金纳米颗粒的合成
- 格式:doc
- 大小:1.96 MB
- 文档页数:24
纳米粒子的合成方法纳米粒子是一种具有特殊尺寸和形态的微小颗粒,其尺寸通常在1到100纳米之间。
由于其独特的性质和广泛的应用前景,纳米粒子的合成方法成为了研究的热点之一。
下面将介绍几种常见的纳米粒子合成方法。
1. 化学合成法化学合成法是最常见也是最广泛使用的纳米粒子合成方法之一。
通过化学反应,在溶液中合成纳米粒子。
常见的化学合成方法包括溶胶-凝胶法、微乳液法、共沉淀法等。
其中,溶胶-凝胶法是通过溶胶和凝胶相互转化来合成纳米粒子,微乳液法是利用微乳液作为反应介质来合成纳米粒子,共沉淀法是通过共沉淀反应来合成纳米粒子。
2. 热分解法热分解法是一种通过高温热解反应来合成纳米粒子的方法。
通常是将金属有机化合物或金属盐在高温条件下分解,生成纳米粒子。
这种方法合成的纳米粒子尺寸均一、形态良好,常用于制备金属纳米粒子。
3. 水热合成法水热合成法是一种在高温高压水环境下合成纳米粒子的方法。
通过调控反应温度、压力和反应时间等条件,可以得到不同尺寸和形态的纳米粒子。
这种方法合成的纳米粒子具有较高的结晶度和较好的分散性,广泛应用于金属氧化物、碳纳米管等的合成。
4. 气相合成法气相合成法是一种通过气相反应来合成纳米粒子的方法。
通常是将金属有机化合物或金属气体在高温条件下分解或氧化,生成纳米粒子。
这种方法合成的纳米粒子具有较高的纯度和较好的控制性,常用于制备金属、合金、半导体等纳米粒子。
5. 生物合成法生物合成法是一种利用生物体或其代谢产物来合成纳米粒子的方法。
这种方法的优势在于可以利用生物体的特殊性质和调控机制来合成纳米粒子,如利用细菌的代谢产物来合成金属纳米粒子、利用植物的提取物来合成金属氧化物纳米粒子等。
生物合成法不仅环境友好,而且合成的纳米粒子具有生物相容性和生物活性,具有广泛的应用前景。
总结起来,纳米粒子的合成方法多种多样,选择合适的合成方法可以得到不同尺寸、形态和性质的纳米粒子。
不同的合成方法适用于不同的纳米材料,需要根据具体需求和研究目的选择合适的方法。
turkevich方法Turkevich方法是一种广泛应用于纳米颗粒合成的化学方法。
它是由俄罗斯化学家Abram Turkevich于1951年提出的。
该方法可以用于合成金属、半导体和金属氧化物等各种类型的纳米颗粒。
Turkevich方法的原理是通过将金属或金属盐加入到溶液中,并在溶液中加入还原剂,从而在溶液中形成纳米颗粒。
通常情况下,还原剂是一种强还原性的化合物,例如氢气或氢化物。
还原剂将溶液中的金属离子还原为金属原子,形成纳米颗粒。
在Turkevich方法中,一种常用的金属盐是十四价四氯化金(AuCl4^-),它可以被还原成金(Au)纳米颗粒。
还原剂一般选择其中一种氢化物,例如氢氧化钠(NaOH)。
在实验中,先将金盐和还原剂加入到溶液中,并加热搅拌。
随着反应的进行,溶液的颜色会逐渐变成红色,这是由于金纳米颗粒的形成。
反应完成后,通过离心沉淀、洗涤和干燥等步骤,可以得到纯净的金纳米颗粒。
Turkevich方法的优点是操作简单、可重复性好、制备的纳米颗粒尺寸可调控。
这是因为溶液中金纳米颗粒的尺寸主要由反应中金离子的浓度和还原剂的浓度决定。
浓度的增加会导致金纳米颗粒的尺寸增大,反之则会减小。
因此,通过调整金离子和还原剂的浓度,可以制备不同尺寸的金纳米颗粒。
此外,该方法还可以在不同溶液中添加不同的添加剂,例如表面活性剂或聚合物,来调控纳米颗粒的形貌和分散性。
然而,Turkevich方法也存在一些限制。
首先,该方法通常只适用于制备金属纳米颗粒,对于半导体或金属氧化物等其他材料,需要使用不同的金属盐和还原剂。
其次,金纳米颗粒的形貌主要为球形,无法控制得到其他形状的颗粒。
最后,该方法在大规模生产中存在成本较高的问题,因为金盐的价格较昂贵。
尽管存在一些限制,Turkevich方法作为一种简单易用的合成纳米颗粒的方法,在实验室中仍然被广泛应用。
在领域中,许多研究人员通过改进和优化Turkevich方法,使其能够合成更多类型的纳米材料,并且得到更高控制的颗粒形貌和尺寸。
林业工程学报,2024,9(1):109-116JournalofForestryEngineeringDOI:10.13360/j.issn.2096-1359.202305024收稿日期:2023-05-30㊀㊀㊀㊀修回日期:2023-09-25基金项目:国家重点研发计划(2022YFC2105503);广西自然科学基金(2018JJA130224);广西博世科环保股份有限公司国家企业技术中心开放项目㊂作者简介:李茉琰,女,研究方向为木质素基复合功能材料㊂通信作者:闵斗勇,男,教授㊂E⁃mail:mindouyong@gxu.edu.cn木质素还原制备金纳米颗粒及其催化性能李茉琰,龙杏,张清桐,梁展明,闵斗勇∗(广西大学轻工与食品工程学院,广西清洁化制浆造纸与污染控制重点实验室,南宁530004)摘㊀要:自然界中的木质素来源广泛,其含量仅次于纤维素,是一种具有还原性的可再生芳香聚合物㊂本研究利用木质素在太阳光激发下还原Au(Ⅲ)制备金纳米颗粒(AuNPs),并将其用于催化还原废水中的有机污染物㊂主要探究了不同木质素质量浓度㊁HAuCl4浓度㊁光照时间等条件对AuNPs粒径及形貌的影响;利用紫外⁃可见光谱仪㊁纳米粒度仪㊁透射电子显微镜(TEM)㊁X射线光电子能谱分析(XPS)对AuNPs理化性质进行了表征㊂结果表明,木质素作还原剂成功制备了AuNPs,最佳制备工艺如下:木质素质量浓度为0.1mg/mL,HAuCl4浓度为1.00mmol/L,HAuCl4溶液与木质素溶液体积比为4ʒ1,光照时间为60min,此条件下制得的AuNPs平均粒径为32.14nm㊂此外,以亚甲基蓝(MB)和对硝基苯酚(4⁃NP)为污染物模型物探究了AuNPs的催化性能,结果表明,AuNPs对MB和4⁃NP具有良好的光催化还原性能,反应速率常数分别为0.7658和0.3166min-1㊂木质素还原Au(Ⅲ)制备得到的AuNPs/木质素用于废水中染料和硝基芳香族污染物的光催化还原,不仅实现了木质素的高值化利用,而且实现了废水中有机污染物的高效去除㊂关键词:木质素;金纳米颗粒;光催化降解;有机污染物;废水中图分类号:O643.36;TB383㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:2096-1359(2024)01-0109-08FabricationofgoldnanoparticlesbyligninreductionanditscatalyticperformanceLIMoyan,LONGXing,ZHANGQingtong,LIANGZhanming,MINDouyong∗(CollegeofLightIndustryandFoodEngineering,GuangxiKeyLabofCleanPulp&PapermakingandPollutionControl,GuangxiUniversity,Nanning530004,China)Abstract:Lignininnaturehasawiderangeofsources,beingsecondonlytocelluloseincontent,andisarenewablearomaticpolymerwithvariousproperties.Iflignincanbeactivelyconvertedintoarenewableresourceorpricedasahighervaluematerial,itsabundanceinnatureishighlylikelytosolvetheproblemofrapidresourcedepletion.AuNPshaveuniquecatalyticactivityduetotheirhighspecificsurfacearea,activesurfacebondingandelectronicstates,andincompletesurfaceelectroniccoordination.Duetopeople