板带轧机电动及液压压下联合控制系统(最新版)
- 格式:docx
- 大小:63.07 KB
- 文档页数:7
轧机液压TCS-AGC控制与实践
李旺太
【期刊名称】《有色金属加工》
【年(卷),期】2011(040)001
【摘要】介绍轧机TCS系统中液压AGC的控制理论,对液压AGc系统中的液压厚度-压力闭环、液压厚度-辊缝闭环、压力AGC控制行系统分析和描述,对PI控制进行理论推理.对我单位CLECIM1700mm粗轧机液压厚度-压力控制环进行描述和分析,本文具有较强的针对性.
【总页数】5页(P58-62)
【作者】李旺太
【作者单位】中国铝业西北铝加工分公司,甘肃陇西748111
【正文语种】中文
【中图分类】TP271
【相关文献】
1.Smith预估控制在冷带轧机液压AGC前馈-反馈控制系统中的应用 [J], 王益群;孙孟辉;张伟;刘建;孙福
2.武钢3000 mm轧机液压自动厚度控制伺服系统的污染控制 [J], 彭熙伟;刘鹏
3.宽厚板轧机液压AGC系统的控制原理及其控制模式分析 [J], 栗昕
4.IMC-PID控制器在轧机液压自动位置控制系统中的应用 [J], 李若茜;凌智;李东海;王京
5.八辊五机架冷连轧机液压压下控制系统控制效能的提高 [J], 王晓晨;杨荃;彭鹏;刘天武;孙文权
因版权原因,仅展示原文概要,查看原文内容请购买。
1 引言轧机的压下装置是轧机的重要结构之一,用于调整辊缝,也称辊缝调整装置,其结构设计的好坏,直接关系着轧件的产量与质量。
压下装置按传动方式可分为手动压下、电动压下和液压压下,手动压下装置一般多用于不经常进行调节、轧件精度要求不严格、以及轧制速度要求不高的中、小型型钢、线材和小型热轧板带轧机上。
电动压下装置适用于板坯轧机、中厚板轧机等要求辊缝调整范围大、压下速度快的情况,主要由压下螺丝、螺母及其传动机构组成。
在中厚板轧机中,工作时要求轧辊快速、大行程、频繁的调整,这就要求压下装置采用惯性小的传动系统,以便频繁的启动、制动,且有较高的传动效率和工作可靠性。
这种快速电动压下装置轧机不能带钢压下,压下电机的功率一般是按空载压下考虑选用,所以常常由于操作失误、压下量过大等原因产生卡钢、“坐辊”或压下螺丝超限提升而发生压下螺丝无法退回的事故,这时上辊不能动,轧机无法正常工作,压下电动机无法提起压下螺丝,为了克服这种卡钢事故,必须增设一套专用的回松机构。
电动压下装置的主要缺点之一是运动部分的惯性大,因而在辊缝调节过程中反应慢、精度低,对现代化的高速度、高精度轧机已不适应,提高压下装置响应速度的主要途径是减少其惯性,而用液压控制可以收到这样的效果。
液压压下装置,就是取消了传统的电动压下机构,其辊缝的调节均由液压缸来完成。
在这一装置中,除液压缸以及与之配套的伺服阀和液压系统外,还包括检测仪表及运算控制系统。
全液压压下装置有以下优点:1、惯性小、动作快,灵敏度高,因此可以得到高精度的板带材,其厚度偏差可以控制到小于成品厚度的1%,而且缩短了板带材的超差部分长度,提高了轧材的成品率,节约金属,提高了产品质量,并降低了成本;2、结构紧凑,降低了机座的总高度,减少了厂房的投资,同时由于采用液压系统,使传动效率大大提高;3、采用液压系统可以使卡钢迅速脱开,这样有利于处理卡钢事故,防止了轧件对轧辊的刮伤、烧伤,再启动时为空载启动,降低了主电机启动电流,并有利于油膜轴承工作;4、可以实现轧辊迅速提升,便于快速换辊,提高了轧机的有效作业率,增加了轧机的产量。
液压AGC控制技术的分析与应用摘要:综述板带轧钢厚度控制技术的发展和产生厚差的原因(主要有:温度、轧制力等)。
着重介绍了液压厚度自动控制的概念、原理、应用等。
关键词:液压AGC;原理;应用第一章液压AGC概念与原理1.1 液压AGC的概念厚度自动控制是通过测厚仪或传感器(如辊缝仪和压头等)对带钢实际轧出厚度进行连续地测量(或估算),并根据实测值与给定值相比较后的偏差信号,借助于控制回路和装置或计算机的功能程序,改变压下位置、轧制压力、张力、轧制速度等,把厚度控制在允许偏差范围之内的方法。
特制品的厚度自动控制在一定尺寸范围内的系统称为厚度自动控制系统,简称为AGC。
液压AGC就是借助于轧机的液压系统,通过液压伺服阀调节液压缸的油量和压力来控制轧辊的位置,对带钢进行厚度自动控制的系统。
1.2板带轧钢产生厚差的原因带钢厚度精度可分为一批同规格带钢的厚度异板差和每一条带钢的厚度同板差。
为此可将厚度精度分解为带钢头部厚度命中率和带钢全长厚度偏差。
从厚差分布特征来看,产生厚差的原因有以下几种: (1)头尾温差,这主要是由于粗轧末出口速度一般比精轧机入口速度要高,因而造成了带钢头部和尾部在空气中停留时间的不同。
( 2)加热炉内导轨在钢胚表面造成的低温段称为水印,由于此段温度变化率大,厚度变动比较“陡”。
(3)活套起套过猛,对带钢产生冲击,使颈部厚度变薄。
( 4 )咬钢时,由于速度设定不协调加上动态速降造成钢套过大,起套并投入高速控制后由于纠偏过快造成带钢拉钢,这一松一紧使厚度减薄,宽度拉窄。
(5)温度波动造成轧制力以及厚度波动。
(6)油膜轴承的油膜厚度发生变化使实际辊缝变化,从而影响轧件厚度。
(7)轧辊偏心将直接使实际辊缝产生高频周期变化。
为了克服或减轻这些干扰因素对成品厚度的影响,除了改进AGC 系统的结构外,还可以将它与各种先进的智能算法相结合,以提高其精度。
