影响钢筋混凝土框架节点抗震性能的因素
- 格式:doc
- 大小:26.50 KB
- 文档页数:7
建筑物抗震设计应该考虑的因素地震是一种非常严重的自然灾害,它能够在短时间内造成巨大的破坏和伤亡。
因此,为了减少地震对建筑物的影响,我们需要在设计和建造过程中考虑建筑物的抗震能力。
建筑物抗震设计是一件非常复杂的任务,需要从多个方面考虑,下面我们就来看看,建筑物抗震设计应该考虑的因素。
建筑物的地质环境建筑物的地质环境是一个非常重要的因素,因为它会直接影响地震对建筑物的影响。
地质环境包括地基、地貌、地形等因素。
如果建筑物位于地质环境复杂的地区,比如山区或者断裂带,那么它的抗震能力就需要更加具备,因为这些地区地震的频率和强度都较高。
此外,地震波传播的方式也与地质环境相关,因为地质环境会影响地震波的传播速度和路径。
因此,建筑物在设计时需要考虑周边地质环境的影响。
建筑物的结构类型不同的建筑物结构类型会对其抗震能力产生不同的影响。
在抗震设计中,通常会采用各种结构类型来增加建筑物的抗震能力。
常见的建筑物结构类型包括框架结构、剪力墙结构、桥梁结构、组合结构等。
框架结构是一种常见的抗震建筑设计方案,它通过在建筑物的墙体之间安装钢管或木材进行连接,从而使建筑物具有更加坚固的结构。
剪力墙结构是加强钢筋混凝土或钢板混凝土墙壁的一种方法,能够在地震时防止墙体的倾斜、弯曲和破裂。
桥梁结构是一种能够跨越大距离的结构,它通常由桥墩和桥梁拱形结构组成,可以提供很强的抗震能力。
组合结构是将多种结构类型组合起来形成一种新的结构,以实现更好的抗震性能。
对于不同类型的建筑物,需要选取合适的结构类型,以保证其在地震中稳定。
建筑物质量建筑物质量是影响其抗震能力的一个重要因素。
建筑物质量越大,其抗震能力就越强。
这是因为建筑物质量大,需要更大的力量才能让其倾斜或者摇晃。
因此,在建筑物的设计和建造过程中,需要注意保证建筑物的质量,防止出现质量不合格或者低质量建筑物的情况。
建筑物的地基工程建筑物的地基工程是保证其抗震性能的关键因素之一,而且其数量、质量与地震灾害影响密切相关。
钢结构框架梁柱节点性能分析摘要:钢结构框架梁柱节点施工是提升建筑抗震性的主要工序,因此应优化梁柱节点的质量。
本文通过概述钢结构框架梁柱节点内容,围绕有限元模型、载荷等方面研究钢结构框架梁柱节点性能,分析多种要素对于节点性能的影响,为优化节点质量提供参考意见,提升建筑工程整体质量,突出项目结构的抗震性能。
关键词:建筑工程;钢结构框架;梁柱节点前言:钢结构具有韧性塑性强、重量轻、制造简便的优势,该模式在建筑工程中的应用可以缩短施工周期、提升抗震性能。
其中梁、柱节点是框架关键连接位置,其性能会决定框架结构在载荷基础下的整体性。
因此,有必要深入分析钢结构框架梁柱节点的实际性能,实现构件和节点的标准化设计,优化节点性能。
1钢结构框架梁柱节点概述1.1刚性连接模式其一,全焊连接。
借助融透的方式焊接梁上下翼,通过双面胶焊接腹板。
上述连接模式对于焊接技术要求较高,若操作失误会导致应力集中,对施工结构受到影响。
其二,全栓焊接。
借助T型钢,使用高强螺栓连接梁翼和柱翼,不会产生三向应力和残余应力。
其三,混合连接。
该模式包含两方面内容:一方面是利用融透焊接梁上下翼,并通过大刚度角钢连接高强螺栓,借助剪力板连接柱翼和高强螺栓。
多层钢结构中主要利用刚性连接梁柱,通过柱贯通方式连接框架柱和梁。
针对抗震部分,应确保梁翼缘厚度和加劲肋相同。
若属于非抗震区域,加劲肋的厚度应≥梁翼缘厚度的1/2,满足板件的实际宽厚比值,防止连接节点受到破坏。
1.2柔性连接模式柔性连接又称为铰接连接,在梁侧无线位移,不过可以进行自由的转动。
该模式包含承托、端板以及角钢三方面。
其中,角钢主要连接柱和梁腹板,可以借助连接板替代角钢。
端板连接模式和角钢相同,但不可替代。
利用承托连接模式连接柱的腹板时,主要将厚板当作承托构件,防止柱腹板弯矩较大,确保偏心力矩传输至柱翼位置。
2钢结构框架梁柱节点性能研究2.1构建有限元模型本课题主要借助有限元软件,依据相关学者关于连接节点的研究内容,构建建筑工程中钢框架梁的非线性节点有限元模型,分析其中力学性能的差异性,为后续工程梁柱节点连接模式提供新思路[1]。
钢筋混凝土框架结构设计中的优化与安全性分析钢筋混凝土框架结构是现今建筑工程中最常用的一种结构,其安全性和可靠性对于保障人员生命财产安全至关重要。
而在设计阶段,如何优化结构设计,提高建筑物的承载能力和抗震性,成为设计师面临的重要任务。
本文将从优化设计和安全性分析两个方面进行探讨。
一、优化设计钢筋混凝土框架结构设计阶段,需要根据建筑物的地理环境、建筑物使用功能以及承重情况等多种因素进行考虑,通过合理的结构设计方案,提高建筑物的整体安全性和抗震能力。
1. 材料的选择钢筋混凝土框架结构的优化设计中,材料的选择是至关重要的因素,主要从以下三个方面进行考虑:1)力学性能在结构设计阶段,需要根据建筑物的使用功能和设计荷载,选择具有良好力学性能的钢筋和混凝土材料。
通常情况下,采用大直径的高强钢筋、高强混凝土等材料,可以提高材料的承载能力和抗震性能。
2)耐久性钢筋混凝土结构的使用寿命是一个重要的考虑因素,在材料的选择上,需要考虑材料的耐久性能。
钢筋材料选用不含氢、磷等杂质的优质钢筋,混凝土材料选用优选掺合料,有利于提高混凝土的耐久性能。
3)经济性经济性是针对使用性能特别要求不高的情况下考虑的一个因素。
例如,在需要降低造价的情况下,采用增强弹性模量材料、有机纤维等加强剂,可以起到一定的经济效益。
2. 结构的布局结构布局是钢筋混凝土框架结构优化设计中另一个十分重要的环节。
通常情况下,优化的结构布局应该是结构安全可靠、布局合理且美观大方,具备好的通风采光性能,并且考虑到建筑物的使用功能,增加使用时的舒适性。
3. 抗震设计抗震性能是钢筋混凝土结构设计中最为关键的考虑因素,通常情况下,钢筋混凝土结构的抗震能力依赖于材料的强度、布局和连接方式,因此,进行抗震设计是优化结构设计的主要环节之一。
抗震设计包括结构形式、轴力比、刚度比和拐点等因素的确定,建筑物的抗震能力通常需要根据设计标准进行评估和检验。
二、安全性分析钢筋混凝土框架结构的安全性分析主要涉及到以下方面:1. 结构的承载能力承载力是钢筋混凝土结构安全性的重要因素,设计师需要考虑建筑物的使用功能、地理环境等多个方面指标,应根据设计标准确定建筑结构布置、墙体开口、集中力的作用部位等因素,进行合理的结构设计和布置。
钢筋混凝土框架结构的抗震设计原则钢筋混凝土框架结构是一种常用的抗震结构形式,具有较好的抗震性能。
在设计过程中,需要遵循一些抗震设计原则,以确保结构在地震中的安全性和稳定性。
本文将从结构的整体设计、构件的设计以及施工过程等方面介绍钢筋混凝土框架结构的抗震设计原则。
一、结构的整体设计钢筋混凝土框架结构的抗震设计首先需要确定结构的整体布局和尺寸。
在选择结构形式时,应根据地震烈度、场地条件和建筑用途等因素综合考虑,选择适当的结构形式。
