5P10(电流互感器、电压互感器简介)

  • 格式:pdf
  • 大小:178.97 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5P10,后面的10就是准确限值系数。

5P10表示当一次电流是额定一次电流的10倍时,该绕组的复合误差≤±5%。

准确限值系数的意义就是在保证误差在±5%范围内时,一次电流不能超过额定电流的倍数,如果此时一次电流比较大,就要选用5P20的,甚至还可能选用5P30的。

比如,经计算,你需要装设保护的地方,在最大运行方式下短路电流是4KA,你选用的电流互感器是150/5,5P10,也就是说该电流互感器在150A*10倍=1500A=1.5KA时,能保证绕组的复合误差≤±5%;而很可能短路后,电流超过1.5KA,甚至达到4KA,这时就达不到复合误差≤±5%,如果选用150/5,5P30的电流互感器,电流互感器在150A*30倍

=4500A=4.5KA时,能保证绕组的复合误差≤±5%,但最大短路电流才4KA,故在全量程中,均能保证保护用电流互感器的精度。

但实际应用中,为降低成本,保护并不需要太高的精度,10P已经能满足需要,且在选择电流互感器时,也没有必要保证在最大短路电流时还保证精度,一般在保护定值附近能保证精度就可以了。

TPY是铁心具有气隙的保护用考虑暂态特性的电流互感器。其中T代表暂态,P代表保护,Y代表气隙。选型时除了额定电流值以外,还有其它有关参数,例如一次时间常数、二次时间常数、一次侧对称短路电流的准确倍数、剩磁系数等。

TPY级电流互感器主要用于超高压线路和大型发电机、变压器的快速继电保护接线中,例如差动保护,可有效避免暂态误动。

看到书上说电压互感器的一次侧电压不受二次侧负载的影响,但电流互感器的一次侧电流确受二次侧负载电流的影响,请问各位师傅这是为什么啊

你可以把它们看成一个变压器,PT和CT都可以看成容量很小的变压器.二次侧消耗的能量来自一次侧.一次侧是高电压或大电流,二次侧的负载非常小,因而他的变化不会对一次侧产生

影响.就好比你在家里插了一只充电器一样不会对市电电压产生影响.

只是在运行过程中,PT不可短路,CT不可开路.

标准规定的TP类电流互感器分为TPS、TPX、TPY和TPZ四级。其中,TPS和TPX铁心均不带气隙,因此并不限制剩磁,二者特性相似。当电流互感器严重饱和时切断一次电流,二次电流将随磁通由饱和状态快速降低到剩磁水平,即二次电流残余电流小,因此适用于对保护复归时间要求严格的断路器失灵保护的电流起动元件;另一方面,此类电流互感器励磁阻较高,汲出电流小,适用于电流互感器并接的场合。TPY和TPZ级互感器铁心带有气隙,因而磁阻较大,增长了互感器到达饱和的时间,不易饱和,即有更长的时间可保持线性转换传变关系,使暂态特性大大改善。互感器时间常数减少,铁心面积可减少;剩磁减少也有利于暂态特性的改善,因而TPY级可在准确限值条件下保证全电流的最大峰值瞬时误差

ε=10%;而TPZ级仅保证交流分量最大峰值瞬时误差εac=10%。由于TPZ级仅能进行交流分量的传变,用于仅需反应交流分量的保护装置,不能保证低频分量误差且励磁阻抗过低,因而不推荐用于发电机组等主设备保护和断路器失灵保护。总的比较下来,TPY级电流互感器铁心带有适当气隙,剩磁限制到适当值以下(为饱和磁通值的10%以下),在规定的准确限值条件下能保证全电流的峰值瞬时误差在10%以下,具有较好的暂态特性,更适用于发电机组保护。

1.1 5A还是1A?

电流互感器的作用是将一次设备的大电流转换成二次设备使用的小电流,其工作原理相当于一个阻抗很小的变压器。其一次绕组与一次主电路串联,二次绕组接负荷。电流互感器的变比一般为X:5A(X不小于该设备可能出现的最大长期负荷电流),如此即可保证电流互感器二次侧电流不大于5A。在超高压电厂和变电站中,如果高压配电装置远离控制室,为了增加电流互感器的二次允许负荷,减小连接电缆的导线界面及提高精确等级,多选用二次额定电流为1A的电流互感器。相应的,微机保护装置也应选用交流电流输入为1A的产品。根据目前新建110kV变电站的规模及布局,绝大多数都是选用二次侧电流为5A的电流互感器。1.2 10P10、0.5还是0.2S?在变电站中,电流互感器用于三种回路:微机保护、测量和计量,而这三种回路对电流互感器的准确级要求是不同的。根据准确级的不同可将电流互感器的绕组划分为10P10(保护)、0.5(测量)和0.2S(计量)。用于测量和计量的绕组着重于精度,用于保护的绕组着重于容量,以避免铁芯饱和影响实际变比。

1.3 星形还是三角形?

电流互感器二次绕组的接线常用的有三种,完全星形接线、不完全星形接线和三角形接线,

如图2-1所示。

图2-1

完全星形接线:可以反映单相接地故障、相间短路及三相短路故障。目前,110kV线路、变压器、10kV电容器等设备配置的电流互感器均采用此接线方式。

不完全星形接线:反映相间短路及A、C相接地故障。目前,35kV及10kV架空线路在不考虑“小电流接地选线”功能(以后简称“选线”)的情况下多采用此接线方式,以节省一组电流互感器;否则,必须配置三组电流互感器,以获得零序电流实现“选线”功能。电缆出线时,配置了专用的零序电流互感器实现“选线”功能,也按此方式配置。

三角形接线:以往,这种接线用于采用Y,d11接线的变压器的差动保护,使变压器星形侧二次电流超前一次电流30°,从而和变压器三角形侧(电流互感器接成完全星形)二次电流相位相同。目前,主变微机差动保护本身可以实现因主变组别造成的相位角差的校正,主变星形侧和三角形侧电流互感器均采用完全星形接线。

1.4 A、C还是A、B、C?

变电站主要设备的电流互感器配置情况如图2-2所示。

变压器和电容器属于元件保护,必须在三相都配置电流互感器;

110kV线路属于大电流接地系统,配置有零序电流保护,而且发生单相接地故障时保护应动

作跳闸,所以必须在三相都配置电流互感器;

10kV线路属于小电流接地系统,允许单相接地运行一段时间,为节省一组电流互感器往往只在A、C两相配置电流互感器。同时,这种配置在同一母线上同时发生两条线路单相接地

故障时,有2/3的机会只切断一条线路。

1.5 接地还是不接地?

电流互感器的二次侧不允许开路,而且在星形接线中,电流互感器二次侧中性点必须接地,只是在不同情况下的接地点不同。在常规规模的110kV变电站中,只有主变高、低压侧用于差动保护的电流互感器二次侧是在主变保护屏一点接地,其余均是在电流互感器现场接

地。具体的接地方法将在各章节里详细讲述。