1.3液压AGC基本原理1.3.1液压AGC 的设备及其与工作液压AGC技术是将机械、液压、自动控制以及轧制工艺等专业紧密联系在一起的综合先进技术。
© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved. http:ki.nei液压AGC 原理及其液压缸冶金部自动化所何宜业本文主要介绍了液圧£下的主要优点,滋泾AGC 的原理和压下液压 虹在液压士词中於作用,圧下,衣压红的结构型式及工作状态,压下液压如 的逸用及其设汁』 ::7 "一、液压压下的优点曲于电控技术的不断发展,液压元件 的精度和质屋的不断提高,以及梢密检测 仪表的出现,在现代板带钢生产中越来越 广泛地采用全渋压压下或电动压下加液压 微调的轧机,代替机械-液压同服系统的 轧机。
液压压下和电动压下相比共主要优点 为,1・以惯性小的液压缸作为执行元 件,比电动机■机械传动质量小。
2.快速性好(特别是调节量小的情 况下更明显),比一般电动压下快10倍以 上。
.3・压下加速度很大,最大可达200〜 400mm/s 2,也即是系统频带宽10〜 20H z ,而•电动压下一般为0.5〜2H“4・精度高,产品头尾差小(武钢热 轧产品厚度为3mm 的带钢,电动压下自由 轧钢时头尾差为0.4mm,上电动AGC 后 头尾差为0.2mm,电动AGC 再加液压AGC 轧钢,头尾差为0.05mm )。
5・电动压下诚速机构有间隙,一般 为20〜50从,液压压下液压缸不存在这一 问题。
・352・6・消耗功率小,效率高。
而电动压 下的老轧机压下系统的效率只有10〜15% 左右,根本不能带钢压下。
7・轧机结构简单,重駅轻。
8・液压压下可起过载保护作用,避 免出现断耦事故。
二、液压缸在液压微调中的作用在全液压压下和液压微调的轧机中, 液电缸作为一个传递动力(轧制力)和调 节整缝(改变位置)的执行元件存在于系 统中,它既是执行盘又是被调节虽。
在电液随动系统中,通过电液随动控 制系统控制液压缸,使得轧机刚度很快而 容易地随着轧制工艺的要求而改变,即所 谓变刚度轧机。
2150F2精轧机主传动系统设计摘要本次毕业设计的设计对象是2150F2精轧机主传动系统。
轧钢机主传动系统主要由电动机、减速器、齿轮座、连接轴以与联轴节等组成。
对于2150精轧机来说,其轧制要求有较高的精度,板型要有较高的平整度,就要对轧机的各个部件进行精准的设计。
该论文主要以轧机的主传动为主题展开,对轧机主传动的设计就要求对于涉与到传动件的各个部件如电动机、减速器、齿轮座、连接轴、联轴器等进行设计计算,需要对轧机的轧制力、传动力矩和传动功率进行计算,对主电机容量进行选择,对设计好的主减速机的齿轮、轴以与联接轴进行强度校核,直到满足要求。
本文通过几次反复的计算已满足要求。
设计好轧机的尺寸结构以后需要对润滑方式的进行选择,并对轧机的经济性、环保性进行评估。
当各个方面都满足时才是一个合格的设计。
关键词:主传动;设计;校核;减速机;润滑;环保The Design Of The Main Driver Of 2150F2Finishing millABSTRACTThe design of this graduation project is the main drive structure of 2150F2finishing mill. The main drive system of a rolling mill is mainly composed of an electric motor,a reduced, a gear seat,a connecting shaft and a coupling. For the 2150 finishing mill,its rollingrequirements have higher precision,the flatness of the plate must be higher, so it is necessary to carry out precisedesign of each part of the rolling mill.This paper mainly to themaindrive for the theme, design of the m ain drive requires eachcomponent to involvetransmission parts suchas motor, reducer, gear seat and a connecting shaft, coupling des ign and calculation, calculation of rolling force of rolling mill, the required driving torque andthetransmissionpower, the selection of the main thecapacity of motor, reducer design ofthe gear shaft and the connecting shaft and check the strength ,until the meet therequirem ents. After designing