常导型磁浮列车悬浮原理
- 格式:doc
- 大小:51.50 KB
- 文档页数:1
磁悬浮列车的原理
磁悬浮列车是一种利用磁力原理实现悬浮并运行的新型交通工具。
其基本原理是利用同性磁极相互排斥、异性磁极相互吸引的特性来实现悬浮和运行。
磁悬浮列车的轨道上安装了一系列的电磁体,称为轨道磁铁。
这些轨道磁铁分为两种,一种是导向磁铁,另一种是悬浮磁铁。
导向磁铁的作用是提供轨道的导向力,防止列车在运行过程中偏离轨道。
悬浮磁铁的作用是提供列车所需的悬浮力。
磁悬浮列车的车辆底部安装了一组称为悬浮体的电磁体。
悬浮体与轨道磁铁相互作用,形成一种磁悬浮力,使列车能够悬浮在轨道上方。
通过调节悬浮体电磁体的电流,可以控制悬浮力的大小,从而实现列车的悬浮高度和稳定度的调节。
磁悬浮列车的推进是通过磁悬浮线圈在列车底部产生的磁场与轨道磁铁间的相互作用来实现的。
当列车通过轨道时,磁悬浮线圈会通过变换电流来改变其磁极性,从而与轨道磁铁产生相互吸引或排斥的力。
通过不断改变磁悬浮线圈的电流,可以使列车在轨道上高速行驶。
除了磁悬浮力驱动,磁悬浮列车还采用气垫技术进行辅助悬浮,提高列车的稳定性和平顺性。
气垫技术通过在列车底部产生气压,使列车悬浮在一层气垫上,减小了列车与轨道之间的接触面积,从而减小了阻力和摩擦力,提高了列车的运行效率。
总体来说,磁悬浮列车的运行原理是通过轨道磁铁、悬浮体电
磁体以及磁悬浮线圈的相互作用,实现列车的悬浮和推进。
这种原理不仅减小了阻力、提高了运行效率,还有助于减少能量消耗和环境污染,具有很大的发展潜力。
磁悬浮的应用—磁悬浮列车摘要电磁学在磁悬浮列车(MAGLEV)上的应用是电磁在工程技术上达到的一个新的高度。
磁悬浮列车是一种新型的高速有轨地面运输系统,开创了铁路运输史上的新时代。
本篇文章论述磁悬浮列车应用电磁学的基本工作原理,讨论分析了磁悬浮列车的优势缺点及存在的问题,并分析了磁悬浮列车的发展前景。
关键词:磁悬浮超导摩擦常导型超导型前言:磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。
磁悬浮列车是目前陆地上最快的交通工具,它被认为是21世纪最有潜力的交通工具。
关于它的研究一直处于世界科技领域前沿。
一、磁悬浮列车的工作原理磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成(如下图形为磁悬浮列车的原型)。
磁悬浮列车是一种利用磁极吸引力和排斥力的高科技交通工具。
简单地说,排斥力使列车悬起来、吸引力让列车开动。
目前磁悬浮列车依据吸力和斥力可分为两种。
1.电磁悬浮系统(EMS)电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。
常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。
在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。
车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。
此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。
是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互排斥产生悬浮。
常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁排斥力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。