semphasisonthebiologicalenvironmentandapreferencefornon⁃toxicchemicalsandsaferorganicsolvents,thegreensynthesisofAuNPsisreceivingincreasingattention.Ligninisanaturalthree⁃dimensionalnetworkstructurewithvariousreducingfunctionalgroups,whichcanachievegreenpreparationofgoldnanoparticlesandpreventtheaggregationofgeneratedgoldnanoparticles,maintainingtheircatalyticandantibacterialactivities.Inthisstudy,ligninwasutilizedtoreduceAu(Ⅲ)undersolarexcitationtopre⁃paregoldnanoparticles(AuNPs),whichwereusedforcatalyticreductionoforganicpollutants.Thefactorsincludingligninmassconcentration,HAuCl4concentration,andreactiontimeontheparticlesizeandmorphologyofAuNPswereinvestigated.AuNPswerecharacterizedbytheUV⁃visspectroscopy,nanoparticlesizeanalyzer,transmissionelectronmicroscope(TEM)andX⁃rayphotoelectronspectroscopy(XPS).TheresultsshowedthatAuNPsweresuc⁃cessfullypreparedusingligninasareducingagent.Theoptimalpreparationconditionwasasfollows:ligninmasscon⁃centrationwas0.1mg/mL,HAuCl4concentrationwas1.00mmol/L,volumeratioofHAuCl4andligninwas4ʒ1,illuminationtimewas60min,andtheaverageparticlesizeofAuNPswas32.14nm.Astypicalorganicpollutants,methyleneblue(MB)andp⁃nitrophenol(4⁃NP)arewidelypresentinindustrialwastewatersuchastextile,paper⁃making,andprinting.Duetotheirstrongphotostabilityandantioxidantproperties,theyaredifficulttodegradeandposeaseriousthreattohumanhealthandthenaturalenvironment.Therefore,MBand4⁃NPwereusedasorganicpol⁃林业工程学报第9卷lutantmodelstoexplorethecatalyticperformanceofAuNPs.Thecatalyticrateofthereactionwasevaluatedbycalcu⁃latingthereactionrateconstantkvalueusingquasifirst⁃orderkinetics.ThereactionrateconstantsofAunanoparticlesforMBand4⁃NPwere0.7658and0.3166min-1,respectively,indicatingthatAunanoparticleshadgoodcatalyticreductionperformanceforMBand4⁃NP.AuNPs/ligninpreparedvialigninreducingAu(Ⅲ)toAu(0)wasusedforphotocatalyticreductionofdyeandnitroaromaticpollutantsinwastewater,whichnotonlyrealizedhighvalueuti⁃lizationoflignin,butalsoachievedefficientremovaloforganicpollutantsinwastewater.Keywords:lignin;goldnanoparticle;photo⁃catalyticdegradation;organiccontaminant;wastewater㊀㊀木质素是芳香族化合物中少有的天然可再生资源之一,其含量仅次于纤维素,广泛存在于植物细胞中㊂在制浆企业生产过程中,作为工业废弃物的木质素大部分在碱回收工段进行燃料处理获得蒸汽或热能[1],仅有5%的工业木质素用于制造分散剂㊁添加剂㊁表面活性剂和胶黏剂等高价值商业产品,大部分都没有得到合理的利用[2-3]㊂木质素分子结构中还原性的酚羟基可作为还原剂,将金属离子还原成金属单质并生长成纳米颗粒㊂柠檬酸钠是最早被用于合成金属纳米粒子的还原剂,由于柠檬酸钠还原性弱,用这种方法制备出的纳米粒子单分散性较差且纳米粒子尺寸难以调控[4]㊂相较于水合肼(H6N2O)㊁硼氢化钠(NaBH4)等有毒还原剂,木质素可以在不添加其他外源还原剂的条件下将Pt2+㊁Ag+㊁Au3+等金属离子还原并生成金属纳米粒子[5]㊂这种利用木质素的还原性制备贵金属纳米粒子的方法,为开发一种新型木质纤维素高值化利用手段提供了新的切入点㊂金(Au)是化学性质最稳定的元素之一,而纳米级别的金具有独特的光电㊁物化性质及良好的生物相容性[6];因此,在众多的纳米材料研究中,金纳米颗粒(AuNPs)是被研究最多㊁最广泛以及最深入的纳米材料之一㊂AuNPs在构建生物传感器㊁研究电化学催化㊁光电㊁物化性能等方面都有很广阔的应用前景㊂AuNPs具有高比表面积,活泼的表面键态㊁电子态,表面电子配位不全等特点,赋予了其独特的催化活性,是催化还原染料废水中亚甲基蓝(MB)或难生化降解废水中对硝基苯酚(4⁃NP)的优良催化剂㊂作为典型的有机污染物,MB与4⁃NP广泛存在于纺织㊁造纸㊁印刷等工业废水中,因其具有较强的光稳定性和抗氧化性,很难被生物降解,对人体健康和自然环境构成严重威胁[5,7-8]㊂Wu等[9]对AuNPs催化NaBH4还原4⁃NP的性能展开了研究,结果表明AuNPs具有优异的催化活性,但其高比面积和高表面能导致其稳定性差,在水溶液中极易发生聚沉,导致催化活性显著降低㊂目前已报道了多种在载体上沉积AuNPs的方法,如光沉积㊁化学沉积,浸渍和化学还原等,但这些技术中的大多数在控制成本和简化实验步骤等方面受到限制㊂此外,采用传统工艺得到的AuNPs通常具有多分散性,这是由于金属纳米颗粒之间的重力沉降和捕获引起的前驱体溶液分散不均匀导致的㊂而木质素的三维网状结构可以有效阻止AuNPs在水溶液中发生聚沉[10-11]㊂笔者以木质素为还原剂,在太阳光驱动下将Au3+还原成Au(0)并进一步生长成AuNPs,替代传统制备方法中所用的水合肼㊁NaBH4等有毒试剂[12],深入探究了Au3+物质的量浓度㊁木质素质量分数㊁光照时间等不同变量对AuNPs尺寸和形貌的影响;再以MB和4⁃NP为模拟污染物,探究AuNPs/木质素的催化性能,揭示其光催化机理,为木质素高值化利用提供一定的理论依据㊂1㊀材料与方法1.1㊀试验材料酶解木质素由山东龙力科技股份有限公司提供;4⁃NP㊁MB㊁NaBH4和HAuCl4购自上海阿拉丁生化科技股份有限公司,均为分析纯;其他试剂均为国产分析纯㊂1.2㊀酶解木质素纯化酶解木质素纯化步骤如下:1)称取30g酶解木质素,室温条件下,溶解在100mL1mol/LNaOH中,过滤除去不溶杂质;2)在滤液中逐滴加入10%(质量分数)HCl,直至溶液pH=2;3)在4000r/min下离心10min,收集沉淀物并用去离子水重复多次洗涤,冷冻干燥获得粗木质素;4)称取10g粗木质素溶于100mL丙酮,连续搅拌6h,使木质素均匀溶解在丙酮中㊂然后在4000r/min的转速下离心10min,收集上层清液,35ħ下旋蒸,冷冻干燥获得纯化木质素㊂1.3㊀木质素结构表征采用AGILENT1260型凝胶渗透色谱(GPC,美国安捷伦)分析纯化木质素样品的分子量㊂取50mg木质素与1mL吡啶充分混合后再加入1mL乙酸酐混合均匀,室温下避光反应48h,经乙醇和去离子水洗涤并旋转蒸发3次后,得到乙酰化木质011㊀第1期李茉琰,等:木质素还原制备金纳米颗粒及其催化性能素㊂使用不同相对分子质量的聚苯乙烯建立标准曲线,测试乙酰化木质素的数均分子量(Mn)㊁重均分子量(Mw)和多分散性(PD)㊂采用AVANCEⅢHD600型31P核磁共振(31P⁃NMR,德国Bruker)测定纯化木质素样品的羟基官能团含量㊂将0.4mmol乙酰丙酮铬加入10mL氘代吡啶中,再加入5mmolN⁃羟基琥珀酰