the size structure of rolling mill, it is necessary to select the lubrication mode, and evaluate the economi c and environmental protection of the rolling mill. When all aspe cts are satisfied, it is a qualified design.Key words: main drive; design; check; reducer;lubrication; environ mental protection目录摘要IABSTRACTII1 绪论 01.1 轧钢生产的国外发展概况01.2 热带钢连轧机的现状与发展趋势11.3 实习厂情况介绍21.3.1 生产主要设备21.3.2 产品品种21.3.3 本热轧带钢的生产工艺流程22 方案设计52.1 对2150F2精轧机主传动方案进行综合评价与比较 (5)2.1.1 概述52.1.2 方案评价与比较52.2 确定合理的主传动设计方案62.2.1 确定方案62.2.2 轧钢机主传动装置各部分的作用和类型63 主电机容量的选择103.1 轧制力计算103.1.1 设计参数103.1.2 轧辊基本尺寸103.1.3 变形阻力的计算113.1.4 平均单位压力的计算123.1.5 轧制力的计算133.2 传动力矩和传动功率的计算133.2.1 传动力矩133.2.2 电机功率的计算143.3 主电机容量的选择153.3.1 选择电动机容量153.3.2 电机容量校核154 主要零部件强度计算174.1 主减速机齿轮强度的计算 (17)4.1.1 齿轮材料、热处理方式、精度等级和齿数174.1.2 按齿面接触疲劳强度设计174.1.3 按齿根弯曲疲劳强度设计194.1.4 确定齿轮几何尺寸224.1.5 齿根弯曲疲劳强度校核224.2 主减速机轴的强度计算244.2.1 按扭转强度条件初估轴径244.2.2 按弯扭合成强度校核轴的强度245 联接轴计算295.1 相关尺寸295.2 开口式扁头受力分析和强度计算295.3 叉头受力分析和强度计算305.4 万向接轴的许用应力 (31)5.5 轴体切应力的计算 (31)5.6 轴体的许用切应力 (31)6 润滑方式的选择327 安装、试车规程的制定337.1 安装规程的制定337.1.1 轧机安装的工艺流程图337.1.2 施工准备347.1.3 基础验收347.1.4 基准线和基准点设置347.1.5 垫板设置347.2 试车规程的制定357.2.1试车准备357.2.3 安全措施358 环保性与经济性分析378.1 环保性分析378.2 经济性分析37结束语40致41参考文献421 绪论1.1 轧钢生产的国外发展概况中国轧钢生产水平与世界主要生产钢的发达国家比较,技术还相对落后很多。
板带轧机电动压下系统设计摘要CVC技术是目前较先进的板形控制技术之一,而且在轧制过程中,CVC和液压工作辊弯辊相配合对带钢断面形状和带钢平直度控制效果显著,而且工作辊的磨损情况得到了改善。
很多生产厂为了提高产品的质量和企业效益也正在对工作辊弯辊装置和工作辊轴向横移装置进行技术改造和结构改进。
本设计以宝钢2050mm连轧机组中的F1机架的数据作为参考,对板带轧机电动压下系统进行设计。
首先对压下形式进行选择,然后对压下系统中的主要部分如压下螺丝、压下螺母做设计计算,最后根据压下功率选择电机。
设计中对四辊CVC轧机的主传动部分和试车要求进行简单的叙述,并对一些主要零件如工作辊、机架、联接轴和轧辊轴承做了强度校核,其结果满足要求。
最后,本设计对此题目的技术经济及社会效益做了简单的分析。
关键词:板带轧机,电动压下,CVC轧机,主传动Electric Screw Down System Design Of Strip Rolling MillAbstract In recent years, CVC technology has been one of the most advanced strip shape control technology in the world and getting more and more popular. The employment of hydraulic work roll bending in conjunction with CVC has achieved good results in significantly increasing the strip profile and flatness control range, reducing wear of work rolls and extending maintenance intervals and service life of the work rolls. Under the pressure of competition comes from both internal and external, many steel plants have to take some measures to improve the strip surface quality to