在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。
磁悬浮列车的原理
磁悬浮列车是一种利用磁力浮起并驱动的交通工具,它不接触轨道,因此可以实现更快、更平稳的运行。
磁悬浮列车的原理主要分为磁悬浮与磁力驱动两个方面。
磁悬浮是指利用磁力使列车悬浮在轨道上,而不需要接触轨道。
通常,磁悬浮列车采用超导磁体产生磁场,通过磁场与轨道上的电磁铁相互作用,使列车产生浮力。
超导磁体通过液氮冷却,保持在超导状态,使其能够持续产生强大的磁场。
这种浮力可以抵消列车自身的重力,使列车悬浮在轨道上。
磁力驱动是指利用磁力来推动磁悬浮列车进行运行。
通常,磁悬浮列车采用线性电机作为驱动器。
线性电机由固定部分和活动部分组成,其中活动部分被安装在列车车体上,固定部分则固定在轨道上。
当电流通过线性电机时,活动部分会产生一个磁场,与固定部分的磁场相互作用,从而产生推动力,驱动列车前进。
除了磁悬浮和磁力驱动,磁悬浮列车还会利用传感器和控制系统来保持列车的稳定运行。
传感器会不断监测列车与轨道之间的相对位置和速度,并将数据反馈给控制系统。
控制系统会根据传感器的反馈信息,调整磁悬浮列车的悬浮高度以及线性电机的电流,以保持列车的稳定运行。
总而言之,磁悬浮列车利用磁力浮起并利用磁力驱动,实现了高速、平稳的运行。
这种技术可以大幅提高列车的运行速度,
减少摩擦损耗,提高通行效率,因此在未来的交通领域有着广阔的应用前景。
磁悬浮列车原理
磁悬浮列车是一种通过磁力悬浮和推动的高速列车。
它的原理是利用磁力使列车浮在轨道上,并通过磁力推动列车运行。
磁悬浮列车的轨道上内置有一组电磁轨道,轨道上沿着一定的间隔铺设有电磁线圈。
这些电磁线圈受到电流的控制,产生一定的磁场。
列车的底部装有磁铁或超导磁体,这些磁体在列车行驶过程中产生磁场。
根据同性相斥和异性相吸的原理,列车的磁铁与轨道上的电磁轨道之间形成磁力作用,使得列车浮在轨道上。
为了确保列车的稳定悬浮,磁悬浮列车还采用了反馈控制系统。
该系统通过感应列车的位置和速度等参数,并实时调整轨道上的电流,以确保列车保持在正确的高度和位置上。
在列车行驶过程中,磁悬浮列车的推进系统通过改变列车底部的磁场来产生推动力。
当电流改变时,底部磁体的磁场也会相应改变,从而推动列车向前运行。
相比传统的轮轨列车,磁悬浮列车具有更低的运行摩擦和空气阻力,因此能够实现更高的速度和更低的能量消耗。
同时,磁悬浮列车的运行非常平稳,几乎没有震动和噪音。
总之,磁悬浮列车通过磁力悬浮和推动的原理,实现了在轨道上高速、环保、平稳运行的特点。
它是一种具有巨大潜力的交通工具,能够满足未来城市交通的需求。
磁悬浮列车的原理及应用传统的铁路列车都是依靠诸如蒸汽、燃油、电力等各种类型机车作为牵引动力,车轮和钢轨之间的相互作用作为运动导向,由车轮沿着钢轨滚动而前进的。
而磁悬浮列车则是一种依靠电磁场特有的“同性相斥、异性相吸”的特性将车辆托起,使整个列车悬浮在线路上,利用电磁力进行导向,并利用直线电机将电能直接转换成推进力,来推动列车前进的交通工具。
磁悬浮列车的分类(1)按电磁铁种类磁悬浮列车根据所采用的电磁铁种类可以分为常导和超导两大类(2)按悬浮方式磁悬浮列车分为电磁吸引式悬浮(EMS)和永磁力悬浮(PRS)及感应斥力悬浮(EDS)。
EMS 该方式利用导磁材料与电磁铁之间的吸引力,绝大部分悬浮采用此方式。
PRS 这是一种最简单的方案,利用永久磁铁同极间的斥力,其缺点是横向位移的不稳定因素。
EDS 依靠励磁线圈和短路线圈的相对运动得到斥力,所以列车要有足够的速度才能悬浮起来,大约为100km/h,它不适用于低速。
