卷积神经网络讲义教程文件
- 格式:ppt
- 大小:659.50 KB
- 文档页数:28
卷积神经网络(CNN)一、简介卷积神经网络(Convolutional Neural Networks,简称CNN)是近年发展起来,并引起广泛重视的一种高效的识别方法。
1962年,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的局部互连网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络[1](Convolutional Neural Networks-简称CNN)7863。
现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。
Fukushima在1980年基于神经元间的局部连通性和图像的层次组织转换,为解决模式识别问题,提出的新识别机(Neocognitron)是卷积神经网络的第一个实现网络[2]。
他指出,当在不同位置应用具有相同参数的神经元作为前一层的patches时,能够实现平移不变性1296。
随着1986年BP算法以及T-C问题[3](即权值共享和池化)9508的提出,LeCun和其合作者遵循这一想法,使用误差梯度(the error gradient)设计和训练卷积神经网络,在一些模式识别任务中获得了最先进的性能[4][5]。
在1998年,他们建立了一个多层人工神经网络,被称为LeNet-5[5],用于手写数字分类,这是第一个正式的卷积神经网络模型3579。
类似于一般的神经网络,LeNet-5有多层,利用BP算法来训练参数。
它可以获得原始图像的有效表示,使得直接从原始像素(几乎不经过预处理)中识别视觉模式成为可能。
然而,由于当时大型训练数据和计算能力的缺乏,使得LeNet-5在面对更复杂的问题时,如大规模图像和视频分类,不能表现出良好的性能。
因此,在接下来近十年的时间里,卷积神经网络的相关研究趋于停滞,原因有两个:一是研究人员意识到多层神经网络在进行BP训练时的计算量极其之大,当时的硬件计算能力完全不可能实现;二是包括SVM在内的浅层机器学习算法也渐渐开始暂露头脚。
卷积神经网络与循环神经网络卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)是目前深度学习领域最为流行的两种神经网络架构。
它们分别适用于不同的数据类型和任务,能够有效地处理图像、语音、文本等各种形式的数据。
一、卷积神经网络卷积神经网络是一种专门用于处理格状数据(如图像)的神经网络模型。
它的核心思想是利用卷积操作对输入数据进行特征提取,然后通过池化操作减小特征图的尺寸,最后将提取到的特征输入全连接层进行分类或回归。
卷积神经网络的结构主要包括卷积层、池化层和全连接层。
1.1卷积层卷积层是卷积神经网络的核心组件,它通过卷积操作对输入数据进行特征提取。
卷积操作是指使用一个滤波器(也称为卷积核)在输入数据上进行滑动计算,得到对应位置的输出。
滤波器的参数是在训练过程中通过反向传播算法学习得到的。
在图像处理中,卷积操作可以帮助提取图像中的边缘、纹理、角点等特征。
卷积层一般会使用多个不同的滤波器,从而提取多个不同的特征。
1.2池化层池化层是利用池化操作对卷积层的输出进行降采样,从而减小特征图的尺寸。
常见的池化操作有最大池化和平均池化。
最大池化是保留每个区域内的最大值作为输出,平均池化是计算每个区域内的平均值作为输出。
池化操作的目的是减少计算复杂度和减小过拟合。
1.3全连接层全连接层是卷积神经网络的最后一层,它将池化层的输出作为输入进行分类或回归。
全连接层的每个神经元都与上一层的所有神经元相连,输出一个标量值。
全连接层通常使用一种称为softmax的函数将输出转化为概率分布,再根据不同任务进行相应的损失函数计算和优化。
卷积神经网络通过共享权重和局部感知野的设计,大大减少了模型参数的数量,同时也能够保留输入数据的局部结构特征。
这使得卷积神经网络在图像识别、目标检测、语义分割等计算机视觉任务中取得了很大的成功。
二、循环神经网络循环神经网络是一种专门用于处理序列数据(如语音、文本)的神经网络模型。