increase their income, many of them are delving into upgrading their technology and reconstructing the devices of work roll bending and work roll shifting. I selected the subject of electric screw-down system design of strip rolling mill. In the course of designing, I took the CVC mill roll for example and refer to some data of F1 stand of the finishing rolling train of 2050 CVC hot continuous rolling mill in Baoshan Iron & Steel Corp.. First, design of electric screw down system is accomplished by means of choosing screw down form, calculating and determining main parameters of screw and nut, choosing motor. The composing of main drive installed on 4-h CVC rolling mill and something required in trail run are also introduced in the paper. Meanwhile, strength checking of some major components is done and the results illuminate that these parts such as work roll, housing, joint slack and roller bearing meet the demand. Finally, the economic technology and social benefit are simply analysed.Keywords:strip mill roll, electric screw down, CVC mill, main drive目录第一章绪论 (I)§1.1 热连轧机的发展概况 (1)§1.2 CVC技术原理及优点 (2)§1.3 设计题目的意义 (2)§1.4 课题的研究方法和研究内容 (3)第二章轧机力能参数计算 (4)§2.1 总体方案设计与选择 (4)§2.2 设计的已知数据 (4)2.2.1 压下规程 (4)2.2.2 主要参数 (4)§2.3 轧制力的计算 (5)2.3.1 轧辊的选取及验证 (5)2.3.2 平均变形程度的计算 (5)2.3.3 平均单位压力的计算 (6)2.3.4 总轧制力的计算 (8)§2.4 轧制力矩的计算 (8)§2.5 主电机容量计算 (9)2.5.1 摩擦力矩的计算 (9)2.5.2 工作辊带动支承辊的力矩计算 (9)2.5.3 驱动工件辊的力矩计算 (10)2.5.4 初选电机 (11)2.5.5 电动机的校核 (11)第三章压下系统的设计 (15)§3.1 压下形式的选择 (15)§3.2 压下零件的设计计算 (15)3.2.1 压下螺丝的设计计算 (15)3.2.2 压下螺母的结构尺寸设计 (17)3.2.3 压下螺丝的功率计算 (20)第四章主要零件校核 (22)§4.1 下工件辊的校核 (22)4.1.1 下工作辊强度计算: (22)4.1.2 工作辊的疲劳强度校核 (23)4.1.3 工作辊与支承辊之间的接触应力校核 (26)4.1.4 轧辊的变形计算 (27)§4.2 机架的强度计算 (29)4.2.1 机架的强度计算 (29)4.2.2 机架的变形计算 (31)§4.3 弧形齿万向接轴强度的计算 (32)4.3.1 弧形齿的优点 (32)4.3.2 齿根弯曲疲劳强度校核 (32)§4.4 轧辊轴承的选择及寿命计算 (35)4.4.1 轧辊轴承的选择 (35)4.4.2 轧辊轴承的寿命计算 (35)第五章试车要求 (37)第六章技术经济及社会效益分析 (38)结论 (39)致谢 (40)参考文献 (41)附录A外文翻译原文 (42)附录B外文翻译译文 (52)第一章绪论§1.1 热连轧机的发展概况近几十年期间,热连轧机的发展取得了飞快的进展,起初美国轧机公司在 Butler 成功地建成第一套热带钢连轧机,随后,于1927年,在Weirton建造了1372mm连轧机。
试论弯窜辊液压管路系统在板带轧机上的改造及应用摘要:本文结合笔者多年的从业经验,首先阐述了轧机咬钢和抛钢时弯辊力变化,并通过对重钢1780mm热轧薄板生产线精轧机传动侧弯窜辊移动座以及4100mm厚板生产线精轧机工作辊弯辊液压管路体系改进的具体工作和应用及其经济价值进行简述。
关键词:板带轧机弯窜辊液压管路改进1、引言带材轧制阶段中最重要的技术就是板型控制技术,液压伺服控制回路是板型控制体系中最根本的一种回路,也是板型控制体系中的重要一部分。