磁悬浮列车的原理常导磁吸式(EMS) 利用装在车辆两侧转向架上的常导电磁铁(悬浮电磁铁)和铺设在线路导轨上的磁铁,在磁场作用下产生的吸引力使车辆浮起。
车辆和轨面之间的间隙与吸引力的大小成反比。
为了保证这种悬浮的可靠性和列车运行的平稳,使直线电机有较高的功率,必须精确地控制电磁铁中的电流,使磁场保持稳定的强度和悬浮力,使车体与导轨之间保持大约10mm的间隙。
通常采用测量间隙用的气隙传感器来进行系统的反馈控制。
这种悬浮方式不需要设置专用的着地支撑装置和辅助的着地车轮,对控制系统的要求也可以稍低一些。
常导式磁悬浮列车示意图超导磁斥式日本磁悬浮铁路ML系统使用低温超导技术。
它用液氮作为冷冻液,当线圈绕组达到-269摄氏度的温度时车载线圈绕组即进入超导状态。
为了提高磁悬浮车辆上超导材料的稳定性,日本使用铌钛合金作为线圈绕组材料。
低温超导原理如图日本超导磁悬浮系统的悬浮力来自于车辆两侧。
在导轨两侧的侧壁上,排列着一组组的导向绕组。
磁悬浮列车的原理及应用众所周知,传统的铁路列车都是依靠诸如蒸汽、燃油、电力等各种类型机车作为牵引动力,车轮和钢轨之间的相互作用作为运行导向,由铁路线路承受压力,借助于车轮沿着钢轨攘动前进的。
而磁悬浮列车则是一种依靠电磁场特有的"同性相斥、异性相吸"的特性将车辆托起,使整个列车悬浮在线路上,利用电磁力进行导向,并利用直线电机将电能直接转换成推进力,来推动列车前进的最新颖的第五代交通运输工具。
与传统铁路相比,磁悬浮列车有以下优点。
适于高速运行磁悬浮列车最大特点在于它没有通常的轮轨系统,由于消除了与轮轨之间的接触,不存在由于轮轨摩擦及黠着所造成的诸如极限速度等影响列车运行的问题,速度可达500km/h以上。
稳定安全列车运行平稳,能提高旅客舒适度,由于磁悬浮系统采用导轨结构,不会发生脱轨和颠覆事故,提高了列车运行的安全性和可靠性。
污染小,易维护磁悬浮列车在运行中既不产生机械噪声,也不排放任何废气、废物,对周边环境的污染极小,有利于环境保护,加上磁悬浮列车由于没有钢轨、车轮、接触导线等摩擦组件,可以省去大量维修工作和维修费用。
效率高能充分利用能源、获得较高的运输效率。
另外,磁悬浮列车可以实现全自动化控制,因此将成为未来最具有竞争力的一种交通工具。
磁悬浮列车的发展史磁悬浮列车是大约二百年前斯蒂芬森的"火箭"号蒸汽机车问世以来铁路技术最根本的突破。
磁悬浮列车在今天看来似乎还是一个新鲜事物,其实它的理论准备己有很长的历史。
磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。
进入70年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。
而美国和前苏联则分别在七八十年21卷第6期(总126期) 代放弃了这项研究计划,目前只有德国和日本仍在继续进行磁悬浮系统的研究,并均取得了令世人瞩目的进展。
-38-科学技术创新2019.15浅谈磁悬浮列车的原理及应用王君香(中车青岛四方机车车辆股份有限公司,山东青岛266111)摘要:本文介绍了磁悬浮列车的背景及发展现状,详细阐述了悬浮系统、驱动系统和导向系统的工作原理。
关键词:磁悬浮;悬浮系统;驱动系统;导向系统中图分类号:U292.91+7文献标识码:A文章编号:2096-4390(2019)15-0038-021概述我们目前所乘坐的普通轮轨列车都是车轮与轨道接触运行的,他们的牵引是通过列车车轮踏面与轨道表面之间相互作用产生的附着力来实现的,而附着力不仅与车轮踏面的状态和轨道的表面有关,而且与列车的行驶速度有关。
因此,普通轮轨列车的运行速度因受附着力的限制而具有很大的局限性。
