使在初等函数中也不是一件容易的事.下面介绍间接展开的方法,也就是利用一些已知的函数展开式,通过幂级数的运算以及变量代换等,将所给函数展开成幂级数.这样做不但计算简单,而且可以避免研究余项.例4 将函数x x f cos )(=展开成x 的幂级数. 解 已知)!12()1( !5!3sin 12153 +--+-+-=--n x x x x x n n )(+∞<<-∞x .对上式两边求导得)( )!2()1( !4!21cos 242+∞<<-∞+-+-+-=x n x x x x n n . 例5 将函数)1ln()(x x f +=展开成x 的幂级数. 解 因为x x f +='11)(, 而x +11是收敛的等比级数∑∞=-0)1(n n n x )11(<<-x 的和函数:)1( 11132⋅⋅⋅+-+⋅⋅⋅+-+-=+n n x x x x x. 所以将上式从0到x 逐项积分, 得)1ln()(x x f +=⎰⎰+='+=xx dx xdx x 0011])1[ln(∑⎰∑∞=+∞=+-=-=01001)1(])1([n n nx n nn n x dx x )11(≤<-x . 上述展开式对1=x 也成立, 这是因为上式右端的幂级数当1=x 时收敛, 而)1ln(x +在1=x 处有定义且连续.常用展开式小结:211 1n x x x x=+++⋅⋅⋅++⋅⋅⋅- (11)x -<<, 2111 2!!xn e x x x n =+++⋅⋅⋅+⋅⋅⋅ ()x -∞<<+∞,35211sin (1) 3!5!(21)!n n x x x x x n --=-+-⋅⋅⋅+-+⋅⋅⋅- ()x -∞<<+∞,242cos 1 (1) 2!4!(2)!n n x x x x n =-+-⋅⋅⋅+-+⋅⋅⋅ ()x -∞<<+∞, 2341ln(1) (1) 2341n n x x x x x x n ++=-+-+⋅⋅⋅+-+⋅⋅⋅+ (11)x -<≤,!2)1(1)1(2⋅⋅⋅+-++=+x m m mx x m (1) (1) !n m m m n x n -⋅⋅⋅-+++⋅⋅⋅(11)x -<<4.2 幂级数的展开式的应用4.2.1 近似计算有了函数的幂级数展开式,就可以用它进行近似计算,在展开式有意义的区间内,函数值可以利用这个级数近似的按要求计算出来.例6 计算5245的近似值(误差不超过410-).解 因为5/15555)321(323245+=+=, 所以在二项展开式中取51=m , 532=x , 即]. )32)(151(51!2132511[32452555⋅⋅⋅+-⋅-⋅+=.这个级数从第二项起是交错级数, 如果取前n 项和作为5245的近似值, 则其误差(也叫做截断误差),1+≤n n u r 可算得,103258352243||4910222-<⨯=⨯⨯⨯⨯=u 为了使误差不超过410-, 只要取其前两项作为其近似值即可. 于是有.0049.3)2432511(32455≈⋅+≈.例7 利用3!31sin x x x -≈ 求 9sin 的近似值, 并估计误差. 解 首先把角度化成弧度,91809⨯=π (弧度)20π=(弧度),从而()320!312020sin πππ-≈ . 其次, 估计这个近似值的精确度. 在x sin 的幂级数展开式中令20π=x , 得20!7120!5120!312020sin 753⋅⋅⋅+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=πππππ.等式右端是一个收敛的交错级数, 且各项的绝对值单调减少. 取它的前两项之和作为20sin π的近似值, 起误差为3000001)2.0(120120!51||552<⋅<⎪⎭⎫ ⎝⎛≤πr . 因此取157080.020≈π, 003876.0203≈⎪⎭⎫ ⎝⎛π.于是得 15643.09sin ≈ ,这时误差不超过510-. 例8 计算定积分dx e x ⎰-2122π的近似值, 要求误差不超过410-(取56419.01≈π).解 将xe 的幂级数展开式中的x 换成2x -, 得到被积函数的幂级数展开式!3)(!2)(!1)(1322222⋅+-+-+-+=-x x x ex 20(1) !n n n x n ∞==-∑ ()x -∞<<+∞. 