在整个板型控制体系中,其每个特征都会直接影响到体系的性能。
具体轧钢的时候,咬钢和抛钢之间的弯辊力会发生冲撞尖峰,因此,这就不得不使得弯辊力液压控制体系达到更高标准的稳定性能以及抗干扰性能。
液压伺服体系具备非线性、时变性、不确定性等特征,经过多次实验表明,针对这样的体系采取一般的控制策略根本达不到预期的目标。
2、针对咬钢和抛钢时弯辊力变化的研究咬钢和抛钢的某一时刻,弯辊力发生一个撞击尖峰,这个尖峰使得轧辊变成了畸形。
而且,在轧钢的过程中,弯辊力传感器也会受到尖峰峰值的影响而被破坏。
钢坯进入轧辊的过程中,咬钢的那一瞬,工作辊猛地受到一个冲撞力,使得液压缸无杆腔内油压猛然压缩,压力变大,从而滚压力也瞬间上升,压力传感器测定到此变化,回馈给体系,再经过伺服阀的监控,让油压以及弯辊力返回到初设值。
抛钢的某一瞬间,猛地不受轧制力的控制,使得工作辊返回原形,油压降低,同样压力传感器收到信息变化,回馈给体系,再经过伺服阀监控,然后使得油压与弯辊力处于一个新的稳定态势。
由此可知,因为轧制力的影响,使得弯辊力突然改变,出现尖峰现象。
弯辊液压缸所受的轧制力是直接性的,所以,针对很难避免轧制力对弯辊液压缸油压的影响。
3、改造项目概况重钢1780mm热轧薄板生产流程以及4100mm厚板生产流程的设施具有大容量、全自动、高科技等特点,尤其是液压设施在整个流程设施中所占的比例特别大,另外,从产品的成本控制方面考虑,液压仪器的成本控制问题也占了相当大的比例,不过由于投产初期,两条生产流程中的液压体系设施都出现了较严重的漏油现象,仪器事故频繁出现,因此两条生产流程不得不停机修理,从而造成时间的大量浪费使得轧机作业率降低,事故停机相当频繁。
鞍山师范学院学报J ou rna l of A nshan N or m a l U n iversity2005204,7(2):41-43冷轧板带机运行中的板形控制史 华(鞍钢职工大学机械系,辽宁鞍山114002)摘 要:分析了热轧过程、冷轧、轧机压下量均匀程度、轧辊变形、压扁量与金属恒流动等影响板材板型的主要因素;介绍了采用液压AGC系统控制板厚及板形、通过轧辊有载辊缝的控制进行板形控制、采用板形控制新技术和采用新型轧机等板形控制的途径和方法.关键词:板形控制;冷轧板带机;轧制中图分类号:TG333.7+2 文献标识码:A 文章篇号:100822441(2005)022*******The Shape Con trol of Runn i n g Cold2rolli n g Str i p M illSH I Hua(D epart m ent of M echanical,A ngang College forW orkers and S taff,A nshan L iaoning114002,China)Abstract:Analyze the main fact ors that affect shape of stri p by hardness homogeneity of r ollbody,r oller out of shape,flattering a mount,metal’s fl owing side ways during the hot r olling p r ocessand cold r olling p r ocess;I ntr oduce t o app ly hydraulic p ressure syste m AGC t o contr ol shape ofstri p and thickness of stri p,contr olling shape thr ough contr olling r oller sea m;app ly ne w technol ogyof shape contr ol and app ly ways and methods of ne w2type r olling m ill’s shape contr ol.Key words:Shape contr ol;Cold2r olling stri p m ill;Rolling 板材轧制过程就是轧机的弹性变形和轧件的塑性变形以取得预期的合格型材的过程.板形是板带的重要指标,包括板带的平直度、横截面凸度(板凸度)、边部减薄三项内容.随着仪表、电器、装备制造业、汽车及轻工业的发展,对板带的板形要求日趋严格.自上世纪60年代开始研究板形以来,为提高产品的精度和成材率,在技术上,研制了各种新型轧机,开发了新工艺、新的检测手段和控制系统;在基础理论上,对板形控制的数学模型进行了深入细致的研究,用计算机模拟轧钢过程,对轧后板形和横向厚差进行精确的设定、预测和控制.本文讨论冷轧带钢机轧制过程中的板形控制问题.1 轧机运行中对板形的影响因素1.1 热轧过程在热轧过程中,金属的晶粒被破碎,同时发生再结晶,再结晶晶粒大小取决于轧制温度、时间和变形程度.通常带钢边沿比中部冷却快,这一区域易生成一种高硬度的不完全再结晶铁素体组织而形成硬度沟,冷轧时延伸困难.两个区域延伸反差很大,导致了带钢内应力的上升,一旦内应力超过带钢的屈服极限,硬沟处便呈现封闭形状的小边浪.1.2 冷轧由于轧制力的作用,轧钢机轧制时工作机座产生一定的弹性变形.机座变形与轧制力有关,在轧制过程中的轧制力有波动,则在一定原始辊缝下,机座的弹性变形也有一定波动.