因为随着轮轨列车运行速度的逐渐增加,车轮与轨道间的附着力会逐渐减小,同时,列车所受到的空气阻力会逐渐增大。
当轮轨列车达到一定速度时,列车的牵引力值就会与阻力值相当,列车的速度将会不再增加,此速度就是其极限速度。
随列车速度的增加,黏着力的减小,依靠黏着力的制动力会不断减小,其制动距离不断增大,严重影响其安全性,此外,对轮轨的要求也越高,轮轨建设成本成倍增加,严重影响其经济性。
即便是现在最先进的高速动车组其正常运营速度也很难突破时速400千米。
因此,若想再次提高列车速度,普通轮轨列车已经不再适用。
为满足了人们对列车的高速、舒适、安全、经济性等要求,经过众多努力,将列车悬浮起来,实现列车与地面轨道零接触,并利用电磁力来驱动列车运行的磁悬浮列车的设想终于变成现实,在1937年由德国Hermann Kemper工程师率先申请了磁悬浮这一专利。
2磁悬浮列车原理磁悬浮列车主要包括三大系统:悬浮系统、驱动系统和导向系统,其主要原理是利用电磁间的相互吸引力或排斥力实现列车的悬浮、导向和驱动。
悬浮系统:根据悬浮方式可将磁悬浮列车分为两类:一种是常导型磁悬浮列车系统,即EMS(电磁吸引式悬浮),另一种是超导型磁悬浮列车系统,即EDS(电动排斥式悬浮)。
磁悬浮火车原理自1825年世界上第一条标准轨铁路出现以来,轮轨火车一直是人们出行的交通工具。
然而,随着火车速度的提高,轮子和钢轨之间产生的猛烈冲击引起列车的强烈震动,发出很强的噪音,从而使乘客感到不舒服。
由于列车行驶速度愈高,阻力就愈大。
所以,当火车行驶速度超过每小时300公里时,就很难再提速了。
如果能够使火车从铁轨上浮起来,消除了火车车轮与铁轨之间的摩擦,就能大幅度地提高火车的速度。
但如何使火车从铁轨上浮起来呢,科学家想到了两种解决方法:一种是气浮法,即使火车向铁轨地面大量喷气而利用其反作用力把火车浮起;另一种是磁浮法,即利用两个同名磁极之间的磁斥力或两个异名磁极之间磁吸力使火车从铁轨上浮起来。
在陆地上使用气浮法不但会激扬起大量尘土,而且会产生很大的噪音,会对环境造成很大的污染,因而不宜采用。
这就使磁悬浮火车成为研究和试验的的主要方法。
当今,世界上的磁悬浮列车主要有两种“悬浮”形式,一种是推斥式;另一种为吸力式。
推斥式是利用两个磁铁同极性相对而产生的排斥力,使列车悬浮起来。
这种磁悬浮列车车厢的两侧,安装有磁场强大的超导电磁铁。
车辆运行时,这种电磁铁的磁场切割轨道两侧安装的铝环,致使其中产生感应电流,同时产生一个同极性反磁场,并使车辆推离轨面在空中悬浮起来。
但是,静止时,由于没有切割电势与电流,车辆不能产生悬浮,只能像飞机一样用轮子支撑车体。
当车辆在直线电机的驱动下前进,速度达到80公里,小时以上时,车辆就悬浮起来了。
吸力式是利用两个磁铁异性相吸的原理,将电磁铁置于轨道下方并固定在车体转向架上,两者之间产生一个强大的磁场,并相互吸引时,列车就能悬浮起来。
这种吸力式磁悬浮列车无论是静止还是运动状态,都能保持稳定浮状态。
这次,我国自行开发的中低速磁悬浮列车就属于这个类型。
“若即若离”,是磁悬浮列车的基本工作状态。
磁悬浮列车利用电磁力抵消地球引力,从而使列车悬浮在轨道上。
在运行过程中,车体与轨道处于一种“若即若离”的状态,磁悬浮间隙约1厘米,因而有“零高度飞行器”的美誉。
磁悬浮列车原理磁悬浮列车综述你一定听说过磁悬浮列车吧,最近它的上镜率可是居高不下,大家都在密切地关注着它的发展态势。