一般情况下,多层建筑采用刚性钢筋混凝土框架结构,高层建筑则采用刚性钢筋混凝土剪力墙结构或框架-剪力墙结构。
在确定结构尺寸时,应考虑到结构的刚度和强度要求,以及地震荷载的影响。
结构的刚度和强度需满足相关规范的要求,以确保结构在地震中具有足够的抗震能力。
同时,还需考虑结构的减震和消能设计,采用合适的减震措施和消能装置,提高结构的抗震性能。
二、构件的设计钢筋混凝土框架结构的构件设计是抗震设计的关键。
首先,梁柱等构件的截面尺寸应满足强度和刚度要求,以承受地震力的作用。
同时,还需考虑构件的延性,即在地震中能够产生适度的变形能力,吸收和耗散地震能量。
构件的配筋设计也十分重要。
配筋应满足强度和延性的要求,同时还需考虑钢筋的粘结性能和混凝土的抗压性能。
在配筋布置时,应合理分布钢筋,避免出现集中破坏,提高结构的整体抗震性能。
三、施工过程的控制在钢筋混凝土框架结构的施工过程中,需要严格控制施工质量,以确保结构的抗震性能。
首先,需要合理选择建筑材料,并进行质量检验。
钢筋的质量应符合规范要求,混凝土的配合比应合理,以保证结构的强度和耐久性。
施工过程中还需注意钢筋的加工和安装。
钢筋的加工应满足规范要求,避免出现钢筋损伤、弯曲或错位等问题。
在钢筋的安装过程中,应按照设计要求进行布置,保证钢筋的覆盖层和间距等参数符合规范要求。
施工过程中还需进行质量检验和监控。
对结构的关键部位和节点应进行质量检验,以确保施工质量。
房屋建筑框架结构抗震设计要点摘要:钢筋混凝土框架结构具有良好抗震性能,结构抗震的本质就是延性,提高延性可增加结构抗震潜力,增强结构抗倒塌能力。
结构主要靠延性来抵抗较大地震作用下非弹性变形。
本文分析了结构延性在抗震设计中的重要性及其作用,影响结构延性的主要因素以及结构延性的抗震设计。
关键词:房屋建筑;框架结构;抗震设计前言地震是一种能对人类的生产和生活带来极大破坏的自然灾害,为了预防地震灾害,减轻地震损失,我国加强了地震预报、工程抗震和地震控制方面研究工作,其中工程抗震是一项有效的措施,其目的是寻求最合理的抗震设计,保证建筑物的安全。
工程中结构抗震的设计是依据抗震设防烈度通过地震作用的取值和抗震措施的采取来实现结构抗震设防目标。
一、框架结构延性的作用对于受弯构件来说,随着荷载增加,首先受拉区混凝土出现裂缝,表现出非弹性变形。
然后受拉钢筋屈服,受压区高度减小,受压区混凝土压碎,构件最终破坏。
从受拉钢筋屈服到压区混凝土压碎,是构件的破坏过程。
在这过程中,构件的承载能力没有多大变化,但其变形的大小却决定了破坏的性质。
当结构设计成为延性结构时,由于塑性变形可以耗散地震能量,结构变形虽然会加大,但结构承受的地震作用不会很快上升,内力也不会再加大,因此具有延性的结构可降低对结构的承载力要求,也可以说,延性结构是用它的变形能力来抵抗罕遇地震作用;反之,如果结构的延性不好,则必须有足够大的承载力来抵抗地震作用。
结构或构件的延性具有以下作用:1、防止脆性破坏脆性破坏是突然的、无明显征兆的破坏,因此破坏的后果较严重。
工程设计中应避免脆性破坏,应按塑性破坏的原则进行设计,使结构或构件具有一定的延性,保证结构或构件在破坏之前有足够的变形能力,防止突然的脆性破坏发生。
2、对脆性构件起稳定作用在实际建筑结构中,延性构件与非延性构件(脆性构件)往往是并存的。
例如框架结构的长柱与短柱。
实验研究说明,在保证延性构件与非延性构件一定比例的条件下,延性构件对脆性构件起稳定作用,使结构有较好的变形能力而不致失效。
钢筋混凝土框架结构抗震延性设计的未来发展趋势钢筋混凝土框架结构是应用较为普遍的一种形式,其结构抗震的本质在于延性的提高,进而抵抗和预防抗倒塌能力。
近年来,随着城市化进程的不断推进,多高层建筑结构的抗震能力备受重视。
基于此,本研究在概述钢筋混凝土框架结构抗震相关理论相关理论的基础上,分析了其抗震延性设计的要点,并对钢筋混凝土框架结构抗震延性进行设计,以对其未来的发展趋势进行展望。
标签:钢筋混凝土框架结构;抗震延性设计;未来趋势0 前言目前,我国的建筑抗震设计主要采用的是三水准抗震防设(大震不倒,中震可修,小震不坏),为实现这一目标,对钢筋混凝土框架结构的延性提出了更高的要求[1]。
现阶段我国多高层建筑中,钢筋混凝土框架结构由于其具有较好的延性和整体性而备受欢迎。
然而,对于地震烈度超过抗震防设标准时,钢筋混凝土框架结构还是存在一定的问题的。
因此,本研究主要从其本质出发,对其进行了研究。
1 钢筋混凝土框架结构抗震相关理论概述框架结构由两部分组成,即压弯构件和弯剪构建,也就是竖向框架柱和水平框架梁组成[2]。
其中,梁是钢筋混凝土框架结构的主要耗能件,因而钢筋混凝土框架结构的延性在很大程度上是取决于梁的延性的。
钢筋混凝土框架结构抗震的关键就在于框架结构的延性,即在保证承载力的前提下,具备的塑性变形能力,也就是延性比[3]。
延性比的提高,对于框架结构抗震能力的提升具有重要的意义。
2 钢筋混凝土框架结构抗震延性设计的要点(1)强柱弱梁。
强柱弱梁要求结构柱子的承载力要大于梁的承载力。
也就是说发生地震时柱子的破坏一定要晚于梁。
为进一步提升钢筋混凝土框架结构抗震延性,在设计时,应注重强柱弱梁的设计,为做到这一点,应主要从以下三方面进行:第一,注重改变塑性的部位,促使其出现在梁端,进而促使其能够最大限度耗散地震能量。
第二,注重加强柱的抗弯能力,进而促使其形成梁铰机构,从而产生更多的塑性铰,以起到耗散地震能量的作用。
最后,注重塑性铰分布的均匀性。
钢筋混凝土框架结构抗震设计原则
钢筋混凝土框架结构抗震设计的原则主要包括以下几点:
1.合理布置结构:在设计过程中,要合理布置结构的位置、形状和选取适当的间距,以保证结构的整体稳定性和均匀性。
2.增强结构刚度:通过增加结构的刚度,可以减小结构在地震作用下的变形,提高结构的抗震能力。
可以采用适当的加强措施,如增加梁柱截面尺寸、设置剪力墙等。
3.提高结构的耗能能力:结构在地震作用下会发生能量耗散,减小地震作用对结构的影响。
可以采用适当的抗震构造形式,如柔性铰接和弹性支承等,以提高结构的耗能能力。
4.加强连接节点的设计:连接节点是结构的薄弱环节,容易发生破坏。
因此,在设计中要特别关注连接节点的强度和刚度,采用合适的节点形式和连接方式,提高节点的抗震性能。
5.考虑结构的地震荷载:在抗震设计中,要合理考虑结构的地震荷载,包括重力荷载、地震作用荷载和风荷载等。
通过合理的荷载计算和结构布置,保证结构在地震作用下的安全性。
6.进行抗震分析:在设计过程中,要进行抗震各种工况的强度验算和位移限值验算等抗震分析。
在分析中要考虑结构的整体受力性能,通过合理的分析和验算,找出结构的薄弱环节,采取相应的措施进行加固。
7.施工质量控制:在钢筋混凝土框架结构抗震设计中,施工质量直接影响结构的抗震性能。
因此,在施工过程中要严格控制质量,确保钢筋布置、混凝土浇注质量和施工工艺的合理性,提高结构的抗震能力。