卷积神经⽹络学习——第⼆部分:卷积神经⽹络训练的基本流程卷积神经⽹络学习——第⼆部分:卷积神经⽹络训练的基本流程import torchimport torchvisionimport torch.nn as nnimport torch.optim as optimimport torch.nn.functional as Ffrom torch.autograd import Variablefrom torchvision import datasets, transforms# 步骤⼀:数据载⼊# pose()将各种预处理操作组合到⼀起# 2.transforms.ToTensor()将图⽚转换成 PyTorch 中处理的对象 Tensor.在转化的过程中 PyTorch ⾃动将图⽚标准化了,也就是说Tensor的范⽤是(0,1)之间# 3.transforms.Normalize()要传⼊两个参数:均值、⽅差,做的处理就是减均值,再除以⽅差。
将图⽚转化到了(-1,1)之间# 4.注意因为图⽚是灰度图,所以只有⼀个通道,如果是彩⾊图⽚,有三个通道,transforms.Normalize([a,b,c],[d,e,f])来表⽰每个通道对应的均值和⽅差。
data_tf = pose([transforms.ToTensor(),transforms.Normalize([0.5],[0.5])])# PyTorch 的内置函数 torchvision.datasets.MNIST 导⼊数据集# 这⾥存储的还是MNIST数据集的格式,但是不⼀样的是这个数据集当中的元素是以tensor格式存储的train_dataset = datasets.MNIST(root = '/Users/air/Desktop/【2020秋】数据科学基础/第三次作业',train = True,transform = data_tf,download = True)test_dataset = datasets.MNIST(root = '/Users/air/Desktop/【2020秋】数据科学基础/第三次作业',train = False,transform = data_tf)# 定义超参数BATCH_SIZE = 128 # 训练的包的⼤⼩,通过将训练包分为2的倍数以加快训练过程的⽅式LR = 1e-2 # 学习率,学习率太⼩会减慢训练效果,学习率太⾼会导致准确率降低EPOCHS = 5 # 定义循环次数,避免因为次数太多导致时间过长# torch.utils.data.DataLoader 建⽴⼀个数据迭代器,传⼊数据集和 batch size, 通过 shuffle=True 来表⽰每次迭代数据的时候是否将数据打乱。
卷积神经网络在3D图像分析中的应用教程在计算机视觉和图像处理领域,卷积神经网络(CNN)已经成为了一种非常流行的技术。
它在二维图像识别和分析中取得了巨大成功,但在3D图像分析中的应用则相对较少。
然而,随着3D图像在医学成像、地质勘探、机器人技术等领域的广泛应用,CNN在3D图像分析中的潜在应用价值也变得越来越明显。
本文将介绍卷积神经网络在3D图像分析中的基本原理和应用方法。
1. 3D图像的表示和处理在传统的图像处理中,我们通常使用二维矩阵来表示图像,每个像素的灰度值或颜色值可以直接在矩阵中进行存储和处理。
然而,对于3D图像(如医学CT扫描图像、地质岩芯图像等),我们需要使用三维矩阵来表示。
这就需要我们重新思考卷积神经网络在3D图像分析中的应用方式。
2. 3D卷积神经网络的基本原理与二维卷积神经网络类似,3D卷积神经网络也包括卷积层、池化层和全连接层等基本组件。
不同的是,3D卷积神经网络中的卷积核和滑动窗口是三维的,可以在三维空间中对图像进行特征提取和分类。
3. 3D卷积神经网络的应用在医学影像领域,医生们常常需要对CT扫描和MRI等3D图像进行分析和诊断。
传统的方法往往需要大量的人力和时间,而且容易受主观因素的影响。
利用3D卷积神经网络可以自动化地对医学影像进行分割、识别异常区域等任务,大大提高了医学影像的分析效率和准确性。
在地质勘探领域,地质岩芯图像是一种常见的3D图像,对其进行分析可以帮助地质学家了解地下岩层结构和矿物组成。
传统的地质勘探方法需要大量的人力和物力,而利用3D卷积神经网络可以快速、准确地对岩芯图像进行解释和分析。
在机器人技术领域,3D视觉是机器人感知和导航的重要手段。
利用3D卷积神经网络可以帮助机器人对环境中的障碍物和目标进行识别和定位,从而实现更加智能和灵活的机器人系统。
4. 3D卷积神经网络的发展趋势随着深度学习和图像处理技术的不断发展,3D卷积神经网络在3D图像分析中的应用前景也越来越广阔。