使得轧件沿长度方向的收稿日期:2004-05-21作者简介:史华(1971-),女,辽宁鞍山人,鞍钢职工大学讲师.24鞍山师范学院学报第7卷厚度发生变化,产生了纵向厚度偏差;如果波动沿宽度方向不均匀变化,将使轧件产生横向偏差,并导致板形的变化.1.3 轧机压下量均匀程度如果热轧板带坯料板形良好,在冷轧过程中产生的板带波浪形或瓢曲形,主要决定于板带轧制时纵向延伸的不均匀程度.当板带两边压下量大于中部时,板带两边的延伸量较大,就产生了边浪,如果中部压下量大于边部,使中部的延伸量较大时,则产生中部浪形.1.4 轧辊变形在轧件塑性变形的同时,轧辊也发生弹性变形.轧件的变形热和磨擦热,导致轧辊也发生热变形.此外,由于轧制过程中产生轧辊磨损、轧辊辊缝形状不匀,造成带钢沿宽度方向上延伸分布不匀.轧辊本身有可能质量不高,形成辊面软点、辊面压痕,都会对板形产生影响,尤其是在板面凸度上的影响[1].1.5 压扁量与金属横流动对板形的影响有些板带横断面在接近板边部厚度突然减小,这一现象称为边部减薄,边部减薄量直接影响板边部切损的大小,与成才率有密切关系.发生边部减薄现象主要原因有:(1)轧件与轧辊的压扁量在轧件边部明量减小;(2)轧件边部金属的横向流动要比内部金属容易得多,这也进一步降低了轧件边部的轧制力及其与轧辊的压扁量,使轧件边部减薄量增加.2 控制板形的基本途径以往对冷轧板形的研究,只注重冷轧的过程,主要集中在轧制过程中轧辊系统的弹性变形、轧辊的磨损、热凸度以及变形区中金属塑性变形等.事实上,冷轧带钢的生产要经过冶炼—连铸—热轧—酸洗—冷轧—退火—平整—涂层—剪切包装等诸多工序.其中热轧、酸洗、冷轧、退火及平整等工序对带钢的板形有直接影响.热轧过程中带钢的板形及带钢性能在宽度方向上和轧制方向上的控制、酸洗的拉矫过程、冷轧过程的板形控制、连续退火时温度和张力的控制、平整机的板形控制及涂层前的拉矫等构成了一个全过程的复杂的冷轧板形控制系统.在这个系统中,前一个工序的出口板形影响后一个工序的板形.所以,带钢的最终板形不可能单独由系统中的某一个工序或某一设备所决定,而由整个系统决定.(1)热轧过程中,根据钢种不同,设定热轧目标终轧温度.必要时还要提高钢坯的出炉温度,确保热轧带钢的边部终轧温度控制晶粒均匀成长,尽量消除硬度沟的影响,为冷轧提供较为合适的板形.尤其是热轧后部设立平整机,通过在热状态下,平整机的拉伸矫平,消化板形缺陷.(2)在选择机型方面从根本上改善冷轧板形.如目前国际上HC系列冷轧机,CVC轧机、PC轧机和VC轧机等,均为采用了板形控制新技术的装备.(3)当轧机的机型及设置已经确定,控制策略和控制系统的结构将对板形好坏起着决定性的作用.现代化的冷连轧机,大多由4~6个机架组成.在末机架设置板形测量辊,实现在线闭环控制,关键是有效控制前道机架的出口板形,确保进入末机架带钢板形缺陷不超出末机架的控制能力.(4)冷轧机下游工序设备的板形控制.通过卷取机张力辊的拉力作用改善带钢的不平直度,平整机在平整过程中改善原先冷轧过程中发生延伸不均匀的纤维条.3 冷轧过程对板形控制的主要方法3.1 采用液压AGC系统控制板厚及板形为了实现轧件的自动测厚控制(简称AGC),使得纵向板形得以实现平直度,在现代板带轧机上,一般装有液压压下装置.采用液压压下的自动厚度控制系统,通常称为液压AGC.AGC系统包括:(1)测厚部分,检测轧件的实际厚度;(2)厚度比较和调节部分,将检测得到的轧件实际厚度与轧件的给定厚度比较,得出厚度差;(3)是辊缝调节部分,根据辊缝调节量讯号,通过压下装置对辊缝进行相应的调整,以减少或消除轧件的厚差,保持板形的恒定.3.2 通过轧辊有载辊缝的控制,进行板形控制如果轧制时各影响因素稳定,则通过合理的轧辊原始辊型设计,可获得良好的板形.但在轧制过程中,各因素在不断变化,需要随时补偿这些变化因素对轧辊有载辊缝形状的影响.因此,按照轧制过程中实际情况,必须随时改变辊缝凸度,这就产生了辊温控制法和液压弯辊控制法.温控制法是人为地沿轧辊辊身长度方向进行冷却或加热,使辊温发生变化改变轧辊凸度,来适应板形控制需要.液压弯滚辊法是将液压缸压力作用在轧辊辊颈处,使轧辊产生附加弯曲,以补偿由于轧制力和轧辊温度等同步变化而产生的轧辊有载辊缝的变化,以获得良好的板形.液压弯辊法能迅速改变辊缝形状,具有较强的板形控制能力,是板形控制的最有效方法.3.3 采用板形控制新技术板形控制新技术的基本原理有:(1)增加有载辊缝的刚度.轧制过程中,轧制力发生波动而仍然能保持有载辊缝形状的稳定性,有利于减小轧后板带板形波动.有载辊缝在轧制时的稳定性可用辊缝刚度系数来表示:Ks =Δq /ΔCR 式中Δq 为单位板宽轧制力的波动量,ΔCR 为辊缝凸度CR 对应于q 的波动量采用提高辊缝系数Ks 来增加板形控制能力的辊缝,视为刚性辊缝型,如:采用工作辊或中间辊(六辊轧机)游动来调节轧制力分布,从而提高了辊缝刚度.(2)加大轧辊辊缝(或有载辊缝)的调节范围.一般四辊轧机,工作辊原始辊型确定后是一定的,显然不能适应各种轧制情况.为了使其(或有载辊型)能适应轧制情况的变化而作相应的变化,应采用加大轧辊原始辊缝调节范围来控制板型,这就是柔性辊缝型.当前,从工艺技术方面改善板形控制已臻于成熟.现有的轧制设备和轧制工艺上的不断改进,使冷轧板带板形控制得到了一定程度上的解决.