㊃综㊀述㊃钢结构(中英文),38(12),1-26(2023)DOI :10.13206/j.gjgS 23062902ISSN 2096-6865CN 10-1609/TF㊀㊀编者按:当前我国第五代GB 18306 2015‘中国地震动参数区划图“明确了基本㊁多遇㊁罕遇和极罕遇等四级作用的地震动参数确定方法并提高了工程结构抗震设防标准㊂组合结构适应国家新型城镇化建设重大需要,在城市人口密集区域和抗震设防高烈度区域具有广泛应用价值㊂由于钢管混凝土柱存在间接约束以及界面滑移等特性,其抗震能力可进一步挖掘,以提升强震下重要工程结构的安全性,或者在维持相同性能时节约材料用量㊂学者们通过模型试验㊁理论研究以及关键技术研发,所形成的系列成果在工程结构中得到了成功应用㊂为此,‘钢结构(中英文)“杂志特邀丁发兴教授为主编,系统组织了两期(本期及2024年第1期) 组合结构抗震性能与韧性提升 专栏,向读者介绍国内针对钢管混凝土柱㊁钢管混凝土柱-组合梁节点㊁组合框架以及组合框架-筒体结构等方面的最新研究成果,探讨各有效措施对抗震性能的影响规律,以期推动组合结构技术的完善与升级㊂钢-混凝土组合结构抗震性能研究进展∗丁发兴1,2㊀许云龙1㊀王莉萍1,2㊀吕㊀飞1,2㊀段林利1,2㊀余志武1,2(1.中南大学土木工程学院,长沙㊀410075;2.湖南省装配式建筑工程技术研究中心,长沙㊀410075)摘㊀要:钢-混凝土组合结构因具有抗弯刚度大㊁承载力高㊁延性好和施工便捷等优点,适应国家新型城镇化建设重大需要,在城市人口密集区域和抗震设防高烈度区域应用广泛㊂在提高工程结构抗震设防标准的背景下,研究钢-混凝土组合结构的抗震性能,进一步提升其抗震韧性,建立具有更高韧性的钢-混凝土组合结构抗震设计方法对促进建筑结构实现 双碳 战略目标具有重要意义㊂为此,归纳总结了钢-混凝土组合结构抗震性能的研究进展,包括钢-混凝土组合梁㊁钢管混凝土柱及钢管混凝土柱-组合梁节点的滞回性能试验研究,以及钢-混凝土组合结构体系的拟静力㊁拟动力及振动台试验研究,讨论并比较了各种抗震分析模型及其方法,提出了当前研究存在的一些问题和尚需深入研究的方向㊂基于现有研究成果总结得到:1)组合梁主要依靠钢梁耗能,可采取增大钢梁截面尺寸的措施提高耗能能力㊂钢管混凝土柱主要依靠钢管和混凝土耗能,可采取拉筋增强约束措施直接约束混凝土,使其由脆性向塑性转变从而提高框架柱的耗能能力㊂与其他类型组合节点相比,刚性连接组合节点具有更好的耗能能力㊂2)罕遇地震下框架结构以梁耗能为主,而在超罕遇地震下仍以梁作为主要耗能部件将使工程成本大幅增加㊂由于超罕遇地震发生概率极低,若采取适当的增强约束措施使柱也具备耗能能力并参与耗能,则可在适当增加工程建设成本的同时使结构具有抵抗超罕遇地震的能力,此时组合结构抗震设计理念可由罕遇地震时的 强柱弱梁,梁耗能为主 向超罕遇地震时的 梁柱共同耗能 推进㊂3)基于平截面假定的杆系纤维模型计算软件通常适用于弹性和弹塑性小变形阶段分析,而当组合结构处于塑性大变形阶段时,结构杆件便不再符合平截面假设㊂对强震下组合结构体系的动力响应仿真模拟需要克服弹塑性小变形阶段的假定条件,采用适用于塑性大变形阶段结构分析的混凝土三轴弹塑性本构模型及相应的体-壳元模型是一种有效的途径㊂4)剪力墙结构具有整体性好㊁侧向刚度大等优点,但传统构造下其抗震能力较弱,可通过提升连梁和墙肢等耗能构件的耗能能力以增强结构整体耗能能力,如采用钢-混凝土组合连梁㊁型钢混凝土连梁或合理构造钢板连梁,以及型钢-约束混凝土或钢管混凝土墙肢等㊂5)工程结构在使用阶段面临着诸多灾害考验,传统方法根据不同外荷载进行独立抵抗设计,忽视了多灾害耦合作用机制,使结构综合抗灾性能难以满足使用需求,故建立安全可靠的抗多灾害设计方法和结构体系是结构工程师在防灾减灾领域的一项重大课题㊂关键词:钢-混凝土组合梁;钢管混凝土柱;钢-混凝土组合结构;抗震性能;试验研究∗国家自然科学基金项目(51978664)㊂第一作者:丁发兴,男,1979年出生,博士,教授㊂通信作者:王莉萍,女,1987年出生,博士,副教授,wlp2016@㊂收稿日期:2023-06-290㊀引㊀言中国是世界上地震灾害最严重的国家之一,地震灾害给人类社会活动造成了不可估量的损失㊂大量建筑结构因抗震能力不足而倒塌,造成的人员伤1丁发兴,等/钢结构(中英文),38(12),1-26,2023亡和经济损失使得抗震减灾技术成为结构工程师们面临的主要考验㊂为提高建筑结构的抗震性能,研究者们在结构布置和局部构造等方面展开了大量的研究工作㊂钢-混凝土组合结构因充分发挥了两种材料的力学性能优势,提升了结构的刚度㊁承载力和耗能能力而在高层及超高层建筑结构中得到了广泛应用[1]㊂随着经济社会的发展,工程结构抗震设防标准也在不断提升,研究钢-混凝土组合结构的抗震性能,进一步提升其抗震韧性,建立具有更高韧性的钢-混凝土组合结构抗震设计方法,对促进建筑结构实现 双碳 战略目标具有重要意义㊂组合结构中,钢-混凝土组合梁和钢管混凝土柱的材料利用效率最高,其抗震性能提升明显㊂为此,笔者对国内外相关钢-混凝土组合结构的主要研究成果进行归纳总结,对组合结构抗震性能方面需要进一步深入研究的工作进行展望,以期为后续研究工作提供一些参考和建议㊂1㊀钢-混凝土组合构件及节点抗震性能1.1㊀钢-混凝土组合梁钢-混凝土组合梁由钢梁和混凝土板通过栓钉连接而成,发挥了混凝土的抗压性能和钢材的抗拉性能优势㊂Daniels等[2]对组合框架中的组合梁进行了抗震性能研究,并给出了组合梁的弹塑性分析方法㊂文献[3-5]先后对组合梁进行了低周往复试验研究,结果表明组合梁具有良好的耗能能力和延性,增设腹板加劲肋或增加腹板厚度能明显提高组合梁的极限承载力,改善构件延性㊂Gattesco 等[6-7]㊁Taplin等[8]和Bursi等[9-10]着重研究了剪力连接件对组合梁抗震性能的影响,指出剪力连接件的布置方式直接影响界面滑移量,进而影响组合梁极限承载力㊂国内聂建国等[11]首先进行了6组钢-混凝土叠合板组合梁低周往复荷载试验研究,结果表明钢-混凝土叠合板组合梁的滞回曲线饱满,且存在界面滑移,其剪力连接度直接影响构件正向极限抗弯承载力,而反向极限抗弯承载力则可依据简化塑性方法计算得出㊂此后,蒋丽忠等[12-16]和Ding等[17]先后对低周往复荷载下钢-混凝土组合梁的抗震性能进行了系列试验研究,分别探讨了剪力连接度㊁力比㊁栓钉直径㊁腹板厚度㊁纵向和横向配箍率对组合梁抗震性能的影响规律,并建立了恢复力模型[13]㊂Liu等[18]建立了三维实体-壳元模型,其中钢梁采用壳单元,混凝土采用实体单元,栓钉采用梁单元或弹簧单元,分析结果表明组合梁的抗震能力主要依靠钢梁翼缘,增大钢梁尺寸有利于提高抗震能力,而增大栓钉剪力连接度也有利于提高钢梁的耗能㊂1.2㊀钢管混凝土柱钢管混凝土柱由外钢管内部填充混凝土而成㊂自1965年日本九州大学学者Sasaksi和Wakaba-yashi对方钢管配筋混凝土柱进行拟静力试验后[19],Tomii等[20]也开展了圆钢管混凝土柱拟静力试验研究,表明钢管混凝土柱比钢筋混凝土柱具有更大的极限承载力,更好的延性和耗能能力,以及更小的刚度退化等特点㊂Elremaily等[21]最早根据试验结果和理论分析指出钢管约束作用