我们一直都在盼望着火车的提速,可经过几轮的努力,却总是达不到心中理想的标准,如果你家住在西安,距北京1000多公里,原先回家要17个小时,现在要14个小时,唉,只减少了区区3个小时,还要有难熬的一宿呀!可是你知道吗?普通磁悬浮列车的时速就可以达到500公里/小时,那么,回家就只需要不到3个小时,跟飞机差不多了!其实,在本世纪五、六十年代,铁路曾经被认为是一个夕阳运输产业。
因为面对航空、高速公路等运输对手的强劲挑战,它蜗牛般的爬行速度,已越来越不适应现代工业社会物流和人流的快速流动需要了。
但七十年代以来,特别是近几年,随着铁路高速化成为世界的热点和重点,铁路重新赢回了它在各国交通运输格局中举足轻重的地位。
法国、日本、俄国、美国等国家列车时速由200公里向300公里飞速发展。
据1995年举行的国际铁路会议预测,到本世纪末,德国、日本、法国等国家的高速铁路运营时速将达到360公里。
但要使列车在如此高的速度下持续行驶,传统的车轮加钢轨组成的系统,已经无能为力了。
这是因为传统的轮轨粘着式铁路,是利用车轮与钢轨之间的粘着力使列车前进的。
它的粘着系数随列车速度的增加而减小,走行阻力却随列车速度的增加而增加,当车速增至粘着系数曲线和走行阻力曲线的交点时,就达到了极限。
据科研人员推算,普通轮轨列车最大时速为350-400公里左右。
如果考虑到噪音、震动、车轮和钢轨磨损等因素,实际速度不可能达到最大时速。
所以,欧洲、日本现在正运行的高速列车,在速度上已没有多大潜力。
要进一步提高速度,必须转向新的技术,这就是超常规的列车-磁悬浮列车。
尽管我们还将磁悬浮列车的轨道称为"铁路",但这两个字已经不够贴切了。
就拿铁轨来说,实际上它已不复存在。
轨道只剩下一条,而且也不能称其为"轨道"了,因为轮子并没有从上面滚过。
磁悬浮列车原理磁悬浮列车,又称磁浮列车,是一种运用磁力原理进行悬浮和推进的列车。
与传统的轨道交通相比,磁悬浮列车具有更高的运行速度和更低的能耗。
其背后的原理是磁力的作用和控制。
一、磁悬浮原理磁悬浮列车运用了超导磁悬浮技术和线圈电磁悬浮技术来实现列车的悬浮和推进。
超导磁悬浮技术利用超导材料在低温下的特殊性质,使列车悬浮在导轨上方。
而线圈电磁悬浮技术则是通过在导轨上方的线圈中通电来产生磁场,与列车底部的磁体产生磁力,实现悬浮效果。
磁悬浮列车的推进原理则是利用电磁感应产生的涡流。
在列车底部的磁体中,通电产生的磁场会在导轨中诱导出涡流。
涡流会产生一个反向的磁场,与导轨产生的磁场相互作用,推动列车向前运行。
二、磁悬浮列车的优势1. 高速度:磁悬浮列车可以达到非常高的运行速度,甚至比飞机更快。
这是因为磁悬浮技术消除了与轨道的摩擦力,减少了能量损耗。
2. 低噪音:由于列车与轨道之间没有直接接触,磁悬浮列车的噪音较低。
这对于附近居民和城市环境都是一个巨大的优势。
3. 节能环保:相比传统的轨道交通,磁悬浮列车的能耗更低。
它的运行依赖于电力,而不是燃烧化石燃料,因此减少了空气污染和温室气体排放。
4. 充电功能:磁悬浮列车的线圈可以用作电池充电设备。
当列车行驶在特定区域时,线圈可以通过电磁感应的原理为电动汽车等设备提供充电服务。
5. 减少交通拥堵:磁悬浮列车具有较大的载客能力和运行速度,可以减少交通拥堵,提高城市交通效率。
三、磁悬浮列车的应用目前世界上许多国家都在研究和开发磁悬浮列车技术。
日本的磁悬浮列车Maglev是其中最有名的。
中国也在上海和长沙建设了磁悬浮列车运营线路。
在城市交通方面,磁悬浮列车可以作为高速交通工具,连接城市和城市之间的距离,有助于缓解城市交通压力。
此外,磁悬浮列车还可以用于机场连接线路,提供快速便捷的机场交通。
在未来,磁悬浮技术还可能应用于更多领域。
例如,高速货运列车、矿山运输系统等,都可以通过磁悬浮技术来提高运输效率和节约能源。
磁悬浮列车利用什么原理磁悬浮列车利用的原理是磁悬浮技术,也称为磁浮技术。