但板型控制新技术和从控制板型的新型轧机上取得预期的板形控制结果,已成为一种发展趋势.3.4 采用新型轧机,从根本上改善轧机运行中的板形控制(1)目前国际上流行CVC 轧机、PC 轧机和VC 轧机,它们的共同特点是:通过轧辊轴向抽动或摆角位置来改变原始辊缝状态,以实现无极辊缝调整,从而实现板形控制,为柔性辊缝型[2].我国自行研制开发的XGK 型轧机,对传统轧机提出了挑战.它采用了辊系准刚性、消差性、可宽性、不需弯辊和抽辊等新技术,在控制上不需AGC 、APC 等大小闭环等复杂的控制系统,能够生产出横厚差小于±1μm ,纵向厚差小于±2μm 的高精度产品[3].4 结 语轧钢设备运行中的板形控制是一个极其复杂的系统工程.冷轧带钢板形受各工序的影响,必须从整个系统进行全面控制,单一采用何种新型轧机不能代替.在已有的传统轧机运行中,以液压AGC 、弯辊装置等工艺方法改善板形控制是必要的,在一定时期内仍将做为板形控制的主要方法.但在冷轧机组新建或更新技术改造中,采用新机型,从设备改进上入手,使轧制过程中的板形控制登上一个新的台阶,亦是冶金行业发展的趋势.参考文献:[1]陈贻宏.350冷轧机钢度测量研究[J ].武汉钢铁学院学报,1996,(增刊):40-47.[2]傅作宝.冷轧薄钢板生产[M ].鞍山:冶金工业出版社,1996.[3]张凤泉.HC W 轧机辊系变形的有限元计算[J ].钢铁,1992,27(11):28-32.(责任编辑:陈 欣)34第2期史 华:冷轧板带机运行中的板形控制。
750mm四辊轧机AGC控制系统使用说明书 (III Plus++型系统)西安艾蒙希(AMC)科技有限公司目录第一章硬件系统 (2)第二章系统功能 (2)第三章系统操作说明 (3)第四章系统保护 (7)第五章伺服阀使用说明 (8)第六章特别说明 (8)750mm四辊可逆冷轧机AGC系统使用说明书第一章硬件系统AGCS采用上、下位两级计算机控制方案,是集轧机过程管理、AGC控制和故障报警为一体的计算机系统。
下位机集辊缝、压力控制一体计算机组成;上位机与下位机通过Ethernet网进行数据实时交换完成轧制过程管理及操作。
同时与自动化PLC系统实现西门子工业以太网络通讯,传递辊缝、压力等设定参数和实际反馈值。
1)计算机配置:①辊缝、压力控制计算机配置为台湾研华P4 2.8G / PCA-6006 / PCA-6114P4 / 1G DDR / 2G Innodisk / 。
②操作计算机配置为台湾研华P4 2.8G / PCA-6006 / PCA-6114P4 / 1G DDR / 8G Innodisk / 19"显示器。
2)控制柜:19"上架结构、包括接线端子、开关,隔离变压器、净化电源、直流稳压电源、开关电源、内配一个显示器和一个键盘。
3)操作台(内装工控计算机、19"显示器)。
4)位移传感器接口模块(AMC206)。
5)压力传感器接口模块(AMC201)。
6)伺服阀电流接口模块(AMC204)。
7)测厚仪接口模块(AMC201)。
8)带材速度检测接口模块(AMC205)。
9)压力信号、速度、厚度信号采集模块(ADV ANTECH 6040)。
10)板材速度计数模块(ADV ANTECH 6602)。
11)伺服阀电流输出模块(ADV ANTECH 728)。
12)开关量输入模块(ADV ANTECH 6120)。
13)开关量输出模块(ADV ANTECH 6120)。
14)AMC若干转接模块(AMC-3920、AMC-3937)。
When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors.
(安全管理)
单位:___________________
姓名:___________________
日期:___________________
板带轧机电动及液压压下联合控
制系统(最新版)
板带轧机电动及液压压下联合控制系统(最
新版)
导语:生产有了安全保障,才能持续、稳定发展。
生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。
当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。
"安全第一"
的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。
随着科学技术的进步,我国经济得到了快速的发展,汽车、电子等行业对板带钢材的质量要求越来越高。
厚度是板带材最重要的质量指标之一,厚度自动控制AGC控制性能的优劣将直接影响轧制产品的质量。
本文对该轧机采取的改造方案为电动压下和液压压下联合控制板厚,由电动压下进行辊缝粗调,液压压下系统负责辊缝精调。
板带轧机厚度控制理论
1.1.影响轧制产品厚度的因素
轧制过程中,影响轧制产品厚度的因素很多,根据弹跳方程,生产实际中影响轧制产品厚度的因素主要如下:
1.1.1.轧机的机械装置和液压装置
在轧机加工装配过程中,零部件之间的误差对轧机的刚度和空载辊缝造成直接影响,从而使得轧制产品的厚度偏离目标值。
轧机开始运作之后,其零部件会发生变形或扭曲,这都会改变轧机辊缝的大小
和形状。
一般情况,轧机的刚度越大,轧机的弹跳量越小,辊缝的变化程度和轧制产品厚度偏差都越小,产品尺寸精度就越高。
1.1.