亚胺溶液作为内标,充分溶解后即得到含有弛豫剂的内标溶液;取15mg木质素样品置于5mL棕色样品瓶中,再依次加入400μL二甲基亚砜(DMSO)㊁200μL内标溶液和80mL2⁃氯⁃4,4,5,5⁃四甲基⁃1,3,2⁃二氧磷杂环戊烷(TMDP),震荡摇匀至样品完全溶解后立即转移到核磁管中进行测试(测试参数:脉冲角90ʎ,温度298K,扫描次数32次,谱图宽度100ˑ10-6,等待时间6s,中心频率145),各级分官能团含量计算公式如下[13]:酚羟基的含量=A/Aᶄˑ0.01/w(1)式中:A为样品中酚羟基的积分面积;Aᶄ为内标量N⁃羟基琥珀酰亚胺的积分面积;0.01为样品溶液中31PNMR的物质的量,mmol;w为样品质量,g㊂1.4㊀金纳米颗粒/木质素分散体系制备称取10mg纯化木质素溶于100mL丙酮,搅拌30min得到0.1g/L木质素溶液㊂按一定体积比将木质素溶液与HAuCl4溶液均匀混合,在模拟太阳光(500W氙灯)下反应1h,得到AuNPs/木质素悬浮液㊂HAuCl4浓度分别为0.05,0.10,0.50,1.00,1.50,2.00,2.50和3.00mmol/L,HAuCl4溶液与木质素溶液(0.1g/L)的体积比分别为1ʒ10,1ʒ2,1ʒ1,2ʒ1,3ʒ1,4ʒ1和5ʒ1,光照时间分别为3,5,10,20,30,60,90,120,150,180和210min㊂1.5㊀AuNPs/木质素性质表征采用RuliHT7700型透射电子显微镜(TEM,日本日立)观察AuNPs的形貌;采用ZS90X型纳米粒度仪(美国MalvernPanalytial)测定AuNPs的粒径与分布;采用SPECONDPLUS50型紫外⁃可见光谱仪(UV⁃Vis,德国AnalytikJena)测定AuNPs悬浮液的紫外⁃可见光谱;采用THERMOESCALAB250Ⅺ型X射线光电子能谱仪(XPS,美国ThermoFisher)分析样品组分与化合态(单色AlKaX射线(1486.68eV),扫描范围为0.0 1350.0eV,通过能为30eV,扫描数为3次)㊂1.6㊀催化性能测定利用去离子水分别配制100mL0.1mmol/LMB和0.1mmol/L4⁃NP㊂为防止NaBH4分解,在冰水浴中配制100mL40mmol/LNaBH4㊂分别将1.5mLNaBH4溶液与1.5mLMB㊁4⁃NP在标准比色皿(光程长度为1cm)中混合,加入100μLAuNPs/木质素溶液,利用UV⁃Vis(测量模式为光谱扫描,扫描范围为200 800nm,Delta为2nm,速度为200nm/s)分别在664和400nm处监测MB和4⁃NP特征峰的变化㊂加入不同浓度的AuNPs/木质素,探究其对两种有机污染物的催化效率㊂有机污染物的光催化降解速率计算公式为:-ln(Ct/C0)=-ln(At/A0)=kt(2)式中:A0为初始吸光度;At为t时刻吸光度;C0为污染物初始浓度,mmol/L;Ct为t时刻污染物浓度,mmol/L;t为反应时间,min;k为反应速率常数,min-1㊂2㊀结果与分析2.1㊀结构表征2.1.1㊀木质素的结构表征酶解木质素纯化前,木质素的Mn为1867g/mol,Mw为2744g/mol,PD为1.47;纯化后,木质素的分子量降低,Mn降低至855g/mol,Mw降低至1243g/mol,PD约为1.45,无明显变化㊂纯化前,分子量大的木质素在丙酮中溶解度低是导致纯化木质素分子量降低的主要原因㊂纯化木质素的31P⁃NMR对应主要特征峰的归属及定量分析如表1所示,纯化木质素中紫丁香基酚羟基含量为1.48mmol/g,愈创木基酚羟基含量为2.65mmol/g,对羟苯基酚羟基含量为1.52mmol/g,脂肪族羟基含量为4.37mmol/g,羧基含量为2.94mmol/g㊂31P⁃NMR分析结果表明:纯化木质素含有丰富的还原性基团(羟基),能够将Au(Ⅲ)还原成Au(0)㊂表1㊀由31P⁃NMR分析得到的木质素羟基含量Table1㊀Thehydroxylcontentsoflignindeterminedby31P⁃NMR化学位移δ信号归属纯化木质素/(mmol㊃g-1)152.5 151.5脂肪族羟基4.37142.7 140.4紫丁香基酚羟基1.48140.4 138.8愈创木基酚羟基2.65138.7 137.4对羟苯基酚羟基1.52142.7 137.4总酚羟基5.65136.0 133.6羧基2.942.1.2㊀AuNPs的结构表征AuNPs/木质素的TEM图见图1a,在模拟太阳光照射条件下,酶解木质素作还原剂和稳定剂,能够获得尺寸较均一且分散性良好的AuNPs/木质素㊂AuNPs的高分辨图像电子衍射图像(SAED)见图1b,经测量分析可知AuNPs的晶格条纹间距111林业工程学报第9卷a)TEM;b)高分辨⁃TEM;c)木质素和AuNPs/木质素的XPS光谱;d)Au4f的高分辨率XPS光谱㊂图1㊀AuNPs的结构表征图Fig.1㊀StructuralcharacterizationdiagramsofAgNPs为0.235nm,与文献[14]报道的AuNPs(111)晶面的晶格间距一致,AuNPs的SAED中(111)㊁(002)㊁(022)㊁(222)㊁(024)平面的出现证明了生成的AuNPs是多晶结构㊂采用XPS对AuNPs以图2㊀不同HAuCl4和木质素溶液体积比下AuNPs紫外⁃可见光谱图和粒径分布Fig.2㊀UV⁃visspectraandparticlesizedistributionofAuNPspreparedwithdifferentvolumeratiosofHAuCl4/ligninsolutions及木质素的元素组成和表面化学性质进行了表征,其XPS全谱的测试结果见图1c,相较于木质素位于286.8eV的C1s㊁400.2eV的N1s和532.17eV的O1s,AuNPs出现了新的Au4f信号峰分别对应于Au的4f5/2和4f7/2位于87.5和83.8eV的特征峰(图1d),综上可知,本研究已经成功制备了AuNPs㊂2.2㊀AuNPs/木质素制备工艺优化2.2.1㊀溶液体积比研究表明,Au㊁Ag㊁Pt等贵金属纳米粒子在紫外可见光波段展现出很强的光谱吸收,从而发生局域表面等离子体共振(LSPR)的现象,AuNPs的紫外吸收峰λ=520nm㊂因此,HAuCl4溶液/木质素溶液反应后出现的UV特征吸收峰,表明溶液中Au3+被木质素溶液还原形成Au单质㊂此外,特征吸收峰的变化可以反映表面等离子体共振(SPR)的频率变换,SPR发生蓝移表明金属纳米粒子的粒径减小,SPR发生红移表明金属纳米粒子的粒径增大[15-16]㊂当HAuCl4溶液与木质素溶液体积比为1ʒ1时,在520nm处出现了比较明显的特征峰(图2a),表明AuNPs的生成,并且随着溶液体积比的增大,520nm处的吸收峰逐渐变得尖锐并出现蓝移,说明AuNPs的粒径随反应体系中Au3+211㊀第1期李茉琰,等:木质素还原制备金纳米颗粒及其催化性能增多而逐渐减小,并且当HAuCl4溶液与木质素溶液体积比为4ʒ1时,特征峰最尖锐且蓝移最大(图2a)㊂通过纳米粒度分析仪获得了AuNPs粒径分布(图2b),其中HAuCl4溶液与木质素溶液体积比在不断增大时,AuNPs平均粒径出现了先减小后增大的趋势㊂当两溶液体积比为4ʒ1时,此时AuNPs的平均粒径最小,为33.54nm,与UV⁃Vis分析结果一致㊂这可能是因为反应体系中Au3+的增多致使AuNPs的产率随之增加,直至HAuCl4溶液与木质素溶液体积比为4ʒ1,体系中的AuNPs开始发生聚集,不再趋于稳定㊂因此,利用模拟太阳光催化制备AuNPs时,HAuCl4溶液与木质素溶液体积比为4ʒ1时获得的AuNPs平均粒径最小㊂2.2.2㊀光照时间在不同光照时间下进行AuNPs的还原实验,结果见图3㊂如图3a所示,当模拟太阳光照射10min时,在反应体系中观察到SPR峰的出现,表明有AuNPs生成㊂随光照时间的增加,SPR强度逐渐增强,当光照时间达30min时,SPR峰的强度不再变化,表明AuNPs在该溶液体系中完成了还原;继续进行光照60min时,SPR峰位较30min出现蓝移,随后SPR峰又开始红移,表明生成的AuNPs粒径先减小后增大,因此光照催化时间为60min时AuNPs粒径达到最小㊂这一现象出现的原因可能是随着反应时间的增加,体系中不断产生AuNPs而后发生聚集㊂利用纳米粒度仪测量不同光照时间下的AuNPs粒径分布,如图3b所示,随着光照时间的增加,AuNPs的粒径在光照60min时最小(32.68nm),与SPR峰测量结果一致㊂因此,模拟太阳光催化制备图3㊀不同光照时间下AuNPs紫外⁃可见光谱图和粒径分布Fig.3㊀UV⁃visspectraandparticlesizedistributionofAuNPspreparedwithdifferentilluminationtimes㊀㊀光照30,60和90min制得的AuNPs的TEM形貌图见图4㊂结果表明,光照时间对AuNPs的形貌及尺寸影响较小㊂当光照时间为30min时,AuNPs的平均粒径为41.63nm;当光照时间为60min时,AuNPs的平均粒径为32.68nm;当光照时间为90min时,AuNPs的平均粒径为39.98nm㊂a)30min;b)60min;c)90min㊂图4㊀不同光照时间生成的AuNPsFig.4㊀MorphologyofAuNPspreparedwithdifferentlightirradiationtimes2.2.3㊀HAuCl4浓度当HAuCl4溶液与木质素溶液体积比和光照时间固定时,反应体系中适当的Au3+浓度可以使木质素迅速将Au3+还原成AuNPs[10]㊂不同HAuCl4浓度下木质素还原AuNPs的SPR谱图见图5㊂如图5a所示,AuNPs的SPR峰随HAuCl4浓度增大而逐渐增强,说明溶液中生成的AuNPs不断增多㊂当HAuCl4浓度为1.00mmol/L时,AuNPs在520nm处的SPR尖锐且峰值高,说明此时AuNPs粒径分布窄且产量较高;当HAuCl4浓度增大至1.50mmol/L时,SPR峰值到达最大,继续增大浓度,SPR峰值开始逐渐减弱,半峰宽变大,峰位红移,此时生成的AuNPs因体系中Au3+的饱和而发生团聚导致粒径增大,Au核浓度也随之降低㊂不同HAuCl4浓度下生成的AuNPs粒径分布图见图5b㊂由图5b可知,随着HAuCl4浓度的增加,Au311林业工程学报第9卷NPs粒径表现出逐渐减小的趋势㊂直至HAuCl4浓度增大至1.00mmol/L时,AuNPs的平均粒径最小,为32.41nm;此后随着HAuCl4浓度的继续增加,生成的AuNPs无法均匀分散在体系中而发生团聚,粒径逐渐增大,当HAuCl4浓度为3.00mmol/L时,AuNPs的平均粒径可达703.8nm㊂图5㊀不同HAuCl4浓度下AuNPs紫外⁃可见光谱图和粒径分布Fig.5㊀UV⁃visspectraandparticlesizedistributionofAuNPspreparedwithdifferentconcentrationsofAu3+㊀㊀在光照条件下,控制不同浓度的HAuCl4溶液得到AuNPs的形貌如图6所示㊂当HAuCl4浓度较低时,Au3+被还原成Au核后,由于Au3+不足,导致Au停止生长,稳定分散在溶液中(图6a和b);随着Au3+浓度的增加,被还原的Au核也越来越多,Au3+开始附着在Au核表面上生长从而出现了不同形貌(图6c);当HAuCl4浓度为1.00mmol/L时,生成的AuNPs浓度较0.50mmol/L时更高,尺寸更均一(如图6c和d);当HAuCl4浓度继续增加至1.50mmol/L时,AuNPs开始出现不同程度的团聚(图6e),继续增加HAuCl4浓度,团聚现象加剧(图6f)㊂这与图5a中Au3+高于1.50mmol/L时,AuNPs的SPR峰强度降低,并伴随着红移现象的出现一致㊂因此,利用木质素在模拟太阳光催化下制备AuNPs最佳的HAuCl4溶液浓度为1.00mmol/L㊂a)0.05mmol/L;b)0.10mmol/L;c)0.50mmol/L;d)1.00mmol/L;e)1.50mmol/L;f)2.00mmol/L㊂图6㊀不同浓度HAuCl4制得AuNPs的TEM图Fig.6㊀MorphologyofAuNPspreparedwithdifferentconcentrationsofAu3+2.3㊀AuNPs/木质素的催化性能2.3.1㊀AuNPs/木质素催化还原模型污染物室温下,以MB和4⁃NP作为有机污染物模型探究AuNPs/木质素分散体系的催化活性㊂利用UV⁃Vis分别测定MB和4⁃NP在664和400nm处的紫外吸收峰强度变化[14,17]㊂在3mLMB(0.05mmol/L)和NaBH4(0.05mmol/L)溶液中加入15μLAuNPs/木质素分散液(1mmol/L),MB在664nm处的特征吸收峰强度随时间的增加而逐渐减弱,并在5min后趋于平缓(图7a)㊂MB的催化还原率在5min内达97%,MB几乎完全被还原;同样地,加入20μLAuNPs/木质素分散液(1mmol/L)时催化还原率在3.3min内达95%(图7b);而当反应体系中只有MB和NaBH4存在时,即使均匀混合12min,MB在664nm处的吸收峰也几乎不发生变化,这说明没有AuNPs存在时,MB未发生还原反应(图7c)㊂在3mL4⁃NP(0.05mmol/L)和NaBH4(0.05mmol/L)溶液中加入50μLAuNPs/木质素411㊀第1期李茉琰,等:木质素还原制备金纳米颗粒及其催化性能分散液(1mmol/L),随着反应时间的增加,4⁃NP在400nm处的特征吸收峰强度逐渐减弱(图7d)㊂同时,300nm处新出现的紫外吸收峰,表明4⁃NP被逐渐催化还原成4⁃氨基苯酚(4⁃AP)㊂反应进行到7.3min时,AuNPs对4⁃NP的催化还原率达82%;AuNPs/木质素分散液(1mmol/L)加入量为80μL达83%(图7e),AuNPs/木质素分散液加入量的增加使其对4⁃NP的催化还原时间明显缩短;当反应体系中只有4⁃NP和NaBH4时,即使混合反应12min,4⁃NP在400nm处的紫外吸收峰也基本不变(图7f),这说明体系中无AuNPs/木质素存在时,4⁃NP未发生催化还原㊂实验结果表明,AuNPs/木质素分散体系对MB和4⁃NP均有良好的催化还原作用㊂d)50μLAuNPs(1mmol/L)(4⁃NP+NaBH4);e)80μLAuNPs(1mmol/L)(4⁃NP+NaBH4);f)无AuNPs(4⁃NP+NaBH4)㊂图7㊀MB和4⁃NP在664和400nm处的紫外吸收峰强度变化Fig.7㊀UV⁃visspectraofMBand4⁃NPsolutionsaddedwithdifferentAuNPssolutions图8㊀AuNPs催化NaBH4催化还原准一级动力学Fig.8㊀Quasifirst⁃orderkineticsofreductionofMBand4⁃NPbyNaBH4catalyzedwithAuNPs2.3.2㊀AuNPs/木质素催化还原动力学分析为了进一步探究AuNPs/木质素对MB和4⁃NP的催化还原活性,通过准一级动力学计算反应速率常数k值评估反应的催化速率,k值越大,催化反应速率越快㊁反应时间越短,说明AuNPs/木质素的催化性能越好㊂根据ln(Ct/C0)与反应时间之间的线性关系计算反应速率常数k,结果如图8所示㊂20μLAuNPs对MB和NaBH4的催化反应速率k值为0.7658min-1,80μLAuNPs对4⁃NP和4的催化反应速率k值为0.3166min-1,说明催化剂AuNPs/木质素对MB㊁4⁃NP均有较好的催化还原活性,且反应动力学常数随AuNPs/木质素加入量的增加而增加㊂基于以上实验结论,提出AuNPs/木质素在该条件下对于MB的催化反应机理:NaBH4在水溶液中首先电离出Na+离子和BH4-离子,BH4-离子提供电子诱导MB的还原;在不存在催化剂的条件下,该反应的发生需要越过一个较高的能量势垒,因而该反应自发过程十分缓慢㊂然而,当体系中引入AuNPs后,Au分子511林业工程学报第9卷和BH4-离子与AuNPs接触时,MB分子从AuNPs催化剂表面获得电子,随之立即被还原和解吸,为后续的MB分子释放一个新的还原位点,并重复上述过程以确保还原反应的连续性㊂4⁃NP的还原机理同上,4⁃NP分子从AuNPs催化剂表面获得电子后被立即催化还原,最终达到较高催化还原水平㊂3㊀结㊀论利用一种简单的光催化木质素还原Au(Ⅲ)的方式制备了具有优异催化还原性能的AuNPs/木质素,深入探究了Au3+浓度㊁木质素质量分数㊁光照时间等不同变量对AuNPs尺寸和形貌的影响,以MB和4⁃NP为模拟污染物,探究AuNPs/木质素的催化性能,揭示其光催化机理,具体结论如下:1)纯化木质素溶液作为Au3+的还原剂和稳定剂,在光催化条件下,通过调控HAuCl4溶液/木质素溶液体积比㊁光照时间以及HAuCl4浓度可以制得粒径可控的AuNPs㊂2)制备AuNPs的最佳工艺条件为:HAuCl4与木质素体积比4ʒ1,光照时间60min,HAuCl4浓度1.00mmol/L,其平均粒径为32.41nm㊂3)催化降解动力学分析证明AuNPs/木质素对MB(3.3min,95%)和4⁃NP(5.7min,83%)均有较好的催化还原活性㊂参考文献(References):[1]WANGBB,YANGGH,CHENJC,etal.Greensynthesisandcharacterizationofgoldnanoparticlesusingligninnanoparticles[J].Nanomaterials,2020,10(9):1869.DOI:10.3390/nano10091869.