【机器学习基础】卷积神经⽹络(CNN)基础最近⼏天陆续补充了⼀些“线性回归”部分内容,这节继续机器学习基础部分,这节主要对CNN的基础进⾏整理,仅限于基础原理的了解,更复杂的内容和实践放在以后再进⾏总结。
卷积神经⽹络的基本原理 前⾯对全连接神经⽹络和深度学习进⾏了简要的介绍,这⼀节主要对卷积神经⽹络的基本原理进⾏学习和总结。
所谓卷积,就是通过⼀种数学变换的⽅式来对特征进⾏提取,通常⽤于图⽚识别中。
既然全连接的神经⽹络可以⽤于图⽚识别,那么为什么还要⽤卷积神经⽹络呢?(1)⾸先来看下⾯⼀张图⽚: 在这个图⽚当中,鸟嘴是⼀个很明显的特征,当我们做图像识别时,当识别到有“鸟嘴”这样的特征时,可以具有很⾼的确定性认为图⽚是⼀个鸟类。
那么,在提取特征的过程中,有时就没有必要去看完整张图⽚,只需要⼀⼩部分就能识别出⼀定具有代表的特征。
因此,使⽤卷积就可以使某⼀个特定的神经元(在这⾥,这个神经元可能就是⽤来识别“鸟嘴”的)仅仅处理带有该特征的部分图⽚就可以了,⽽不必去看整张图⽚。
那么这样就会使得这个神经元具有更少的参数(因为不⽤再跟图⽚的每⼀维输⼊都连接起来)。
(2)再来看下⾯⼀组图⽚:上⾯两张图⽚都是鸟类,⽽不同的是,两只鸟的“鸟嘴”的位置不同,但在普通的神经⽹络中,需要有两个神经元,⼀个去识别左上⾓的“鸟嘴”,另⼀个去识别中间的“鸟嘴”: 但其实这两个“鸟嘴”的形状是⼀样的,这样相当于上⾯两个神经元是在做同⼀件事情。
⽽在卷积神经⽹络中,这两个神经元可以共⽤⼀套参数,⽤来做同⼀件事情。
(3)对样本进⾏⼦采样,往往不会影响图⽚的识别。
如下⾯⼀张图: 假设把⼀张图⽚当做⼀个矩阵的话,取矩阵的奇数⾏和奇数列,可看做是对图⽚的⼀种缩放,⽽这种缩放往往不会影响识别效果。
卷积神经⽹络中就可以对图⽚进⾏缩放,是图⽚变⼩,从⽽减少模型的参数。
卷积神经⽹络的基本结构如图所⽰: 从右到左,输⼊⼀张图⽚→卷积层→max pooling(池化层)→卷积层→max pooling(池化层)→......→展开→全连接神经⽹络→输出。
《神经网络电子教案》PPT课件第一章:神经网络简介1.1 神经网络的定义1.2 神经网络的发展历程1.3 神经网络的应用领域1.4 神经网络的基本组成第二章:人工神经元模型2.1 人工神经元的结构2.2 人工神经元的激活函数2.3 人工神经元的训练方法2.4 人工神经元的应用案例第三章:感知机3.1 感知机的原理3.2 感知机的训练算法3.3 感知机的局限性3.4 感知机的应用案例第四章:多层前馈神经网络4.1 多层前馈神经网络的结构4.2 反向传播算法4.3 多层前馈神经网络的训练过程4.4 多层前馈神经网络的应用案例第五章:卷积神经网络5.1 卷积神经网络的原理5.2 卷积神经网络的结构5.3 卷积神经网络的训练过程5.4 卷积神经网络的应用案例第六章:递归神经网络6.1 递归神经网络的原理6.2 递归神经网络的结构6.3 递归神经网络的训练过程6.4 递归神经网络的应用案例第七章:长短时记忆网络(LSTM)7.1 LSTM的原理7.2 LSTM的结构7.3 LSTM的训练过程7.4 LSTM的应用案例第八章:对抗网络(GAN)8.1 GAN的原理8.2 GAN的结构8.3 GAN的训练过程8.4 GAN的应用案例第九章:强化学习与神经网络9.1 强化学习的原理9.2 强化学习与神经网络的结合9.3 强化学习算法的训练过程9.4 强化学习与神经网络的应用案例第十章:神经网络的优化算法10.1 梯度下降算法10.2 动量梯度下降算法10.3 随机梯度下降算法10.4 批梯度下降算法10.5 其他优化算法简介第十一章:神经网络在自然语言处理中的应用11.1 词嵌入(Word Embedding)11.2 递归神经网络在文本分类中的应用11.3 长短时记忆网络(LSTM)在序列中的应用11.4 对抗网络(GAN)在自然语言中的应用第十二章:神经网络在计算机视觉中的应用12.1 卷积神经网络在图像分类中的应用12.2 递归神经网络在视频分析中的应用12.3 对抗网络(GAN)在图像合成中的应用12.4 强化学习在目标检测中的应用第十三章:神经网络在推荐系统中的应用13.1 基于内容的推荐系统13.2 协同过滤推荐系统13.3 基于神经网络的混合推荐系统13.4 对抗网络(GAN)在推荐系统中的应用第十四章:神经网络在语音识别中的应用14.1 自动语音识别的原理14.2 基于神经网络的语音识别模型14.3 深度学习在语音识别中的应用14.4 语音识别技术的应用案例第十五章:神经网络在生物医学信号处理中的应用15.1 生物医学信号的特点15.2 神经网络在医学影像分析中的应用15.3 神经网络在生理信号处理中的应用15.4 神经网络在其他生物医学信号处理中的应用重点和难点解析重点:1. 神经网络的基本概念、发展历程和应用领域。