2.轧件的来料特性
厚度不均、硬度变化、截面变化、平直度变化等来料特性会对轧制生产过程中的轧制力大小和辊缝值变化产生一定影响。
当影响因素已知,而来料特性未知,这就难以满足轧制产品的厚度要求,此时,只有轧机的厚度自动控制系统才能保证产品的质量。
1.1.3.轧机的控制系统
轧机的控制系统分为轧机硬件设备和控制模型。
限制轧机厚度控制精度的硬件因素主要有计算机的速度与精度、传感器的精度与稳定性等。
板带轧机压下控制系统
2.1.电动压下自动控制系统
2.1.1.电动压下控制过程
本轧机的传动侧和操作侧分别安装一台西门子直流电机,用于空载时粗调轧机辊缝,当接收到粗调辊缝设定值后,将电动辊缝调到目标设定值,此外,通过进行倾斜度的监控,使得传动侧和操作侧的压下位置偏差控制在允许的范围内,即上辊的倾角保持在允许的偏差范
围内。
电动压下控制方式为电机带动齿轮、蜗杆、涡轮传动,压下两台50HP电机带动齿轮啮合。
由于通过大齿轮连接轴上的蜗杆带动轧机两侧蜗轮,蜗轮与压下螺丝转动,蜗轮旋转是,压下螺丝上下运动。
电机之间的电磁离合器可以同步控制两边的压下,离合器离开时,两边压下电机可以进行单独调节。
2.1.2.电动压下定位过程的控制算法
2.1.
3.电动压下电机的控制方式
在此调速系统中,转速调节器是主导调节器,它使控制电机的转速时刻随着给定电压发生变化而变化,转速调节器的输出限幅值决定控制电机的最大允许电流,稳态运行时可以对负载的变化起抗扰作用,从而实现无静差转速。
2.2.液压压下控制
传统电动AGC存在很多问题,比如响应速度慢、调节精度差、压下效率低等。
此案待会的轧机一般都采用液压压下控制方式或者电液相结合的控制方式。
液压压下控制系统可以根据轧制实际情况改变,实现动态调节,从而保证轧制产品的厚度保持不变。
其优点主要有以下几点:
2.2.1.液压AGC的响应速度快,调整精度高。
液压AGC系统的伺服系统灵敏度高、摩擦力小,使得系统的惯性大幅度降低,得以快速响应控制信号。
相对于电动AGC来说,其具有较高的阶跃响应频率,这个数值一般在25Hz左右。
同时,液压采用先进的反馈方式,控制精度可以达到2.5um,这远抄电动装置的精度。
2.2.2.液压AGC的过载保护简单可靠。
液压压下系统有防止轧机过载的安全阀等,这可以方式损坏轧辊与轴承。
在出现异常状况时,如卡钢、堆钢等,可以快速排出液压缸中的压力油,实现过载保护。
采用液压压下方式可以根据工艺需要灵活地进行控制。
液压压下方式可以方便的对轧机的当量刚度进行控制,实现轧机的“恒辊缝控制”与“恒压力控制”之间的转换,以满足不同轧制阶段对机架当量刚度的要求,适应各种金属、各种规程及不同厚度的轧制要求。
2.2.
3.液压AGC的体积小、重量轻,具有惯性低、工作平稳的优点,在功率相同的情况下,特别是在大功率工况下,液压AGC与电动AGC相比,上述优点的体现尤为明显。
2.2.4.液压AGC装置均采用标准液压元件,结构简单,使繁杂的机械结构得以简化,更能节约成本。
3.基于AMESIM和MATLAB的HAPC仿真研究
3.1.电液伺服位置仿真模型建立
根据液压压下伺服系统的物理模型特点,在AMESIM环境下构造其机械液压模型,具体步骤如下所述:
3.1.1.建立系统模型:首先选择AMESIM的“绘图模式”,根据轧机液压压下系统的实际物理模型,搭建好液压压下系统框架如图3所示。
利用AMESIM能够实现与MATLAB/Simulink进行联合仿真的接口,在已经搭建好的液压压下模型中搭建进行联合仿真控制模块。
3.1.2.选择系统子模型:根据实际需要,对系统中各个模块选择合适的子模型并进行储存。
3.1.3.设置系统参数:根据实际设置系统的参数,进行联合仿真时使用这一步骤生成的S函数。
3.1.
4.运行系统:点击菜单“Tools”中的“startMATLAB”选项,这时系统的AMESIM物理模型被MATLAB软件当作一个普通的S函数,完成数据交换,实现液压压下系统的联合仿真。
Simulink模型及参数准备好之后,点击运行按钮,则系统开始运行,进行仿真。
3.2.仿真结果与分析
当空载时,液压缸位移的变化就是辊缝的变化,取输入阶跃信号
rin=0.15mm。
由仿真结果图7可以得到:模糊PID控制效果明显优于常规PID,常规PID超调量为37%,而模糊PID无超调,无振荡,上升时间比较快。
与常规PID控制相比,模糊PID系统响应快,稳态误差小,能够有效改善系统的动态性能,得到比较满意的控制效果。
由于电液伺服控制系统是典型的非线性系统,存在时变性、不确定性、外界干扰以及多种外界因素等的影响,采用传统PID算法时,难以选择控制参数,系统存在抗扰能力低、超调量大等缺点;试验结果表明该模糊PID自动厚度控制系统,能使厚度控制偏差快速接近目标值,大大提高了厚度控制精度,既保留了PID控制器无静差的特点,又能获得模糊控制鲁棒性强的优点。
XX设计有限公司
Your Name Design Co., Ltd.。