提升了柱承载力和抗震性能㊂随后有关钢管混凝土柱抗震性能研究越来越丰富,研究者们分别从材料强度㊁轴压比㊁宽(径)厚比和长细比等方面探讨了钢管混凝土柱抗震性能规律㊂在材料强度方面,吕西林等[22]㊁韩林海等[23]和Liu等[24]先后研究了混凝土强度对钢管混凝土柱抗震性能的影响规律,结果显示随着混凝土强度的提升,试件初始刚度略有增大,极限承载力也有所提高,但其延性和耗能能力均下降,且刚度退化加快㊂游经团等[25]和Yadav等[26]的试验结果表明:增大钢管屈服强度能够明显提升极限承载力,但对初始抗弯刚度几乎无影响㊂Varma等[27-28]探讨了钢材强度对柱抗震性能的影响规律,低轴压比下柱的延性系数随钢材强度的增大而降低,而当轴压比较大时,该规律并不明显㊂在轴压比方面,吕西林等[22]㊁Liu等[24]㊁游经团等[25]㊁Varma等[27-28]㊁张春梅等[29]㊁李学平等[30]㊁李斌等[31]㊁聂瑞锋等[32]和Cai等[33]通过试验研究发现,轴压比是影响柱抗震能力的直接因素,增大轴压比导致水平承载力㊁延性和耗能能力下降,刚度退化明显㊂在宽(径)厚比方面,吕西林等[22]㊁Liu等[24]㊁Yadav等[26]和李学平等[30]的试验表明,试件水平极限承载力随着宽(径)厚比增大而降低㊂Varma 等[27-28]㊁李斌等[31]和余志武等[34]指出,提高宽(径)厚比可使其延性系数下降㊂聂瑞锋等[32]和Matsui等[35]指出,宽(径)厚比越大,耗能能力越弱㊂在长细比方面,李斌等[31]㊁聂瑞锋等[32]和邱增美等[36]通过试验研究表明,随着长细比的增加,钢管混凝土柱初始刚度明显降低,刚度退化加快,水平2钢-混凝土组合结构抗震性能研究进展承载力和耗能能力变弱,延性系数也明显下降,当长细比达到一定值时延性系数下降更快㊂为加强大宽(径)厚比钢管对混凝土的约束作用而提升其抗震性能,学者们陆续提出了诸多约束措施,如在柱端部焊接钢板或角钢[37],包裹纤维复合材料[38],设置约束拉杆[39]㊁栓钉[40]㊁加劲肋[41]或斜拉肋[42]等局部加强措施,如图1a ~1g 所示,这些局部加强构造一定程度上延缓了柱端塑性铰的形成与发展㊂a 钢板约束;b 角钢约束;c 纤维复合材料约束;d 拉杆约束;e 栓钉约束;f 加劲肋约束;g 斜拉肋约束;h 内拉筋约束㊂图1㊀各种约束方式下的钢管混凝土柱由于钢管对混凝土的约束作用为间接被动约束,丁发兴[43]在比较各种约束方式后提出了内拉筋约束钢管混凝土柱技术,如图1h 所示,并揭示了内拉筋直接约束混凝土的工作原理㊂此后,丁发兴课题组开展了端部拉筋钢管混凝土柱抗震性能试验研究,截面形式包括矩形[44]㊁圆形[45]㊁椭圆形[46]㊁圆端形[47]等,探讨了拉筋与钢管内表面接触方式的影响[48],试验结果表明,实际轴压比高达0.8的超高轴压比钢管混凝土柱仍呈现延性破坏,且钢管混凝土柱塑性铰展现出小偏压和大偏压两个阶段,其韧性得到进一步提升㊂同时,课题组基于体-壳元模型进行了有限元模拟,其中混凝土采用实体单元,钢管采用壳单元,拉筋采用杆单元,分析结果表明,压弯荷载下拉筋具有降低界面滑移㊁直接约束混凝土以及促进钢管抗弯等效果,从而提高抗弯刚度㊁承载力和耗能能力,其中拉筋大幅度提高了混凝土的耗能能力[49]㊂1.3㊀钢管混凝土柱-组合梁节点作为钢-混凝土组合结构的关键传力部位,组合节点的剪力主要通过钢梁腹板传递,其次通过节点区混凝土和钢管壁间的黏结力和摩擦力传递,而弯矩则主要由加强环板㊁内隔板等构件传递[50]㊂现有节点试验不少是以钢管混凝土柱和纯钢梁的连接为研究对象,而相关组合框架及组合节点的试验研究结果表明,钢梁与楼板在进入弹塑性阶段之后仍能发挥明显的组合效应[51],这种组合效应能显著提高结构的刚度㊁强度及耗能能力,抑制钢梁上翼缘屈曲,增强钢梁的稳定性[52]㊂另外,当节点区域受正向弯矩作用时,楼板与钢梁的组合效应更为显著[53-54],楼板的存在将使中性轴上移,导致钢梁下翼缘应变明显增大,从而促使下翼缘更易发生屈服及破坏,降低组合梁的转动能力[55]㊂鉴于钢筋混凝土楼板对节点区域及结构体系具有重要影响,笔者仅对考虑楼板的组合节点抗震性能试验进行梳理㊂组合梁节点及框架试验表明负弯矩区钢梁下翼缘由于受压易过早出现局部屈曲和失稳的问题,李杨等[56]在普通组合梁负弯矩区下翼缘增设一块混凝土板,开展了钢-混凝土双面组合梁节点的抗震性能试验,与普通组合梁节点相比,双面组合梁节点具有更高的刚度和承载力,但在刚度退化㊁延性系数和耗能能力等方面无明显优势㊂在削弱式节点方面,Xiao 等[57]和Li 等[58]对带楼板的狗骨式节点进行了拟静力试验,结果表明,减小梁截面可促进削弱区域塑性铰的形成,有效避免节点核心区焊缝撕裂㊂在传统刚性节点方面,聂建国课题组先后完成了内隔板式节点[59]㊁栓钉内锚固式节点㊁外隔板式节点[60]和内隔板贯通式节点[61]的拟静力试验研究㊂研究发现:内隔板式节点表现出较强的极限承载能力,但其位移延性系数低;而栓钉内锚固式节点具有较强的变形能力,但极限承载力较低;相比之下,外隔板式节点和内隔板贯通式节点在极限承载能力㊁位移延性系数和耗能能力等方面均具有良好的性能[60-61]㊂此外,聂建国等[62]建立了组合节点剪力-剪切变形曲线的恢复力模型,提出了组合节点屈服抗剪承载力和极限抗剪承载力计算公式㊂韩林海课题组[63-64]采用外环板式节点对圆钢管混凝土柱-组合梁节点进行拟静力试验研究,提出了节点的抗剪承载力公式和核心区剪力-剪切变形恢复力模型㊂周期石等[65]提出了楼板钢筋和钢梁翼缘削弱穿入钢管混凝土柱的刚接节点,发现楼板钢筋的穿入增强了节点区域钢梁抗弯刚度和楼板的组合效应,而钢梁翼缘削弱的穿入降低了穿入钢梁对浇筑柱中混凝土的影响㊂研究表明,对于钢梁翼缘削弱穿入钢管混凝土柱的刚接节点,当削弱程度不大时,节点具有良好的抗震性能,但仍将降低节点的刚3丁发兴,等/钢结构(中英文),38(12),1-26,2023度㊁承载力和耗能能力㊂在半刚性节点方面,Mirza等[66]分别对半刚性单边螺栓节点进行了静力和拟静力试验,并根据有限元分析结果给出了构造设计方法㊂王静峰等[67-69]进行了半刚性单边螺栓节点试验,包含圆㊁方钢管和带纵向加劲肋钢管的拟静力试验以及带纵向加劲肋钢管混凝土柱的拟动力试验㊂试验结果表明,圆钢管混凝土柱-组合梁节点的承载力和弹性刚度要大于方截面[67];外伸端板连接节点的承载力和弹性刚度要大于平齐端板连接,而其转动能力和延性性能要低于平齐端板连接[68-69]㊂Yu等[70]提出了上焊下栓式的节点连接方式,即钢梁上翼缘与柱隔板焊接,下翼缘与柱隔板通过螺栓连接,螺栓连接处板件的滑移有利于降低钢梁下翼缘应力,避免出现过早断裂的现象㊂欧洲规范[71]中,根据初始转动刚度大小,将节点分为铰接㊁半刚性连接和刚性连接;根据抗弯承载力大小,将节点分为铰接㊁部分强度和全强度㊂Ding 