于是, 根据幂级数在收敛区间内逐项可积, 得dx x n dx n x dx e n n n n n n x ⎰∑⎰∑⎰∞=∞=--=-=102010201!)1(2]!)1([222πππ) !3721!25213211(1642 +⋅⋅-⋅⋅+⋅-=π. 前四项的和作为近似值, 其误差为900001!49211||84<⋅⋅≤πr ,所以5295.0)!3721!25213211(12642212≈⋅⋅-⋅⋅+⋅-≈⎰-ππdx e x .例9 计算积分dx x⎰+5.00411的近似值, 要求误差不超过410-.解 因为+-+-+-=+n n x x x x x)1(11132. 所以)1( 111412844+-++-+-=+nn x x x x x对上式逐项积分得dx x⎰+5.00411=dx x x x x n n ])1(1[412845.00 +-++-+-⎰ 5.0014139514)1(1319151⎥⎦⎤⎢⎣⎡++-++-+-=+ n n x n x x x x++-++-+-=+141395)5.0(14)1()5.0(131)5.0(91)5.0(515.0n n n . 上面级数为交错级数,所以误差14)5.0(141++<n n n r ,经试算 00625.0)5.0(515≈⋅,00022.0)5.0(919≈⋅,000009.0)5.0(13113≈. 所以取前三项计算,即≈+⎰dx x5.004110.49400.493970.0002200625.0-0.50000≈=+.4.2.2 欧拉公式设有复数项级数为,)()()(2211 +++++++n n iv u iv u iv u (7-4-1)其中n n v u , ),3,2,1( =n 为实常数或实函数.如果实部所成的级数++++n u u u 21 (7-4-2)收敛于和u ,并且虚部所成的级数++++n v v v 21 (7-4-3)收敛于和v ,就说级数(1)收敛且其和为iv u +.如果级数(7-4-1)各项的模所构成的级数+++++++2222222121n n v u v u v u收敛,则称级数(7-4-1)绝对收敛.如果级数(1)绝对收敛,由于),,2,1(,,2222 =+≤+≤n v u v v u u n n n n n n那么级数(7-4-2),(7-4-3)绝对收敛,从而级数(7-4-1)收敛.考察复数项级数+++++n z n z z !1!2112 )(iy x z += (7-4-4) 可以证明级数(7-4-4)在整个复平面上是绝对收敛的.在x 轴上)(x z =它表示指数函数xe ,在整个复平面上我们用它来定义复变量指数函数,记作ze ,于是ze 定义为=z e +++++n z n z z !1!2112 )(∞<z (7-4-5) 当0=x 时,z 为纯虚数iy ,(7-4-5)式成为 ++++++=n iyiy n iy iy iy e)(!1)(!31)(!21132-++--+=5432!51!41!31!211y i y y i y iy )!51!31()!41!211(5342 -+-+-+-=y y y i y y y i y sin cos +=把y 换写为x ,上式变为x i x e ixsin cos += (7-4-6)这就是欧拉公式. 应用公式(7-4-6),复数z 可以表示为指数形式:,)sin (cos θρθθρi e i z =+= (7-4-7)其中z =ρ是z 的模,z arg =θ是z 的辐角在(7-4-6)式中把x 换成x -,又有x i x e ix sin cos -=-与(7-4-6)相加、相减,得⎪⎪⎩⎪⎪⎨⎧-=+=--i e e x e e x ix ix ixix 2sin 2cos (7-4-8)这两个式子也叫做欧拉公式.(7-4-6)式或(7-4-8)式揭示了三角函数与复变量指数函数之间的一种联系.最后,根据定义式(7-4-5),并利用幂级数的乘法,我们不难验证2121z z z z e e e =+.特殊地,取1z 为实数x ,2z 为纯虚数iy ,则有).sin (cos y i y e e e e x iy x iy x +==+这就是说,复变量指数函数ze 在iy x z +=处的值是模为xe 、辐角为y 的复数.习题7-41.将下列函数展开成x 的幂级数,并求展开式成立的区间: (1)xa y = )1,0(≠>a a ; (2)2)1(1x y +=;(3)3sin xy =; (4))2ln(x y -=; (5)211xy -=; (6))1ln()1(x x y ++=.2.