这一技术是通过磁力来实现列车的悬浮和推进,从而减小与轨道的摩擦力,提高列车的运行速度和安全性。
磁悬浮列车的运行原理主要有两种:电磁悬浮和永磁悬浮。
电磁悬浮列车主要通过电磁铁产生的磁力来实现列车的悬浮和推进。
其主要组成部分包括轨道、车身和电磁铁系统。
轨道上布置有线圈,而车身下方的电磁铁上也安装有线圈。
当电流通过轨道上的线圈时,会产生一个磁场,而这个磁场会与车身下方的电磁铁上的线圈中的电流产生作用,形成一个相互排斥的磁力,从而使列车悬浮起来。
同样地,当要推动列车从前方向后方运动时,会通过改变电流的方向和大小控制列车的推进力。
由于列车与轨道之间没有接触,因此可以减小摩擦力,从而使列车的运行速度更高、更平稳。
永磁悬浮列车则是利用永久磁铁的相互排斥或吸引产生的磁力来实现悬浮和推进的。
它的主要组成部分包括轨道、车身和永磁系统。
轨道上布置有永磁体,而车身下方也安装有永磁体。
当列车靠近轨道时,由于永磁体的相互排斥或吸引作用,列车会悬浮在轨道上。
同样地,通过改变永磁体的相对位置,可以控制列车的推进力。
与电磁悬浮列车相比,永磁悬浮列车不需要外部电源供电,因此更加节能环保。
除了悬浮和推进之外,磁悬浮列车还需要通过控制系统来实现列车的稳定运行。
控制系统主要包括悬浮控制系统、导向控制系统和推进控制系统。
悬浮控制系统用于控制列车与轨道之间的悬浮距离,保持列车的稳定悬浮高度。
导向控制系统用于控制列车的行进方向,防止出现偏离轨道的情况。
推进控制系统则用于控制列车的加速、减速和停车等操作。
磁悬浮列车具有很多优点。
首先,由于列车与轨道之间没有接触,可以减小空气和轨道的摩擦阻力,从而提高列车的运行速度。
其次,磁悬浮列车的悬浮系统是被动的,即列车的悬浮和推进力是由轨道和车身之间的磁力自动调节产生的,不需要外部的动力驱动,因此更加节能环保。
此外,磁悬浮列车还具有加速快、运行平稳、噪音低等优点。
磁悬浮列车基本资料磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。
由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此其阻力只有空气的阻力。
磁悬浮列车的最高速度可以达每小时500公里以上,比轮轨高速列车的300多公里还要快手。
磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。
1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本等发达国家相继开始筹划进行磁悬浮运输系统的开发。
“常导型”世界第一条磁悬浮列车示范运营线——上海磁悬浮列车,建成后,从浦东龙阳路站到浦东国际机场,三十多公里只需8分钟。
上海磁悬浮列车是“常导磁吸型”(简称“常导型”)磁悬浮列车。
是利用“异性相吸”原理设计,是一种吸力悬浮系统,利用安装在列车两侧转向架上的悬浮电磁铁,和铺设在轨道上的磁铁,在磁场作用下产生的排斥力使车辆浮起来(利用同名磁极相互排斥)。
列车底部及两侧转向架的顶部安装电磁铁,在“工”字轨的上方和上臂部分的下方分别设磁悬浮列车反作用板和感应钢板,控制电磁铁的电流使电磁铁和轨道间保持1厘米的间隙,让转向架和列车间的排斥力与列车重力相互平衡,利用磁铁排斥力将列车浮起1厘米左右,使列车悬浮在轨道上运行。
这必须精确控制电磁铁的电流。
悬浮列车的驱动和同步直线电动机原理一模一样。
通俗说,在位于轨道两侧的介绍线圈里流动的交流电,能将线圈变成电磁体,由于它与列车上的电磁体的相互作用,使列车开动。