等[72]认为该分类标准对于半刚性连接节点的定义较为宽泛,难以准确判定试件的类型,应根据节点的初始转动刚度㊁抗弯承载力和耗能能力等性能指标综合定义,并将其细化为半刚接㊁准刚接㊁Ⅰ类刚接和Ⅱ类刚接四类㊂据此,丁发兴等[73]完成了端板螺栓连接和加强环连接组合梁节点的拟静力试验,利用柱内拉筋 强柱 构造和加劲肋 强梁 构造技术实现了节点核心区强连接,显著提升了螺栓连接节点的初始转动刚度㊁抗弯承载力和耗能能力,使栓连节点达到了刚性节点的性能要求㊂同时,内拉筋 强柱 构造技术实现了轴压比高达0.8时,组合节点梁端发生弯曲破坏的失效模式㊂除了以上相关平面框架组合节点抗震性能试验研究外,樊健生等[74-75]从加载路径㊁混凝土楼板㊁柱类型及节点位置等方面对空间组合内隔板贯通式节点进行了拟静力试验,结果表明空间受力的节点在承载力和延性性能等方面均有明显下降,因此平面荷载作用不能完全反映其抗震性能,在节点设计中应考虑空间荷载的耦合作用㊂2㊀钢-混凝土组合结构体系抗震性能组合梁㊁柱及其组合节点等构件的研究最终以在结构体系中的应用为落脚点,因而各类组合构件集成后的体系响应是工程实践重要的关注点之一㊂笔者以钢-混凝土组合框架结构为主要对象,根据不同试验方法分别梳理了研究者在有关结构体系抗震方面的研究成果㊂2.1㊀试验研究2.1.1㊀拟静力试验Matsui[76]㊁Kawaguchi等[77-78]㊁马万福[79]㊁钟善桐等[80]㊁李斌等[81]㊁王来等[82]㊁李忠献等[83]和王先铁等[84]对钢-混凝土组合框架模型进行了系列抗震性能试验研究,指出钢-混凝土组合框架结构的抗震性能要优于钢筋混凝土框架和钢框架结构㊂为研究混凝土楼板在框架结构中的组合效应,聂建国等[85]完成了4层单跨纯钢框架和组合框架结构的拟静力试验㊂结果表明:与整体性较差的纯钢框架相比,组合框架的抗侧刚度因混凝土楼板空间作用而大幅提升㊂Tagawa等[86]㊁Nakashima 等[87]和聂建国等[52,88]分别进行了足尺框架子结构拟静力试验,探讨了混凝土楼板对结构刚度㊁强度㊁耗能及变形能力的影响规律,确定了在结构设计中楼板组合效应的有效计算宽度㊂王文达等[89]㊁王先铁等[90]和余志武等[91]以柱截面形状㊁材料强度㊁含钢率㊁轴压比和梁柱线刚度比等为研究对象,对组合框架结构开展了往复荷载作用下的试验研究,探讨了各参数对组合框架结构抗震性能的影响规律,提出了钢管混凝土框架荷载-侧移实用恢复力模型及位移延性系数简化计算方法㊂王静峰等[92-94]和王冬花等[95]研究了往复荷载作用下半刚性单边高强螺栓连接组合框架的抗震性能和破坏机理,分析了滞回及骨架曲线㊁强度和刚度退化规律㊁延性及耗能能力等力学性能指标,并建立了半刚性钢管混凝土框架的弹塑性地震反应分析模型,提出了一种适用于半刚性钢管混凝土框架的P-Δ关系曲线的简化二阶方程和弹塑性层间位移的简化计算方法㊂此外,赵均海等[96]提出了装配式复式钢管混凝土框架结构及其极限承载力简化计算方法,阐述了柱-柱拼接节点和加强块梁柱节点在此类结构中的应用效果㊂Ren等[97]和王波等[98]在钢管混凝土框架中增设屈曲约束支撑装置,研究水平反复荷载作用下耗能减震部件对结构抗震性能的影响㊂结果表明:增设屈曲支撑不仅对结构的刚度和承载力有提升作用,还能延缓塑性铰的形成,增强结构延性和耗能能力㊂丁发兴等[99]完成了2层2跨组合框架对比试验研究,结果表明:内拉筋强柱构造措施提升了框架结构的刚度和承载力,延缓了柱端塑性铰的形成,增强了结构延性和耗能能力㊂由此可见,内拉筋提升框架柱的刚度㊁承载力和耗能能力,其效果相当于增4钢-混凝土组合结构抗震性能研究进展设屈曲支撑㊂2.1.2㊀拟动力试验宗周红等[100]通过对缩尺比例为1/3的半刚性两层空间组合框架的拟动力试验,从层间刚度㊁自振频率㊁加速度反应㊁位移反应和滞回曲线等方面评估了该结构的动力响应和耗能性能,研究了峰值加速度㊁频谱特性和强震持续时间对结构动力响应和力学性能的影响,建立了组合框架结构动力分析模型㊂Herrera等[101]按照3/5的比例对一幢节点采用T型连接方式的4层组合框架进行了拟动力试验,结果表明此类节点的组合框架满足美国相关设计标准㊂在半刚性节点组合框架方面,He等[102]对缩尺比例为4/7的端板螺栓连接组合框架子结构模型先后进行了拟动力㊁拟静力和静力推覆试验,从层间位移及剪力㊁应变㊁转角和耗能等方面分析结构在多遇地震㊁设防地震㊁罕遇地震和超罕遇地震水准下的动力响应㊂完海鹰等[103]对节点采用长螺栓式双腹板顶底角钢半刚性连接的钢管混凝土框架进行拟动力试验研究,探讨不同峰值加速度下结构的受力特征㊁刚度退化㊁动力响应及耗能能力㊂王静峰等[104-105]通过两组拟动力试验分别研究了钢管混凝土柱-组合梁框架和钢管混凝土柱-钢梁框架的动力性能和破坏特征,探讨了柱截面形式和端板类型对结构性能的影响㊂试验结果表明,圆形柱组合框架的最大位移响应和累积耗能均大于方形柱组合框架,但其初始刚度和承载力则弱于方形柱组合框架㊂此外,王静峰等[106]还采用混合试验方法对装配式中空夹层钢管混凝土组合框架开展了拟动力试验研究,分析了该组合框架结构在峰值加速度为0.62g和1.24g时的动力响应和破坏机理㊂在屈曲约束支撑组合框架方面,Tsai等[107-108]完成了多级地震作用下3层3跨足尺钢管混凝土柱屈曲约束支撑框架拟动力试验研究,探讨了屈曲约束支撑对结构整体抗震性能的影响,并从有效刚度㊁耗能和位移延性系数等方面评估了支撑构件连接方式的有效性㊂郭玉荣等[109]完成了防屈曲支撑组合框架子结构拟动力试验,提出了防屈曲支撑可增强结构的抗侧刚度和变形恢复能力㊂2.1.3㊀振动台试验黄襄云等[110-111]利用振动台试验对5层2跨2开间钢管混凝土空间框架结构的动力特性㊁加速度反应和位移反应进行了分析,并分别按等强度㊁刚度㊁截面积的原则将钢管混凝土柱换算成钢筋混凝土柱进行试算,综合评定了该结构的抗震性能㊂杜国锋等[112]采用单输入㊁单输出方式对8层单跨2开间钢管混凝土柱-钢梁框架进行动力特性试验,并通过3种不同地震波作用分析了结构的最大地震作用力㊁层间剪力㊁位移和应变反应㊂邹万山等[113]通过振动台试验得出,不同频谱特性的地震波对模型结构的加速度和位移反应分布曲线形状影响较小,且模型各层绝对加速度主要由前两阶振型决定,其他高阶振型的影响可以忽略㊂罗美芳[114]研究了不同工况下4层钢-混凝土组合框架结构的动力响应及破坏模式,评价了该结构的抗震性能㊂童菊仙等[115-116]设计并制作了有㊁无侧向耗能支撑的5层单跨2开间的方钢管混凝土柱框架模型,利用振动台试验对两种框架的动力特性和地震响应进行分析,得到了结构的振型㊁周期和阻尼比等基本属性,以及地震波作用下的位移㊁加速度和应力响应㊂结果表明:即使没有楼板的组合作用,结构仍具有较好的抗震性能;侧向支撑可承担部分水平地震作用,减小了结构的动力反应㊂陈建斌[117]和吕西林等[118]完成了国内首个方钢管混凝土高层组合框架-支撑结构振动台试验㊂试验中发现结构支撑体系的破坏较为严重,试验结果表明:该结构的动力性能介于钢筋混凝土结构和钢结构之间且更倾向于钢结构,其塑性㊁韧性和抗震性能表现良好,并通过计算结果显示阻尼器对加快结构峰值反应后的振动衰减具有较大作用㊂为研究地震作用下半刚性连接组合梁框架的动力特性以及破坏模式,李国强等[119]进行了1个足尺半刚性连接组合梁框架结构模型振动台试验研究㊂结果显示:当峰值加速度高达1.2g时,结构整体仍未发生明显损坏,表明该结构形式可满足高烈度区域的抗震设防要求㊂Han等[120]对两个由组合框架结构和钢筋混凝土剪力墙混合形成的高层建筑模型进行了振动台试验,对比分析了圆钢管混凝土柱和方钢管混凝土柱对该混合结构体系整体性能的影响,验证了组合框架结构与核心剪力墙结构在地震作用下优良的复合效应和抗震性能㊂2.2㊀理论分析静力弹塑性分析法是以反应谱为基础,首先依据抗震需求谱和结构能力谱得到地震作用下建筑结构所产生的目标位移,随后在建筑结构上施加稳定的竖向荷载,同时施加单调递增的水平荷载直至达到目标位移,最后评估结构最终状态下的抗震性能㊂通过该方法可以评估地震作用下结构的内力和变形5。