将函数x x f ln )(=展开成)1(-x 的幂级数.3.将函数xx f 1)(=展开成)3(-x 的幂级数. 4.利用函数的幂级数展开式求3ln 的近似值(误差不超过0.0001)5.利用欧拉公式将函数x e xcos 展开成x 的幂级数.第5节 傅里叶级数5.1三角级数 三角函数系的正交性正弦函数是一种常见而简单的周期函数.例如描述简谐振动的函数)sin(ϕ+=wt A y ,就是一个以ωπ2为周期的正弦函数,其中y 表示动点的位置,t 表示时间,A 为振幅,ω为角频率,ϕ为初相.在实际问题中,除了正弦函数外,还会遇到非正弦函数的周期函数,它们反应了较复杂的周期运动.如电子技术中常用的周期为T 的矩形波,就是一个非正弦周期函数的例子.为了深入研究非正弦周期函数,联系到前面介绍过的用函数的幂级数展开式表示和讨论函数,我们也想将周期为T 的周期函数用一系列以T 为周期的正弦函数)sin(n n t n A ϕω+组成的级数来表示,记为)sin()(10n n nt n AA t f ϕω++=∑∞= (7-5-1)其中 ),3,2,1(,,0 =n A A n n ϕ都是常数.将周期函数按上述方式展开,它的物理意义是很明确的,这就是把一个比较复杂的周期运动看作是许多不同频率的简谐振动的叠加.在电工学上,这种展开称为是谐波分析.其中常数项0A 称为是)(t f 的直流分量;)sin(11ϕω+t A 称为一次谐波;而)sin(22ϕω+t A , ),sin(33ϕω+t A依次称为是二次谐波,三次谐波,等等.为了以后讨论方便起见,我们将正弦函数)sin(n n t n A ϕω+按三角公式变形,得)sin(n n t n A ϕω+=t n A n n ωϕcos sin +t n A n n ωϕsin cos ,并且令002A a =,n n n A a ϕsin =,n n n A b ϕcos =,l πω=,则(1)式右端的级数就可以改写为∑∞=++10)sin cos (2n n n ltn b l t n a a ππ (7-5-2)形如(7-5-2)式的级数叫做三角级数,其中),3,2,1(,,0 =n b a a n n 都是常数. 令,x lt=π(7-5-2)式成为 ,)sin cos (210∑∞=++n n n nx b nx a a (7-5-3)这就把以l 2为周期的三角级数转换为以π2为周期的三角级数.下面讨论以π2为周期的三角级数(7-5-3).我们首先介绍三角函数系的正交性. 三角函数系:,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x (7-5-4) 在区间],[ππ-上正交,就是指在三角函数系(7-5-4)中任何不同的两个函数的乘积在区间],[ππ-上的积分等于零,即 ⎰-=ππ0cos nxdx ),2,1( =n , ⎰-=ππ0sin nxdx ),2,1( =n , ⎰-=ππ0cos sin nxdx kx ),2,1,( =n k , ⎰-=ππ0sin sin nxdx kx ),,2,1,(n k n k ≠= ,⎰-=ππ0cos cos nxdx kx ),,2,1,(n k n k ≠= .三角函数系中任何两个相同的函数的乘积在区间],[ππ-上的积分不等于零, 即 ⎰-=πππ212dx ,⎰-=πππnxdx 2cos ),2,1( =n ,⎰-=πππnxdx 2sin ),2,1( =n .5.2 函数展开成傅里叶级数设)(x f 是周期为π2的周期函数, 且能展开成三角级数:∑∞=++=10)sin cos (2)(k k k kx b kx a a x f . (7-5-5)那么系数 ,,,110b a a 与函数)(x f 之间存在着怎样的关系? 假定三角级数可逐项积分, 则]cos sin cos cos [cos 2cos )(1⎰⎰∑⎰⎰--∞=--++=ππππππππnxdx kx b nxdx kx a nxdx a nxdx x f k k k =πn a类似地⎰-=πππn b nxdx x f sin )(,可得⎰-=πππdx x f a )(10,⎰-=ππnxdx x f a n cos )(1, ),2,1( =n ,⎰-=πππnxdx x f b n sin )(1, ),2,1( =n .