[2]LOWLE,TEHKC,SIVASP,etal.Ligninnanoparticles:thenextgreennanoreinforcerwithwideopportunity[J].EnvironmentalNanotechnologyMonitoring&Management,2021,15:100398.DOI:10.1016/j.enmm.2020.100398.[3]ARRUDAMDM,DAPAZLEÔNCIOAS,DACRUZFILHOIJ,etal.CharacterizationofaligninfromCrataevatapialeavesandpotentialapplicationsinmedicinalandcosmeticformulations[J].InternationalJournalofBiologicalMacromolecules,2021,180:286-298.DOI:10.1016/j.ijbiomac.2021.03.077.[4]荆京.水解条件下柠檬酸根修饰的球形银纳米粒子的尺寸调控[D].长春:吉林大学,2011.JINGJ.Sizecontrolofthecitratecapedsphericalsilvernanoparti⁃clesinhydrolyzingconditions[D].Changchun:JilinUniversity,2011.[5]苏秀茹,傅英娟,李宗全,等.木质素的分离提取与高值化应用研究进展[J].大连工业大学学报,2021,40(2):107-115.DOI:10.19670/j.cnki.dlgydxxb.2021.0205.SUXR,FUYJ,LIZQ,etal.Researchprogressonextractionandhigh⁃valueapplicationoflignin[J].JournalofDalianDalianPolytechnicUniversity,2021,40(2):107-115.[6]王玉先,张红漫,朱丽英,等.金属纳米团簇的合成及抗菌效应的研究进展[J].生物加工过程,2022,20(1):81-87.DOI:10.3969/j.issn.1672-3678.2022.01.011.WANGYX,ZHANGHM,ZHULY,etal.Researchprogressinthesynthesisandantimicrobialeffectofmetalnanoclusters[J].ChineseJournalofBioprocessEngineering,2022,20(1):81-87.[7]岳华东,杭梦婷,郑梦绮,等.新型的氨基稀土金属有机骨架材料的制备及光催化降解有机染料研究[J].化工新型材料,2022,50(6):146-150.YUEHD,HANGMT,ZHENGMQ,etal.Studyonprepara⁃tionofnewtypeaminoY⁃MOFmaterialandphotocatalyticdegra⁃dationoforganicdyes[J].NewChemicalMaterials,2022,50(6):146-150.[8]CHENY,WUT,XINGGL,etal.Fundamentalformationofthree⁃dimensionalFe3O4microcrystalsandpracticalapplicationinanchoringAuasrecoverablecatalystforeffectivereductionof4⁃nitrophenol[J].Industrial&EngineeringChemistryResearch,2019,58(33):15151-15161.DOI:10.1021/acs.iecr.9b02777.[9]WUF,YANGQ.Ammoniumbicarbonatereductionroutetouni⁃formgoldnanoparticlesandtheirapplicationsincatalysisandsur⁃face⁃enhancedRamanscattering[J].NanoResearch,2011,4(9):861-869.DOI:10.1007/s12274-011-0142-9.[10]张清桐,运晓静,颜德鹏,等.太阳光催化木质素制备银纳米颗粒[J].林产化学与工业,2019,39(4):35-41.DOI:10.3969/j.issn.0253-2417.2019.04.005.ZHANGQT,YUNXJ,YANDP,etal.Preparationofslivernanoparticlesbyligninundersolarlightirradiation[J].ChemistryandIndustryofForestProducts,2019,39(4):35-41.[11]LIJ,ZENGHC.PreparationofmonodisperseAu/TiO2nanoca⁃talystsviaself⁃assembly[J].ChemistryofMaterials,2006,18:4270-4277.DOI:10.1021/cm06362r.[12]DASSK,DICKINSONC,LAFIRF,etal.Synthesis,characte⁃rizationandcatalyticactivityofgoldnanoparticlesbiosynthesizedwithRhizopusoryzaeproteinextract[J].GreenChemistry,2012,14(5):1322-1334.DOI:10.1039/C2GC16676C.[13]ZHANGQT,LIMF,GUOCY,etal.Fe3O4nanoparticlesloadedonligninnanoparticlesappliedasaperoxidasemimicforthesensitivelycolorimetricdetectionofH2O2[J].Nanomaterials,2019,9(2):210.DOI:10.3390/nano9020210.[14]ZHANGQT,LIMF,LUOB,etal.Insitugrowthgoldnanopar⁃ticlesinthree⁃dimensionalsugarcanemembraneforflowcatalyticalandantibacterialapplication[J].JournalofHazardousMaterials,2021,402:123445.DOI:10.1016/j.jhazmat.2020.123445.[15]CHENX,ZHUHY,ZHAOJC,etal.Visible⁃light⁃drivenoxi⁃dationoforganiccontaminantsinairwithgoldnanoparticlecata⁃lystsonoxidesupports[J].AngewandteChemie(InternationalEdinEnglish),2008,47(29):5353-5356.DOI:10.1002/anie.200800602.[16]TAKAHIROK,NAYASI,TADAH.Highlyactivesupportedplasmonicphotocatalystconsistingofgoldnanoparticle⁃loadedme⁃soporoustitanium(Ⅳ)oxideoverlayerandconductingsubstrate[J].TheJournalofPhysicalChemistryC,2014,118(46):26887-26893.DOI:10.1021/jp5094542.[17]ZHANGQT,SOMERVILLERJ,CHENL,etal.Carbonizedwoodimpregnatedwithbimetallicnanoparticlesasamonolithiccontinuous⁃flowmicroreactorforthereductionof4⁃nitrophenol[J].JournalofHazardousMaterials,2023,443(PtB):130270.DOI:10.1016/j.jhazmat.2022.130270.(责任编辑㊀李琦)611。