混凝土框架结构房屋的质量检测及抗震鉴定分析发布时间:2022-07-12T03:19:18.032Z 来源:《新型城镇化》2022年14期作者:何应钊[导读] 从现代房屋的角度而言,质量检测以及抗震鉴定是有效促进其安全发展,并强化整体结构性能的有效措施。
佛山市金平建筑工程质量检测有限公司 528000摘要:从现代房屋的角度而言,质量检测以及抗震鉴定是有效促进其安全发展,并强化整体结构性能的有效措施。
所以就应当以混凝土结构的房屋建筑为研究主体,在理论与实践两个角度上,通过质检以及抗震鉴定情况作出系统分析,从中了解房屋混凝土房屋质检以及抗震鉴定的要点,然后再结合相关计算比对分析,给出能够优化房屋抗震加固质量成效的对策,以期有利于相关工作的更好实践,强化房屋框架结构的安全性和抗震性能。
关键词:混凝土框架;质量检测;抗震鉴定引言在建筑行业领域更加快速发展的背景下,建筑中主体架构、使用功能、建材以及施工技术等也在逐渐创新,对房屋方面的安全及抗震性能要求也在逐渐提高,现有的大部分房屋结构都不能保证完全符合这些需求。
所以部分房屋在后续使用过程中会出现改造或扩建。
在相关工作前,应将房原有结构予以鉴定,房屋检测技术是专业的建筑鉴定中的基本要素,施工质量会关系到建筑改扩建工作的有序性和安全性。
钢筋混凝土结构由于结构体系简单、传力路线明确、改造可行性高等优势,在建筑工程建设方面得到广泛运用。
然而钢筋混凝土的使用过程往往都会处在自身荷载、材料性能或外在自然因素等影响中,可能会产生变形、裂缝或腐蚀性损伤等,所以就要对房屋钢筋混凝土结构的鉴定予以深化研讨。
1质检与抗震鉴定的相关概述1.1质量检测真正意义的质检应属于质量管理方面的基本项目,重点是借助专业、完善、可行的质检技术措施,对结构实体予以检测,借助专业标准及规范,明确质量检测与鉴定的相关工作方案。
所以质检工作的主要宗旨就是了解房屋实际施工质量是否完全切合既定标准和要求,防止存在质量问题的房屋被投入使用,导致使用者处在不安全环境。
浅析框架结构的延性抗震设计摘要:随着国民经济的发展,高层建筑得到了大力发展,本文主要是对结合工程实际,对影响框架结构延性的主要因素,具体设计内容进行了分析,以供同仁参考!关键词:框架柱;抗震;延性;有限元1 工程简介河南郑州一高层建筑的主体结构为钢筋混凝土框架-剪力墙结构,地上25层,地下1层,结构总高度88.1m,设防列度8度,丙类建筑,地下室内部剪力墙很少(可忽略其作用),底层柱子计算长度4.60m,柱子净高3.50m,框架抗震等级为一级,剪力墙抗震等级为一级。
下面将对该工程底层框架柱延性抗震设计思路进行详细的分析。
2影响结构延性的主要因素框架结构是由梁、板、柱以及节点四个部分组成,其中梁、柱以及节点的延性决定了整个框架结构的延性。
因此,只要保证柱、梁和节点的延性就可以保证框架结构的延性,从而确保了框架结构的抗震能力[1]。
梁是框架结构中的主要受力构件之一,在抗震设计中要求塑性铰首出现在梁端且又不能发生剪切破坏,同时还要防止由于梁筋屈服渗入节点而影响节点核心区的性能。
试验和理论分析表明,影响梁截面延性的主要因素如下所示:(1)梁截面要求:梁宽不宜小于柱宽的1/2,且不≥200,梁的高宽比不宜>4,梁的跨高比不宜<4。
(2)梁纵筋配筋率:通过限制受拉配筋率可以避免剪跨比较大的梁在未达到延性要求之前梁端下部受压区混凝土过早达到极限压应变而破坏。
(3)梁纵筋配置:梁端截面上纵向受压钢筋与纵向受拉钢筋保持一定比例。
(4)梁端箍筋加密:抗震规范对此出了详细规定。
柱是框架结构中主要的受力构件,要想提高框架结构的抗震性能,就必须确保构件有足够的延性,构件延性好的框架结构能吸收较多的地震能量,抗震性能就好。
因此,在进行框架结构设计时,应遵循强柱弱梁的设计原则,使塑性铰出现在梁端,以增强构件的延性。
节点是框架梁柱构件的公共部分,节点的失效就意味着与之相连的梁与柱同时失效,所以对节点也应予以足够的重视[2]。
钢筋混凝土框架结构介绍钢筋混凝土框架结构是一种常见的建筑结构形式,被广泛应用于高层建筑、桥梁、水利工程和其他大型工程中。
它具有承载能力强、抗震性能好、施工方便等优点,在工程领域具有重要的地位。
本文将对钢筋混凝土框架结构的构造特点、施工工艺、设计原则和应用范围进行详细介绍。
一、构造特点1. 材料组成:钢筋混凝土框架结构主要由混凝土和钢筋组成。
混凝土是一种由水泥、砂、骨料和水按一定比例配制而成的人工石材,具有良好的抗压性能。
钢筋则主要用于增强混凝土的抗拉性能,提高整体结构的承载能力。
2. 结构形式:钢筋混凝土框架结构通常采用柱、梁交叉排列的形式,梁和柱以节点连接形成空间刚架结构。
这种结构形式能够有效地承受水平荷载和垂直荷载,具有良好的整体稳定性。
3. 抗震性能:由于钢筋混凝土的良好韧性和节点连接的刚性,钢筋混凝土框架结构具有较好的抗震性能,能够在地震发生时有效地保护建筑结构和人员安全。
4. 施工便利:相对于钢结构,钢筋混凝土框架结构的施工工艺更为简单,对施工人员的技术要求相对较低。
而且混凝土原材料相对便宜,在大部分地区都能够获得。
二、施工工艺1. 梁柱浇筑:梁柱的浇筑是钢筋混凝土框架结构的关键环节,一般采用模板支撑,将预埋的钢筋绑扎好,然后浇筑混凝土,形成梁柱结构。
2. 翼板浇筑:翼板是连接梁柱之间的水平构件,需要在梁柱浇筑后立即进行浇筑,以确保整体结构的刚性和稳定性。
3. 立柱浇筑:立柱是整个框架结构的支撑主体,其浇筑质量直接关系到整体结构的稳定性,需要严格控制浇筑过程,避免出现空鼓和裂缝。
4. 结构连接:在梁柱节点处,需要采用专门的连接件,以确保梁柱之间的紧密连接,增强结构整体的稳定性。
三、设计原则1. 承载能力:钢筋混凝土框架结构的设计首要考虑其承载能力,要根据建筑物的用途、高度和荷载特点等因素进行合理设计,确保结构能够安全承载自重和外部荷载。
2. 稳定性:在设计过程中需要考虑整体结构的稳定性,包括纵向和横向的稳定性,避免因结构稳定性不足而导致倾斜、屈曲或坍塌。
钢筋混凝土框架结构抗震设计规范一、引言钢筋混凝土框架结构是建筑工程中常见的结构形式之一,其在抗震设计中具有重要地位。