系数 ,,,110b a a 叫做函数)(x f 的傅里叶系数.由于当0=n 时,n a 的表达式正好给出0a ,因此,已得结果可合并写成1()cos ,(1,2,),1()sin ,(1,2,).n n a f x nxdx n b f x nxdx n ππππππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (7-5-6)将傅里叶系数代入(5)式右端,所得的三角级数∑∞=++10)sin cos (2n n n nx b nx a a 叫做函数)(x f 的傅里叶级数.一个定义在),(∞+-∞上周期为π2的函数)(x f , 如果它在一个周期上可积, 则一定可以作出)(x f 的傅里叶级数. 然而, 函数)(x f 的傅里叶级数是否一定收敛? 如果它收敛, 它是否一定收敛于函数? 一般来说, 这两个问题的答案都不是肯定的.定理1 (收敛定理, 狄利克雷充分条件) 设)(x f 是周期为π2的周期函数, 如果它满足: 在一个周期内连续或只有有限个第一类间断点, 在一个周期内至多只有有限个极值点, 则)(x f 的傅里叶级数收敛, 并且当x 是)(x f 的连续点时, 级数收敛于)(x f ;当x 是)(x f 的间断点时, 级数收敛于)]()([21+-+x f x f .由定理可知,函数展开成傅里叶级数的条件比展开成幂级数的条件低得多,若记⎭⎬⎫⎩⎨⎧+==+-)]()([21)(|x f x f x f x C ,在C 上就成立)(x f 的傅里叶级数展开式C x nx b nx a a x f n n n ∈++=∑∞=,)sin cos (2)(10. (7-5-7)例1 设)(x f 是周期为π2的周期函数, 它在),[ππ-上的表达式为⎩⎨⎧<≤<≤--=ππx x x f 0 1 01)(, 将)(x f 展开成傅里叶级数.解 所给函数满足收敛定理的条件, 它在点πk x = ),2,1,0( ±±=k 处不连续, 在其它点处连续, 从而由收敛定理知道)(x f 的傅里叶级数收敛, 并且当πk x =时收敛于0)11(21)]0()0([21=+-=++-x f x f , 当πk x ≠时级数收敛于)(x f . 傅里叶系数计算如下:⎰⎰⎰=⋅+-==--πππππππ00cos 11cos )1(1cos )(1nxdx nxdx nxdx x f a n ),2,1( =n ;⎰⎰⎰⋅+-==--πππππππ0sin 11sin )1(1sin )(1nxdx nxdx nxdx x f b n]1cos cos 1[1]cos [1]cos [100+--=-+=-πππππππn n n n nx n nx πn 2=[1-(-1)n ]⎪⎩⎪⎨⎧⋅⋅⋅=⋅⋅⋅== 6, 4, 2, 0 ,5 ,3 ,1 4n n n π.于是)(x f 的傅里叶级数展开式为] )12sin(121 3sin 31[sin 4)(⋅⋅⋅+--+⋅⋅⋅++=x k k x x x f π),2,,0;( ππ±±≠+∞<<-∞x x .例2 设)(x f 是周期为π2的周期函数, 它在],(ππ-上的表达式为⎩⎨⎧<<-≤≤=000 )(x x x x f ππ. 将)(x f 展开成傅里叶级数.解 所给函数满足收敛定理的条件, 它在点π)12(+=k x ),2,1,0( ±±=k 处不连续, 因此, )(x f 的傅里叶级数在π)12(+=k x 处收敛于2)0(21)]0()0([21ππ=+=+-+-x f x f . 在连续点x ))12((π+≠k x 处级数收敛于)(x f . 傅里叶系数计算如下:21)(10ππππππ===⎰⎰-xdx dx x f a ; ⎰⎰==-πππππ0cos 1cos )(1nxdx x nxdx x f a n ππ02cos sin 1⎥⎦⎤⎢⎣⎡+=n nx n nx x )1(cos 12-=ππn n ⎪⎩⎪⎨⎧⋅⋅⋅=⋅⋅⋅=-= 6, 4, 2,,5 ,3 ,1 22n n n π. πππππππ20sin cos 1sin 1sin )(1⎥⎦⎤⎢⎣⎡+-===⎰⎰-n nx n nx x nxdx x nxdx x f b nnn πcos -=n n 1)1(+-=),2,1( =n . )(x f 的傅里叶级数展开式为。