金属纳米粒子的制备和表面修饰金属纳米粒子(Metal Nanoparticles)在当今的材料科学和纳米科技领域中发挥着重要的作用。
其广泛应用于催化、能源转换、传感、生物医学和信息存储等诸多领域。
然而,由于金属纳米粒子具有的高热稳定性和高活性表面,其制备和表面修饰一直是制约其应用的瓶颈问题。
随着科学技术的不断发展,越来越多的方法被用来制备金属纳米粒子,并对其表面进行修饰,从而拓宽了其在各个领域的应用。
一、制备金属纳米粒子的方法1. 化学还原法化学还原法是一种通过还原剂还原金属离子生成金属纳米粒子的方法。
该方法较为简单且易于操作,适用于大规模生产。
例如,将银离子与还原剂还原反应即可制备出纳米银粒子(Ag NPs),并且将还原后的纳米银粒子进行表面修饰,可用于制备抗菌材料。
2. 水相热合成法水相热合成法是通过热合成反应制备金属纳米粒子的方法。
其优点在于反应环境比较温和,不需要有机溶剂,得到的金属纳米粒子比较纯净。
例如,在水相中用高温链霉菌色素B作还原剂,可制备较小、高质量的金纳米粒子(Au NPs)。
3. 模板法模板法是通过在孔道、介孔或纤维上加沉积金属原子或离子,然后通过加热或化学还原成纳米颗粒的方法。
该方法可制备形貌和尺寸均一的金属纳米粒子。
例如,氧化铁纳米颗粒可以被用作硝酸银的模板来制备银纳米粒子,并用真空热蒸发沉积的方法得到球形金纳米粒子。
二、金属纳米粒子的表面修饰由于金属纳米粒子表面的高度活性,其表面修饰不仅能够提高其药物载体的稳定性和生物相容性,还能改善其化学和物理特性,为其应用于生物医学和环境治理等领域提供基础。
金属纳米粒子的表面修饰包括化学修饰、物理修饰和生物修饰等方法。
1. 化学修饰化学修饰是通过化学反应的方法,在纳米粒子表面引入化学官能团、胶束或聚合物等,可以改变纳米粒子的生物相容性、分散性和稳定性。
例如,表面修饰成羟基磷灰石,可用作骨质再生的植入材料。
2. 物理修饰物理修饰是通过改变金属纳米粒子的形貌和大小等表面特征,改变其表面性质。
纳米金粒子制备及应用研究进展纳米技术在21 世纪将发挥极为重要的作用,是未来纳米器件、微型机器、分子计算机制造的最可能的途径之一。
纳米材料学作为纳米技术的重要组成部分也将会受到更广泛的重视。
科学家们利用纳米颗粒作为结构和功能单元,可以组装具有特殊功能如特殊敏感性和光、电、化学性能的纳米器件。
金属纳米颗粒由于其在量子物理,信息存储,复合材料等方面的潜在应用而引起了人们的注意。
其中,金纳米粒子由于其优异的导电性能,良好的化学稳定性及其独特的光学、催化特性而吸引了更多的目光。
这主要是因为:金是一种惰性元素,其化学稳定性良好;金和硫元素之间可以形成一种非常稳定的键合作用,这有利于在其表面组装带有各种官能团的单分子层。
由于纳米金粒子这些特有的化学性能以及独特的光、电性能,自上世纪80 年代至今,化学界对纳米金粒子的应用及其功能化研究方兴未艾。
本文综述了近年来纳米金粒子的制备及应用研究进展。
纳米金粒子的制备方法一.化学还原法制备法超细金粉制备原理:将金化合物的适当溶液通过化学还原而得到单质金粉.1.抗坏血酸为还原剂生产超细金粉工艺①王水溶金将黄金用去离子水冲洗,在置于稀硝酸中煮洗5~10min后,适当加热以启动反应,当反应较为平缓后,可再加入少量王水,直至大部分尽快获金粉溶解.反映结束时应保证体系中有少量未反应的黄金存在,即在投料时必须保证黄金的过量.②浓缩,赶硝将溶金液倾入另一烧杯中,用水洗净未反应的金块或金粉,转入下一循环使用。
洗液并入溶金液。
加热并在此过程中滴加浓盐酸以赶尽氮氧化物,过滤,滤液转入旋转蒸发皿进行浓缩结晶,然后配成适当浓度的水溶液。
③还原将抗坏血酸配成饱和溶液,在不断搅拌下,将氯金酸溶液滴加到抗坏血酸溶液中,滴加完毕后继续搅拌1h,静置沉降。
④清洗、干燥和筛分将上层清液倾出,用水和乙醇以倾析法清洗金粉。
所得金粉置于真空干燥。
冷却后,将金粉过筛分级,得到不同粒度的球形金粉末。
2.Na3C6H5O7 柠檬酸钠为还原剂制得纳米金颗粒粒径在15-20nm 之间Na3C6H5O7 为还原剂时,柠檬酸钠与氯金酸的摩尔比为1.5:1 时最佳;采用HAuCl4 溶液加入到加热的Na3C6H5O7 与聚乙烯吡咯烷酮(PVP)混合溶液Na3C6H5O7 溶液加入到室温的NaBH4 与PVP 混合溶液制得的纳米金溶胶的颗粒分散性好,粒径小且更均一。
纳米颗粒的制备和性质表征分析纳米技术在近年来得到了极大的发展和广泛的应用,纳米材料,其中包括纳米颗粒,具有许多独特的性质和特性,如高比表面积,比优异的光学和电学性质等,被广泛地应用于催化、磁性材料、电子材料等领域。
本文旨在探究纳米颗粒的制备方法及性质表征分析方法。
一、纳米颗粒的制备方法纳米颗粒的制备方法多种多样,常见的方法包括溶剂热法、溶胶凝胶法、气相合成法等。
其中最常用的制备方法是化学溶解法。
此方法是通过在溶液中添加适当的药剂,使得金属离子逐渐还原成为金属纳米颗粒。
常用的纳米颗粒制备方法主要有以下几种:1、相转移法。
相转移法通过油水相结构产生的表面活性剂,在界面上形成纳米颗粒。
该方法的优点是能较快地制备出纳米颗粒,且粒径分布较为均匀,不易出现聚集的现象。
但同时也存在一些问题,如表面活性剂对环境的污染问题以及产生的垃圾难以处理等。
2、化学还原法。
化学还原法最早是用于制备金纳米颗粒的,它是通过还原金离子来制备纳米颗粒。
它的优点是能够制备出粒径小、分布较为均匀且颗粒形态较为规则的纳米颗粒。
但同时制备条件较为苛刻,还原剂的选择及其浓度等条件会直接影响到纳米颗粒的制备效果。
3、物理气相法。
物理气相法又称为纳米气相合成法,是通过化学反应生成气态金属原子,然后通过高温下的气相反应制备纳米颗粒。
该方法具有高制备效率,可以在较短的时间内大量制备出纳米颗粒。
同时可以控制颗粒的大小和形态,但它也存在着某些问题,如颗粒过度聚集、有毒气体排放等。
二、纳米颗粒的性质表征分析纳米材料在许多领域具有重要的应用,但是由于其纳米尺度下独特的结构和物理性质,常规的性质表征方法难以准确的描绘其物理和化学特性。
目前常用的纳米颗粒性质表征方法主要包括:1、透射电子显微镜(TEM)。
透射电子显微镜是目前最为常用的对纳米颗粒进行直接观察的技术。
其优势是能够通过高分辨率成像获得纳米颗粒的结构和形貌信息。
最近发展的高角度电子暗场显微镜(STEM)能够实现更为高分辨率的纳米颗粒成像,提高纳米颗粒性质表征的精度。
合成金纳米星原理-概述说明以及解释1.引言1.1 概述金纳米星是一种由金原子组成的纳米级颗粒,具有独特的物理和化学性质。
合成金纳米星是一项重要的研究领域,它在纳米技术、材料科学和生物医学领域都有着广泛的应用和潜力。
本文将探讨金纳米星的定义、合成方法和应用,并对其未来发展进行展望。
通过深入了解金纳米星的原理和特性,我们可以更好地利用这一材料在各个领域的潜力。
1.2 文章结构:本文将首先介绍金纳米星的定义,包括其特点和结构特征。
接着将详细探讨合成金纳米星的方法,包括常见的化学合成和物理合成方法。
最后将探讨金纳米星在各领域的应用,如医学、材料科学和纳米技术等。
通过这些内容的阐述,读者将对金纳米星有更全面的了解,并能够对其在未来的发展趋势有所预测。
1.3 目的本文旨在介绍合成金纳米星的原理及其在科学研究和应用领域的重要性。
通过对金纳米星的定义、合成方法以及应用进行深入探讨,希望读者能够了解金纳米星的结构特点、制备过程和潜在应用价值,从而进一步推动金纳米技术领域的发展和应用。
同时,也希望能够激发读者对纳米材料研究的兴趣,促进更多关于金纳米星的研究和探索。
最终,通过本文的阐述,使读者对合成金纳米星有一个全面而深入的了解,为相关研究工作和应用提供有益的参考。
2.正文2.1 金纳米星的定义金纳米星是一种由金原子组成的纳米材料,通常呈星形结构。
金纳米星具有独特的形态和性质,使其在多个领域具有广泛的应用价值。
金纳米星的尺寸通常在1-100纳米之间,具有高度可控性和稳定性,能够在不同环境下保持其特定形态和性质。
由于金本身具有优良的导电性和化学稳定性,金纳米星不仅具有优异的光学性能,还具有良好的生物相容性和生物活性,使其在生物医学领域具有重要的应用潜力。
此外,金纳米星还被广泛应用于传感、催化、光催化、纳米药物、纳米传感器等领域。
金纳米星的合成方法多种多样,可以通过溶液法、溶胶凝胶法、光化学法等途径进行合成。
通过调控合成参数和条件,可以实现金纳米星的形貌、尺寸和结构的精确控制,从而调控其性能和应用领域。
纳米颗粒制备方法
纳米颗粒的制备方法有多种,包括蒸发法制备纳米颗粒、流动油面上的真空蒸发沉积法、化学气相冷凝法等。
此外,纳米颗粒的化学合成方法也较为常见。
以上方法的具体内容如下:
1.蒸发法制备纳米颗粒:包括直接利用气体或利用各种手段将物质变成气体,使之在气体状态下发生物理或化学变化,在冷却过程中凝聚长大形成纳米粒子。
其中,气相蒸发法原理是在高真空室中冲入低压的纯净惰性气体或反应气体,预蒸发的物质置于坩埚,通过加热装置逐渐加热蒸发,产生原物质烟雾。
由于惰性气体的对流,烟雾向上移动(与反应气体发生化学反应)并接近充液氮的冷却棒(77K)。
在蒸发过程中原物质原子与惰性气体碰撞损失能量冷却,造成局域的过饱和,形成均匀的成核过程,然后形成原子簇,长大成纳米粒子。
2.流动油面上的真空蒸发沉积法(VEROS):将物质在真空中连续地蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,制备纳米粒子。
这种方法可以得到平均粒径小于10nm的各类金属粒子,粒子分布窄。
3.化学气相冷凝法(CVC):将反应室抽真空,冲入少量的惰性气体,形成数百帕的真空度,(通入反应气体),在加热的反应器内得到目标产物或其前驱体,然后在对流的作用下,到达后部的骤冷转筒器(加入液氮作为冷却介质),转筒后面有一刮刀不断的移去沉积的纳米颗粒,可以提供一个干净的金属表面来进行连续的收集操作。
这种方法粒径小、分布窄、避免团聚。
以上制备纳米颗粒的方法各有特点,可以根据实际需求和条件选择合适的方法。
纳米粒子合成方法纳米粒子是具有纳米级尺寸的微粒,具有较大的比表面积和特殊的物理、化学特性,因此在材料科学、医学、能源等领域具有广泛的应用前景。
合成纳米粒子是研究人员必须面对的关键问题之一,因为合适的合成方法不仅能够精确控制纳米粒子的形状、大小和组成,还能够影响其物理化学性质和应用效果。
本文将介绍几种常见的纳米粒子合成方法。
1. 溶胶-凝胶法溶胶-凝胶法是一种常用的纳米粒子合成方法,通过溶液中的化学反应使溶胶逐渐形成凝胶,然后通过干燥和煅烧等步骤制备纳米粒子。
这种方法可以通过控制溶胶溶液中的化学成分和条件来调控纳米粒子的形状和尺寸。
例如,通过溶胶-凝胶法可以合成金属纳米粒子、氧化物纳米粒子等。
2. 热分解法热分解法是一种利用热能将金属盐类或金属有机络合物转化为金属纳米颗粒的方法。
通常使用高温和惰性气氛来控制热分解反应。
这种方法可以实现对纳米粒子形貌和尺寸的精确控制。
例如,通过调节反应温度和时间,可以合成球形、棒状或片状的金属纳米粒子。
3. 水热法水热法是一种利用水热条件下的化学反应来制备纳米颗粒的方法。
该方法常用于合成金属氧化物纳米颗粒和碳基材料。
在高温高压的水热环境下,溶液中的化学物质会在一定的时间内发生反应,从而合成所需的纳米颗粒。
纳米颗粒的形貌和尺寸可以通过调节反应条件和反应时间来实现。
4. 水相/油相界面法水相/油相界面法是一种通过油相与水相的界面上发生的反应来制备纳米颗粒的方法。
通常使用表面活性剂作为界面剂来调控纳米颗粒的大小和形貌。
在水相/油相体系中,溶剂中的油相可溶解或包裹微量的金属形成一种包裹形态,然后在界面上通过还原反应形成纳米粒子。
这种方法可以合成具有特定形状和空腔的纳米颗粒。
5. 生物法生物法是利用生物体或其生物产物作为模板或催化剂来合成纳米材料的方法,它具有绿色环保的优势。
例如,使用细菌、病毒和酵母等生物体可以直接将金属离子还原为相应的金属纳米颗粒。
此外,还可以利用生物产物中的特殊结构和功能,如基因工程、合成生物学等技术来合成具有特殊形貌和特性的纳米颗粒。
bsa合成金纳米簇吸收峰BSA(Bovine Serum Albumin)是一种常见的蛋白质,在生物医学研究和生物制药中具有广泛的应用。
近年来,研究人员发现将金纳米颗粒与BSA结合可以产生新的纳米材料。
这种合成金纳米簇具有许多优异的性质,例如可调控的吸收峰。
本文将探讨如何合成BSA金纳米簇以及其吸收峰的调控机制。
BSA金纳米簇的合成方法有很多种,其中一种常用的方法是化学还原法。
一般来说,首先将金盐(如HAuCl4)还原为金纳米颗粒,然后通过BSA的自组装方式将其包裹在纳米颗粒表面,形成BSA金纳米簇。
这种自组装方式可以在BSA分散溶液中控制金离子在纳米颗粒表面的还原和吸附,通过调整溶液的pH值、温度和BSA的浓度等参数,合成出具有不同形状和尺寸的金纳米簇。
BSA金纳米簇的形状和尺寸对其吸收峰的位置和强度具有重要影响。
一般来说,较小的金纳米簇具有蓝色的吸收峰,而较大的金纳米簇则具有红色的吸收峰。
这是由于金纳米簇的局域表面等离子共振(LSPR)引起的。
LSPR是一种电磁共振现象,当金纳米颗粒的尺寸和形状满足一定条件时,可以在可见光区域产生特定的吸收峰。
BSA作为一种有机物,可以通过与金纳米簇的相互作用来调控其形状和尺寸,从而调控金纳米簇的吸收峰。
BSA与金纳米簇的相互作用机制复杂多样。
一方面,BSA可以在金纳米簇表面形成吸附层,通过与金离子的配位作用来稳定金纳米簇。
另一方面,BSA也可以通过电荷相斥和范德华相互作用等方式来调控金纳米簇的形状和尺寸。
这些相互作用机制不仅受到溶液的pH值和温度的影响,还受到BSA的浓度和结构的影响。
例如,当BSA的浓度较低时,可以通过电荷相斥来促进金纳米簇的聚集,形成大尺寸的簇集体。
而当BSA的浓度较高时,可以通过配位作用和相互作用力来稳定金纳米簇的形状和尺寸。
此外,BSA金纳米簇的表面修饰也可以影响其吸收峰的调控。
研究人员发现,通过在金纳米簇表面引入功能化基团,可以改变金纳米簇的表面电子结构,从而调控其光学性质。
纳米金纳米酶简介纳米金纳米酶是一种新型的纳米材料,结合了金纳米颗粒和纳米酶的特性。
它具有较大比表面积、高稳定性和较强的催化活性,被广泛应用于生物医学、环境保护和能源领域。
本文将详细介绍纳米金纳米酶的制备方法、特性以及应用前景。
制备方法1. 合成金纳米颗粒制备纳米金纳米酶的第一步是合成金纳米颗粒。
常见的方法包括化学还原法、溶胶-凝胶法和微乳液法等。
其中,化学还原法是最常用的方法之一。
该方法通过将金盐溶液与还原剂混合反应,在适当的条件下形成均匀分散的金纳米颗粒。
2. 修饰表面功能基团为了提高金纳米颗粒的稳定性和催化活性,需要对其表面进行修饰。
常用的修饰方法包括吸附有机分子、共价键合有机分子以及修饰功能性分子等。
通过修饰表面功能基团,可以增加金纳米颗粒与其他物质的相互作用能力,提高其在催化反应中的效率。
3. 导入纳米酶将合成好的金纳米颗粒与纳米酶进行复合即可得到纳米金纳米酶。
纳米酶是一种具有催化活性的生物大分子,可以在较低温度下催化多种反应。
通过将纳米酶导入金纳米颗粒中,可以将其催化活性与金纳米颗粒的稳定性相结合,形成具有优异性能的纳米金纳米酶。
特性1. 比表面积大由于金纳米颗粒具有较小的尺寸和较大的比表面积,使得纳米金纳米酶具有更多的活性位点和更高的催化效率。
相比传统的微尺度材料,其比表面积更大,从而提高了反应速率和效果。
2. 高稳定性金纳米颗粒具有较好的稳定性和抗氧化能力,在不同环境条件下都能保持其催化活性。
此外,金纳米颗粒还具有较强的抗酸碱性和耐高温性能,使得纳米金纳米酶在复杂的反应体系中都能保持良好的稳定性。
3. 强催化活性纳米金纳米酶通过将金纳米颗粒与纳米酶复合,将两者的优势相结合,形成强大的催化活性。
金纳米颗粒提供了良好的载体和催化基底,而纳米酶则提供了催化反应所需的活性位点和选择性。
这种协同作用使得纳米金纳米酶在各种催化反应中表现出优异的效果。
应用前景1. 生物医学领域由于纳米金纳米酶具有较大比表面积和高稳定性,可以被用作生物传感器、药物传递载体以及肿瘤治疗等方面。