磁悬浮列车列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被安装在轨道上稍后一点的电磁体N极所排斥。
列车前进时,线圈里流动的电流方向就反过来,即原来的S极变成N极,N极变成S极。
循环交替,列车就向前奔驰。
稳定性由导向系统来控制。
“常导型磁吸式”导向系统,是在列车侧面安装一组专门用于导向的电磁铁。
磁悬浮列车的工作原理磁悬浮列车是一种基于磁力原理运行的高速列车,与传统的轨道式列车相比,具有更高的速度和更低的摩擦。
它的核心技术是磁悬浮系统,通过利用电磁力使列车悬浮在轨道上,从而实现无触点的运行。
一、磁悬浮原理磁悬浮列车的工作原理可以简单地分为两个部分:悬浮和推进。
在悬浮部分,磁悬浮列车采用磁力来使列车浮起,从而减少与轨道之间的摩擦,提供更平稳的行驶体验。
而在推进部分,磁悬浮列车则利用电磁力来推动列车前进。
二、磁悬浮悬浮原理磁悬浮列车的悬浮系统是由电磁铁和磁轨组成。
磁轨上设置了一系列的磁钢片,而列车的悬浮系统则由车体上的磁体和传感器组成。
当列车经过磁轨上的磁钢片时,传感器会感测到磁钢片的位置信息,并向控制系统发送信号。
控制系统会根据传感器的反馈信号,调整磁体的电流,从而产生与磁轨上的磁力相互作用的力,使列车悬浮在轨道上。
三、磁悬浮推进原理磁悬浮列车的推进系统利用了同性斥和异性吸的原理。
轨道上的线圈通过交流电源供电,产生变化的磁场。
而列车上的车体上同样设置有线圈,当列车经过轨道上的线圈时,车体上的线圈感受到磁场的变化,并产生感应电流。
这个感应电流会形成一个磁场,与轨道上的磁场相互作用,形成一个推动力。
通过及时调整列车上线圈的电流,可以实现列车的加速和减速。
四、其他技术支持除了悬浮和推进系统外,磁悬浮列车还涉及其他一些技术支持。
例如,轨道上装有传感器,用于检测列车的位置和速度等信息,从而实现精确的控制。
另外,列车上也配备了制动系统和安全系统,以确保列车的运行安全。
总结:磁悬浮列车的工作原理是基于磁力原理的,通过利用磁悬浮系统使列车悬浮在轨道上,从而减少摩擦力,实现高速、平稳的运行。
磁悬浮列车的推进原理则依靠线圈间的磁场相互作用,通过调整电流来实现列车的加速和减速。
除此之外,磁悬浮列车还依靠传感器、制动系统和安全系统等技术来保证列车的运行安全。
磁悬浮列车的出现为现代轨道交通技术带来了革命性的改变,为人们提供了更高效、舒适的出行方式。
磁悬浮列车原理1.工作原理磁悬浮列车利用电磁体“同性相斥,异性相吸”的原理,让磁铁具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹2.分类(1)按电磁铁种类磁悬浮列车根据所采用的电磁铁种类可以分为常导和超导两大类(2)按悬浮方式磁悬浮列车分为电磁吸引式悬浮(EMS)和永磁力悬浮(PRS)及感应斥力悬浮(EDS)。
EMS该方式利用导磁材料与电磁铁之间的吸引力,绝大部分悬浮采用此方式。
PRS这是一种最简单的方案,利用永久磁铁同极间的斥力,其缺点是横向位移的不稳定因素。
EDS依靠励磁线圈和短路线圈的相对运动得到斥力,所以列车要有足够的速度才能悬浮起来,大约为100km/h,它不适用于低速3.结构分析磁悬浮车辆结构主要是由车体(也称为车厢)夹层结构和悬浮架组成。
车厢与走行机构的悬浮架之间通过二系悬挂以及牵引拉杆相互连接。
夹层要连接车厢和安装走行机构,以及安装信号和电力设备等。
悬浮架是车辆的走行机构,其作用是装载电磁铁,且将悬浮力、导向力、牵引力和制动力通过二系悬挂系统传递给车厢。
结构如图所示4.载荷分析磁悬浮车辆的整个模型可以认为包括 6 个自由度 , 即车厢的3 个位移自由度和夹层结构的3 个位移自由度。