卷积神经⽹络(CNN)的训练过程卷积神经⽹络的训练过程卷积神经⽹络的训练过程分为两个阶段。
第⼀个阶段是数据由低层次向⾼层次传播的阶段,即前向传播阶段。
另外⼀个阶段是,当前向传播得出的结果与预期不相符时,将误差从⾼层次向底层次进⾏传播训练的阶段,即反向传播阶段。
训练过程如图4-1所⽰。
训练过程为:1、⽹络进⾏权值的初始化;2、输⼊数据经过卷积层、下采样层、全连接层的向前传播得到输出值;3、求出⽹络的输出值与⽬标值之间的误差;4、当误差⼤于我们的期望值时,将误差传回⽹络中,依次求得全连接层,下采样层,卷积层的误差。
各层的误差可以理解为对于⽹络的总误差,⽹络应承担多少;当误差等于或⼩于我们的期望值时,结束训练。
5、根据求得误差进⾏权值更新。
然后在进⼊到第⼆步。
图4-1卷积神经⽹络的训练过程1.1卷积神经⽹络的前向传播过程在前向传播过程中,输⼊的图形数据经过多层卷积层的卷积和池化处理,提出特征向量,将特征向量传⼊全连接层中,得出分类识别的结果。
当输出的结果与我们的期望值相符时,输出结果。
1.1.1卷积层的向前传播过程卷积层的向前传播过程是,通过卷积核对输⼊数据进⾏卷积操作得到卷积操作。
数据在实际的⽹络中的计算过程,我们以图3-4为例,介绍卷积层的向前传播过程。
其中⼀个输⼊为15个神经元的图⽚,卷积核为2×2×1的⽹络,即卷积核的权值为W1,W2,W3,W4。
那么卷积核对于输⼊数据的卷积过程,如下图4-2所⽰。
卷积核采⽤步长为1的卷积⽅式,卷积整个输⼊图⽚,形成了局部感受野,然后与其进⾏卷积算法,即权值矩阵与图⽚的特征值进⾏加权和(再加上⼀个偏置量),然后通过激活函数得到输出。
图4-2图⽚深度为1,卷积层的向前传播过程⽽在图3-4中,图⽚深度为2时,卷积层的向前传播过程如图4-3所⽰。
输⼊的图⽚的深度为4×4×2,卷积核为2×2×2,向前传播过程为,求得第⼀层的数据与卷积核的第⼀层的权值的加权和,然后再求得第⼆层的数据与卷积核的第⼆层的权值的加权和,两层的加权和相加得到⽹络的输出。
使用卷积神经网络进行音频识别的教程随着人工智能技术的不断发展,卷积神经网络在图像识别领域取得了巨大成功。
然而,卷积神经网络同样可以被用于音频识别,这为语音识别和音乐分类等应用提供了新的可能性。
本文将介绍如何使用卷积神经网络进行音频识别,包括数据处理、模型构建和训练等步骤。
数据准备在进行音频识别之前,首先需要准备好音频数据。
音频数据通常以.wav格式存储,每个样本包含了声音波形的时间序列。
在进行模型训练之前,我们需要将音频数据进行预处理,将其转换成适合卷积神经网络输入的格式。
通常情况下,可以将音频数据转换成频谱图,然后将其作为网络的输入。
频谱图是一种将音频信号在时间和频率上进行表示的方法,可以通过短时傅里叶变换或梅尔频率倒谱系数(MFCC)等方式对音频数据进行频谱图的计算。
在进行频谱图计算之后,通常还需要将其进行归一化处理,确保每个频谱图的数值范围在合理的区间内。
最后,将归一化后的频谱图作为卷积神经网络的输入即可。
模型构建构建卷积神经网络模型是进行音频识别的关键步骤。
在构建模型时,需要考虑到音频数据的特点,如时间序列和频域特征。
通常情况下,可以将卷积层和池化层用于提取频域特征,而循环神经网络(RNN)可以用于处理时间序列特征。
卷积神经网络通常由多个卷积层、池化层和全连接层组成。
卷积层用于提取特征,池化层用于降维和提取最显著的特征,全连接层用于最终的分类或回归任务。
在构建音频识别模型时,可以使用类似于图像识别的卷积神经网络架构,同时结合RNN等结构来处理时间序列特征。
在选择模型架构时,还需要考虑到音频数据的标签类型,如分类任务或回归任务,以及数据集的规模和复杂程度。
模型训练在构建好模型之后,就可以开始进行模型的训练。
模型训练的过程通常需要使用大量的标注数据,通过优化算法来不断调整模型参数,使其能够更好地拟合训练数据和泛化到测试数据。
在进行模型训练之前,需要将数据集划分成训练集、验证集和测试集,以便对模型进行评估和调优。