本文将介绍钢筋混凝土框架结构抗震设计规范,包括设计基础、设计要求、设计计算等方面的内容。
二、设计基础1.地震烈度地震烈度是指地震对地面物体造成破坏程度的一种量化指标,通常用地震烈度图表示。
在钢筋混凝土框架结构抗震设计中,应根据地震烈度选择合适的抗震设防烈度等级。
2.地震分区地震分区是指根据地震活动和地震烈度等因素,将全国划分为不同的地震区域,并确定各地震区域的抗震设防烈度等级。
在钢筋混凝土框架结构抗震设计中,应根据地震分区选择合适的地震动参数。
3.建筑物分类建筑物分类是指根据建筑物的结构形式、用途、高度等因素,将建筑物分为不同的类别,并给出相应的抗震设防烈度等级和抗震性能要求。
在钢筋混凝土框架结构抗震设计中,应根据建筑物分类确定相应的抗震设防烈度等级和抗震性能要求。
三、设计要求1.地震荷载地震荷载是指地震作用下建筑物所受的荷载,包括水平地震力、竖向地震力和地震附加质量等。
在钢筋混凝土框架结构抗震设计中,应根据地震荷载计算建筑物的受力和变形情况。
2.构件设计构件设计是指将建筑物分解为各个构件,对每个构件进行力学分析和设计。
在钢筋混凝土框架结构抗震设计中,应根据构件设计计算构件的尺寸、配筋和受力性能等。
3.抗震性能抗震性能是指建筑物在地震作用下的受力变形性能。
在钢筋混凝土框架结构抗震设计中,应根据建筑物分类和地震设防烈度等级确定相应的抗震性能要求。
四、设计计算1.地震动参数地震动参数是指地震波的频率、振幅、时程等特征参数。
在钢筋混凝土框架结构抗震设计中,应根据地震分区和建筑物分类确定相应的地震动参数。
2.地震响应谱地震响应谱是指建筑物在地震作用下的加速度随时间变化的曲线。
在钢筋混凝土框架结构抗震设计中,应根据地震动参数计算地震响应谱。
3.结构分析结构分析是指对钢筋混凝土框架结构进行力学分析,确定各个构件的受力和变形情况。
钢筋混凝土房屋结构构件的抗震等级如何确定随着现代城市化的发展,钢筋混凝土房屋结构已经成为我国建筑领域的主要形式。
然而,近年来不断发生地震和其他自然灾害,给钢筋混凝土房屋的抗震等级提出了新的要求。
本文将详细介绍如何确定钢筋混凝土房屋结构构件的抗震等级。
一、抗震等级与性能等级的区别抗震等级指的是建筑物在地震中的承载能力,是根据建筑物的设计地震烈度和抗震设防要求来确定的。
根据《建筑抗震设计规范》(GB 50011-2010)规定,抗震等级分为1~4级,从低到高依次为一般要求、重要要求、较重要要求和特别重要要求。
较重要要求和特别重要要求两个等级要求安全性能高,能够保证建筑物在发生地震等灾难时不受过多破坏。
性能等级则指的是地震后建筑物的损伤程度。
地震损伤分为轻度损伤、中度损伤和重度损伤三级。
其中轻度损伤指的是建筑物结构受到轻微破坏,但不影响房屋的基本使用功能;中度损伤指的是建筑物结构出现一定程度的破坏,使建筑物的使用受到限制;而重度损伤则指建筑物结构严重破坏,无法继续使用。
二、抗震设计的原则和方法1.原则抗震设计应该满足以下几个基本原则:① 最大限度地减少人员和财产损失;② 使建筑物经受住地震破坏,具有一定的修复能力;③ 充分考虑地震对建筑物的可能影响,确保在可能的地震中建筑结构安全可靠;④ 采用经济、适用、简单可行的设计方法。
2.方法① 采用合适的基础体系,使建筑物在地震中的资料反应范围尽量小;② 采用适当的剪力墙布局和技术,增加建筑结构的抗震能力;③ 合理使用原有建筑物结构,避免过度拆改;④ 根据设计要求和实际情况,选择适合的抗震水平,确保建筑物安全。
三、钢筋混凝土房屋结构构件的抗震等级如何确定1.重要性质建筑物的抗震等级应该根据建筑物的重要性质确定。
建筑物的重要性质包括以下几个方面:① 人员数量的多少和结构分布情况;② 建筑物的地理位置和环境条件;③ 建筑物的历史、文化和艺术价值;④ 建筑物的用途、功能和生产力;⑤ 建筑物的结构类型和形式。
钢筋混凝土结构的强度与稳定性分析钢筋混凝土结构是建筑工程中常用的一种结构形式,其具有良好的耐久性、抗震性和水密性等优点。
但是,由于不同地区环境、材料等原因,钢筋混凝土结构的强度与稳定性存在着差异。
在设计和施工过程中,需要进行一定的分析和判断。
一、强度分析1.1 抗拉强度钢筋混凝土的抗拉强度很低,但由于加入了钢筋,可以有效地提升抗拉强度,从而增强了整个结构的抗震性能。
在设计和施工过程中,需要根据不同的结构形式和受力条件提高加钢率,确保结构的抗震、抗裂性等。
1.2 抗压强度钢筋混凝土的抗压强度大于抗拉强度。
在施工过程中,需要合理控制水泥用量、砂浆配合比等,确保混凝土的强度和密实性。
另外,在钢筋混凝土结构中,梁和柱的截面形状和尺寸对抗压强度也有影响。
在设计过程中需要根据受力条件选择合适的截面形状和尺寸。
1.3 剪切强度钢筋混凝土结构的剪切强度是指受剪力时抵抗剪切作用的能力。
在设计和施工过程中,需要根据不同的结构形式和受力条件进行合理的计算和分析。
同时,采用钢筋混凝土结构的受力区域也需要进行强度分析,确保结构能够承受剪切力的作用。
二、稳定性分析2.1 屈曲稳定性屈曲稳定性是指在外力作用下,结构发生屈曲变形时,结构能够保持稳定的能力。
在钢筋混凝土结构中,柱、框架等结构需要进行屈曲稳定性分析,从而确定支撑方式和结构的抗屈曲能力。
同时,需要合理控制结构的横向刚度和水平位移。
2.2 翻倒稳定性翻倒稳定性是指在外力作用下,结构可能出现倾覆、翻倒等不稳定情况时,结构能够保持稳定的能力。
在钢筋混凝土结构中,建筑物的高度和所处地域的风压等因素会影响翻倒稳定性。
在设计过程中需要根据不同的建筑物高度和地域因素进行稳定性分析,确保结构稳定性和安全性。
2.3 转移稳定性转移稳定性是指在外力作用下,结构内部力的转移和分配过程中,结构能够保持稳定的能力。
在钢筋混凝土结构中,柱、梁、板等结构的转移稳定性需要进行分析和计算,从而确保结构各个部分的转移和分配过程的顺利进行。
影响钢筋混凝土框架节点抗震性能的因素
摘要:本文讨论了影响钢筋混凝土框架节点抗震性能的一些因
素,供钢筋混凝土框架节点的抗震设计参考。
关键词:钢筋混凝土框架节点 抗震性能 核芯区
1 问题的提出
近年来,随着抗震理论的深入发展,在钢筋混凝土框架结构的
延性设计上,“强剪弱弯,弱梁强柱,更强节点”已经成为工程界
的共识。这种“能力设计”的思路确保钢筋混凝土结构在地震作用
下,依次在梁端和柱端出现塑性铰,通过塑性耗能机构避免在较强
的地震作用下结构产生严重损伤和在更强地震作用下发生危及生
命安全的局部或整体失效。而钢筋混凝土框架节点在结构达到预计
的最不利非弹性反应之前不应出现剪切失效,并具有一定的耗能能
力。
钢筋混凝土框架结构的延性是反映结构在荷载作用下,进入非
线性状态后在承载力没有显著降低情况下的变形能力。对于延性大
的结构,其产生的塑性变形也大,但永久变形太大,结构可能在重
力作用下引起坍塌,也可能使结构的损坏部位不可修复。因此,在
钢筋混凝土框架结构的设计上,必须综合考虑一定程度的承载能力
和一定范围的延性。
钢筋混凝土框架节点的受力机理指通过合理的计算假定模式,