通常体坐标系定义如下: X 轴代表磁悬浮车辆沿轨道前进的方向,相切于轨道的表面;Y 轴在导轨平面内,从车辆的右向左,相切于轨道的表面;Z 轴完全是遵循右手法则,垂直于导轨的表面。
vB=(u,v,w)B和wB=(p,q,r)B分别代表车辆车体结构的速度和角速度(这里主要用车体说明,夹层结构的速度和角速度也可以如此表示,如vC和ωC。
)下角标B表示体坐标系、在行驶过程中,空调等动力源由于高速回转会产生剧烈的振动,将成为激励源。
如果不忽略这些动力源引起的振动成分,最后得到的磁悬浮车辆激励源就是轨道激励和动力总成激励的共同作用的结果。
磁悬浮列车的主要技术系统磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。
下面分别对这三部分所采用的技术进行介绍。
电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。
常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。
在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。
车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。
此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。
电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。
由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。
然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。
EDS系统在低温超导技术下得到了更大的发展。
超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。
超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。
超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超导磁铁三部分组成。
当向轨道两侧的驱动绕组提供与车辆速度频率相一致的三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波,这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这种推力推动列车前进。
常导型磁浮列车悬浮原理
磁悬浮列车主要由悬浮系统、推进系统和导向系统
三大部分组成。
根据悬浮系统的区别,磁悬浮列车分常
导型和超导型两类,从悬浮技术上讲就是电磁悬浮系统
(EMS )和电力悬浮系统(EDS )。
常导型磁悬浮列车所采用的电磁悬浮系统(EMS )是
一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上
的铁磁轨道相互吸引产生悬浮。
由电子控制的支承磁铁
安装在列车两侧底部,将列车从下往上吸向轨道底部的定子。
导向磁铁位于列车两侧,使列车与轨道之间保持一定的侧向距离。
电子技术可保证列车上磁铁与轨道始终保持一定间距(10mm )稳定不变。
列车悬浮所需要的电能要低于其安装的空调设备。
悬浮系统可由车载蓄电池供电,与驱动系统的电源
是分开的。
列车无须外接电源可以悬浮1小时左右。
在行驶期间,车载蓄电池通过安装在支承磁铁中的直线发电机充电。
德国磁浮列车技术与上海磁浮列车。