苏州大学本科生毕业设计(论文) 1 目录 摘要 ............................................................. 2 Abstract .......................................................... 4 1.引言 ........................................................... 5 1.1. 传统实验方法 ............................................... 5 1.2. 基于纳米颗粒的实验方法 ..................................... 5 1.3. FRET和NSET ................................................ 5 1.4. 捕光材料—共轭聚合物 ....................................... 6 1.5. 实验机理 ................................................... 7 1.5.1 嵌入染料TO ......................................................... 7 1.5.2 阳离子共轭聚合物PFP .............................................. 7 1.5.3 实验过程 ............................................................ 9 2.实验部分 ....................................................... 9 2.1. 实验材料 ................................................... 9 2.2. 表征 ...................................................... 10 2.3. 金纳米颗粒的合成 .......................................... 10 2.4. 金纳米颗粒的表面功能化 ................................... 111 2.5. 金纳米颗粒表面DNA的固定 .................................. 12 2.6. 表面固定DNA的GNPs的杂化 ................................. 12 苏州大学本科生毕业设计(论文) 2 2.7. TO和PFP的NSET实验 ...................................... 12
2.8. 一个碱基不匹配的双链DNA S1核酸酶切反应的分析 ............. 13 3. 实验结果及分析 ............................................... 13 3.1. 以CPPs/GNPs/dsDNA复合物进行的核酸酶探测 .................. 13 3.1.1. PFP量的优化 ........................................... 13 3.1.2. GNPs-DNA量的优化 ...................................... 14 3.1.3. S1核酸酶探测 .......................................... 16 3.2. 以CPPs/TO/GNPs-dsDNA复合物进行的核酸酶探测 ............... 16 3.2.1. PFP量的优化 ........................................... 17 3.2.2.S1核酸酶探测 ........................................... 18 3.3. 用PG作为荧光探针 ......................................... 19 结论 ............................................................ 21 参考文献 ........................................................ 22 致 谢 .......................................................... 24
摘要 苏州大学本科生毕业设计(论文)
3 我们使用共轭高分子/金纳米颗粒/染料标记的DNA复合物发展了S1核酸酶的一种新型检测方法,此方法利用了金良好的荧光淬灭性质和共轭高分子的信号放大特性。这种方法是由于纳米材料表面能量转移(NSET)中,能量从供体分子到纳米颗粒表面的转移遵循可预测的约为70-100nm的距离。在此过程中,由于从共轭高分子到嵌入染料进而到金纳米颗粒表面的NSET,不存在S1核酸酶的情况下将观察不到嵌入染料的荧光信号。而存在S1核酸酶的情况下,双链DNA被切离金纳米颗粒的表面,NSET过程中断,从共轭高分子到嵌入染料高效的荧光共振能量转移所得的嵌入染料的荧光得以恢复。
关键词 S1核酸酶分析,共轭高分子(CP),金纳米颗粒(GNPs),DNA,信号放大,纳米材料表面能量转移(NSET),荧光共振能量转移(FRET) 苏州大学本科生毕业设计(论文)
4 Abstract
A new strategy for S1 nuclease assay has been developed using conjugated polymer/gold nanoparticle/dye-labeled DNA complex by taking advantage of good fluorescence quencher of gold nanoparticles and the amplification feature of conjugated polymer. This method is based on nanomaterial surface energy transfer (NSET) which energy transfer from a donor molecule to a nanoparticle surface follows a predictable distance as large as 70-100 nm. In this process, no signal of intercalated dye was observed in the absence of S1 nuclease due to the NSET from conjugated polymer to intercalated dye and further to the surface of gold nanoparticles. In the present of S1 nuclease, dsDNA was cleaved from gold nanoparticles which intermit NSET process, thus recovering the fluorescence of intercalated dye through efficient fluorescence resonance transfer (FRET) from conjugated polymer.
Key Words S1 nuclease assay, conjugated polymer(CP), gold nanoparticles(GNPs), DNA, signal amplification, NSET, FRET. 苏州大学本科生毕业设计(论文)
5 1.引言
实时高选择性及高敏感的酶检测方法对于科研和经济都是非常重要的。DNA酶切反应,如限制及非限制酶参与了许多重要的生物进程,如复制,重组和修复。此外,环境中DNA和酶的相互作用可能会导致遗传信息的改变进而引起健康问题。[1-5]
1.1. 传统实验方法 传统方法已被建立用于测定核酸酶的活性,其中包括凝胶电泳,高效液相色谱法(HPLC),电化学研究和酶联免疫吸附实验。[6]然而这些方法具有如下缺点,耗时,耗DNA,不连续,费力,而且通常需要同位素标记。为了避免这些限制,近几十年来基于荧光共振能量转移(FRET)或非荧光共振能量转移淬灭机理的核酸酶分析方法得以发展。[7-10]
1.2. 基于纳米颗粒的实验方法 基于纳米颗粒NPs的实验方法已被广泛应用于化学及生物探测。纳米颗粒能用作许多量子点及染料分子封装载体,已被主要用于荧光免疫分析的信号记录以提高检测灵敏度。因为纳米颗粒NPs具有大的表面积及球形形状。DNA探针在其表面的固定具有高浓度。此外,NPs悬浮液所提供的几乎均质的环境可促进DNA的固定及杂交。[15] 然而,由于洗涤步骤中荧光分子的泄露,基于NPs的生物标记方法的潜在应用受到限制。加之染料掺杂的NPs通常具有宽的发射波和较小的斯托克斯位移,这将导致激发和发射信号间的交互调制。引入荧光共振能量转移(FRET)将供体激发和受体发射间的波长分离开是避免这些缺陷的一种有效方法。[34] 由于荧光团能通过有效的非辐射能量转移在金球表面淬灭,基于荧光共振能量转移现象,金纳米颗粒Au NPs已被应用于实验中。由于胶体金具有很强的淬灭能力,其具有大的摩尔消光系数(10-20 nm 金球约为105 cm-1 M-1 )和有机染料纳摩尔亲和力。
1.3. FRET和NSET 存在另一种分子的情况下,荧光分子的激发能量可被转移到另一临近的分子上,从而