描述由梁、板、柱传来的内力(m、n、v、t)在框架节点核芯区的
传递和由此产生的各种破坏型式。目前比较流行的有三种理论:斜
压杆机理、剪摩擦机理、桁架机理。这三种框架节点的受力机理,
应用于各种不同的破坏型式和设计规范中。新西兰的框架节点设计
以斜压杆和桁架机理共同作用为依据,美国则以梁剪机理和斜压杆
机理为主。而我国《建筑抗震设计规范》(gb50011—2001)中用于
抗震框架节点设计的主要计算公式是用来确定节点水平箍筋用量
的“框架节点核芯区抗震受剪承载力计算公式”,并未全面考虑到
影响钢筋混凝土框架节点抗震性能的各种因素,值得进一步探讨研
究。
2 影响钢筋混凝土框架节点抗震性能的因素
2.1 材料强度
混凝土强度直接影响框架节点抗剪承载力,对于承受一定荷载
的框架节点,混凝土强度越高,则梁、柱的截面尺寸越小,框架节
点核芯区混凝土的承剪截面也相应减小,在一定配箍率下,对其抗
震性能反而不利。
我国《混凝土结构设计规范》(gb50010—2002)提倡使用hrb400
级钢筋,钢筋强度虽然大于hrb335级钢筋,在相同的设计条件下,
用钢量相对减少,但是钢筋表面与周边的混凝土粘结锚固能力下
降,在框架节点的高粘结应力区,钢筋和混凝土的共同作用相对较
差,钢筋易滑移。
2.2 节点型式
对于一榀平面框架,按框架节点所在位置,节点主要有四种基
本型式:顶层边柱节点(┏型)、顶层中柱节点(┳型)、中间层边
柱节点(┣型)和中间层中柱节点(╋型)。对于┏型节点,梁、
柱的纵筋均需在框架节点核芯区内锚固,节点核芯区受力较复杂,
易产生破坏。对于┳型节点,梁的纵筋可直通锚固,水平荷载作用
下,柱抗弯承载力弱于梁,柱端易产生塑性铰。对于┣型节点,柱
抗弯承载力较大,“强柱弱梁”比较容易满足,但梁筋的锚固相对
薄弱,梁筋易发生粘结滑移,角柱节点受力最为不利。对于╋型节
点,强震作用下,框架节点两侧梁端可能均达到屈服,框架节点核
芯区受到很大的剪力,容易发生核芯区剪切破坏。
2.3 轴压比
试验研究表明,在一定范围内轴向压力可提高框架节点核芯区
混凝土的抗剪承载力。由于柱轴向压力的作用,在框架节点核芯区
混凝土开裂以前,柱截面受压区面积加大,斜压杆作用加强。当混
凝土出现裂缝时,混凝土块体间产生咬合力。随着轴压比的增大,
抗剪承载力相应增大,但当轴压比超过某一临界值时,框架节点受
压区混凝土产生微裂缝,使混凝土压碎,抗剪承载力反而下降。
2.4 剪压比
为了防止框架节点核芯区出现斜拉破坏或斜压破坏,必须控制
剪压比,即限制配箍率,避免框架节点核芯区混凝土的破坏先于箍
筋的屈服。
2.5 水平箍筋
在框架节点内配置水平封闭箍筋,一方面对框架节点核芯区混
凝土产生有利约束,增强传递轴向荷载的能力,另一方面承担部分
水平剪力,提高框架节点的抗剪承载力。试验表明,配箍适当的框
架节点核芯区出现贯通裂缝后,混凝土承担的剪力继续增加,箍筋
全部屈服,混凝土与箍筋同时充分发挥作用,使节点核芯区受剪承
载力在破坏时达到最大。对于配箍较高的节点,当节点核芯区产生
贯通斜裂缝时,混凝土抗剪承载力达极值,但箍筋应力还很低,混
凝土破坏先于箍筋屈服,使得节点核芯区的抗剪承载力达不到预期
的最大值,箍筋不能充分发挥作用。
2.6 竖向箍筋
在水平反复荷载作用下,框架节点核芯混凝土出现交叉斜裂缝
后,剪力的传递由斜压杆作用过渡到水平箍筋承担水平分力、柱纵
向钢筋承担竖向分力以及平行于斜裂缝的混凝土骨料咬合力所构
成的桁架抗剪机制,设置竖向箍筋可承担框架节点剪力的竖向分
量,减少混凝土的负担,从而提高框架节点的抗剪承载力,但施工
不便。
2.7 柱纵向钢筋
柱纵向钢筋通常按抗弯要求设置,沿柱截面的高度方向,按构
造规定也相应配置一定数量的纵向钢筋。这些纵筋与水平箍筋联合
对框架节点核芯区混凝土形成双向约束。因此,合理布置柱纵向钢
筋对提高框架节点抗剪承载力有一定贡献,但增加柱纵向钢筋不像
增加水平箍筋那样能显著地提高框架节点的抗剪承载力。
2.8 直交梁
国内外的实际震害与试验研究表明,垂直于框架平面与节点相
交的直交梁对框架节点核芯区混凝土具有约束作用,从而提高框架
节点的抗剪承载力。但是,如果斜向地震的双轴效应使两个方向梁
的纵筋都屈服,则降低了直交梁对节点的约束作用。对于仅一侧有
直交梁的框架节点,抗剪性能并未改善框架节点的抗剪承载力。
2.9 楼板
框架节点四周的楼板对节点核芯区具有约束作用,与梁轴平行
的楼板钢筋与梁上部受力钢筋协同工作。如果考虑楼板作为梁翼缘
在受弯过程中发挥的作用,则应相应地提高节点的剪力计算值。
2.10 预应力作用
对钢筋混凝土框架节点施加预应力,可使框架节点核芯区混凝
土增加约束,处于双向受力状态,从而提高框架节点的抗剪承载力。
但通过框架节点核芯区的无粘结预应力筋,削弱核芯区混凝土的面
积,降低框架节点的抗剪承载力。因此,对于无粘结预应力混凝土
框架节点,可将预应力作用对框架节点的抗剪承载力的提高作为结
构的安全度储备。
2.11 偏心影响
在高层建筑设计中,为了使建筑立面产生与外墙或柱面齐平的
效果或产生凹凸错落的效果,经常要求梁、柱中心线错开,甚至要
求梁侧面与柱侧面重合,出现大量的大偏心框架节点,这时框架节
点受到附加扭矩之类的次内力作用,剪力在节点内的传递比较复
杂。通过实际震害和试验研究可以发现,与无偏心框架节点相比,
偏心框架节点抗剪承载力明显下降。
2.12 异形柱节点
t型柱框架节点的抗剪承载力较低,框架节点在梁一屈服后马上
进入通裂状态。当梁宽大于柱腹板宽度时,处于柱腹板外的梁纵筋
在节点处锚固较差。
2.13 反复荷载
在反复荷载作用下,材料强度和构件强度降低,粘结锚固性能
退化,剪切变形加大。由于框架节点内剪应力方向交替变化,核芯
区斜向裂缝的张开与闭合交替产生,导致框架节点核芯区抗剪承载
力和剪切刚度降低。框架节点两侧的梁纵向钢筋可能产生一侧受拉
达到屈服,另一侧受压达到屈服,产生很高的粘结应力,使钢筋滑
移,发生粘结破坏。随着梁端变形的逐步增加,框架节点核芯区抗
剪承载力相应逐渐衰减。
2.14 斜向地震的双轴效应
当地震作用方向与建筑物主轴方向不一致时,可能使两个方向
的梁都达到屈服,这时作用于节点对角斜面上的水平剪力约为其中
一个方向的2倍,然而斜裂缝遇到的箍筋与一个方向受剪时遇到的
箍筋数目仍然相同。如果这些水平箍筋与柱截面各边平行,则钢筋
的斜向分力仅仅是单向受剪时可抵抗剪力的1/2。对于双向对称的
框架,双向受剪所需要的剪力钢筋约为单向受剪所需剪力钢筋的2
倍。因此,斜向地震作用下,框架节点的强度和刚度迅速降低,梁
筋较早出现粘结滑移破坏。
3 建议
通过以上对影响钢筋混凝土框架节点抗震性能的各种因素的讨
论,在钢筋混凝土框架节点的设计上,综合“概念设计”和“构造
措施”,确保结构设计安全经济。
参考文献
[1] 唐九如,钢筋混凝土框架节点抗震,东南大学出版社,
1989.
[2] 建筑抗震设计规范gb50011-2001,中国建筑工业出版社,
2001.
[3] 混凝土结构设计规范gb50010-2002,中国建筑工业出版
社,2002.