带有惩罚和软容量约束的下界设施选址问题的双标准近似算法研究
- 格式:pdf
- 大小:315.39 KB
- 文档页数:10
包装工程第45卷第5期·220·PACKAGING ENGINEERING2024年3月改进樽海鞘算法求解带时间窗的应急选址路径问题徐帆,马良,张惠珍*,陈曦(上海理工大学管理学院,上海200093)摘要:目的为使应急物资及时高效地送到灾区, 针对多目标应急选址−路径问题,在考虑灾区的时间窗及物资运输过程中道路安全的情况下,以最小化经济成本、最小化时间惩罚成本及最大化道路安全性为目标,构建多目标优化模型。
同时,设计改进的樽海鞘算法求解问题,以验证模型的可行性和算法的有效性。
方法根据模型的特征对樽海鞘算法进行改进,运用随机生成和贪心算法相结合的方式生成初始解,利用交叉算子和邻域搜索算子改进原始算法的位置更新操作,引入非支配排序遗传算法(NSGA-Ⅱ)的精英保留策略,以提高算法的性能。
结果经过多个算例测试,该算法能快速获得一簇Pareto解,与基本樽海鞘算法进行对比后可知,改进后的算法性能更优越。
结论对于灾后及时响应的应急选址路径问题,采用改进的樽海鞘算法具有一定优越性,并在多个目标权衡的情况下,可供决策者根据目标的偏好找到较满意的解,对于研究应急选址路径问题具有一定的参考价值。
关键词:选址−路径问题;应急物资;时间窗;改进樽海鞘算法中图分类号:TP301.6;TB485.3 文献标志码:A 文章编号:1001-3563(2024)05-0220-10DOI:10.19554/ki.1001-3563.2024.05.027Improved Salp Swarm Algorithm for Solving Multi-objectiveEmergency Location Routing Problem with Time WindowsXU Fan, MA Liang, ZHANG Huizhen*, CHEN Xi(School of Management, University of Shanghai for Science & Technology, Shanghai 200093, China)ABSTRACT: In order to ensure timely and efficient delivery of emergency resources to disaster areas, the work aims to construct a multi-objective optimization model for the multi-objective emergency location routing problem by taking into account the time windows of the disaster area and road safety during resources transportation, with the objectives of minimizing economic costs, time penalty costs, and maximizing road safety. At the same time, an improved salp swarm algorithm is designed to solve the problem, in order to verify the feasibility of the model and the effectiveness of the algorithm. Based on the characteristics of the model, the algorithm was improved by combining random generation and greedy algorithm to generate initial solutions. The position update operation of the original algorithm was improved by crossover operators and neighborhood search operators. The elite retention strategy of NSGA-Ⅱ was introduced to improve the performance of the algorithm. After test of multiple examples, this algorithm could quickly obtain a cluster of Pareto solutions and was compared with the original salp swarm algorithm. The improved algorithm had better performance. For the emergency location routing problem of timely response after a disaster, the improved salp swarm algorithm has certain advantages, and can provide decision-makers with satisfactory solutions based on the preferences of multiple objectives. It has a certain reference value for the field of emergency location routing problems.KEY WORDS: location routing problem; emergency resources; time windows; improved salp swarm algorithm收稿日期:2023-05-11基金项目:国家自然科学基金(72101149);教育部人文社会科学基金(21YJC630087);国家外国专家项目(G2023013029)*通信作者第45卷第5期徐帆,等:改进樽海鞘算法求解带时间窗的应急选址路径问题·221·近年来,地震、洪涝等自然灾害突发事件频繁发生。
运筹学作业王程信管1302130404026目录运筹学作业 (1)第一章线性规划及单纯形法 (3)第二章线性规划的对偶理论与灵敏度分析 (24)第三章运输问题 (53)第四章目标规划 (63)第五章整数规划 (73)第六章非线性规划 (85)第七章动态规划 (94)第八章图与网络分析 (97)第九章网络计划 (99)第一章 线性规划及单纯形法1.1分别用图解法和单纯形法求下列线性规划问题,⑴指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解;⑵当具有限最优解时,指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。
121212121min 23466 s.t.324,0z x x x x x x x x =++≥⎧⎪+≥⎨⎪≥⎩() 1212121,22max 3222s.t.34120z x x x x x x x x =++≤⎧⎪+≥⎨⎪≥⎩()121212123max 105349 s.t.528 ,0z x x x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩() 121212124max 5622 s.t.232,0z x x x x x x x x =+-≥⎧⎪-+≤⎨⎪≥⎩()解:⑴图解法:当212133x x z =-经过点6155(,)时,z 最小,且有无穷多个最优解。
⑵图解法:1x该问题无可行解。
⑶图解法:当21125x x z =-+经过点312(,)时,z 取得唯一最优解。
单纯形法:在上述问题的约束条件中分别加入松弛变量34,x x , 化为标准型:12341231241234max 10+500349s.t.528,,,0z x x x x x x x x x x x x x x =++++=⎧⎪++=⎨⎪≥⎩由线性规划问题的标准型可列出单纯初始形表逐步迭代,计算结果如下表所示:**33(,1,0,0),10512022(0,0,9,8)821(,0,,0)553(1,,0,0)2T T T T X Z X O X C X B ==⨯+⨯====(0)(1)(2)单纯形表的计算结果表明:单纯形表迭代的第一步得,表示图中原点(0,0)单纯形表迭代的第二步得,表示图中点单纯形表迭代的第三步得,表示图中点⑷图解法:当215166x x z =-经过点2,2()时,z 取得唯一最优解。
组合最优化问题最基本的特点就是变量是离散的, 由此导致其数学模型中的目标函数和约束函数在其可行域内是也是离散的。
在现实世界中,许多的实际问题本质上是离散事件的而不是连续事件,都可归结为组合最优化问题。
这类问题在理论上多数都属于NP难问题,NP类问题仍属于可计算问题,即存在算法来求解。
求解这类组合最优化问题方法分为精确算法和近似算法两类。
常用的精确算法有动态规划、分支定界和枚举等。
精确算法只能解决一些小规模问题,当求解小规模组合优化问题时可以用这类精确算法在较短的时间内得到最优解。
当求解大规模组合优化问题时,理论上可以得到问题的最优解,但由于计算量太大,所以使用精确算法并不可行。
利用精确算法求解NP-hard组合优化问题时,即使能得到最优解,但所需要的计算时间过长,在实际问题中难以直接应用。
近似算法是指在合理的计算时间内找到一个近似的最优解。
近似算法虽然求解速度较快,但并不能保证得到问题的全局最优解。
近似算法分为基于数学规划(最优化)的近似算法、启发式算法和基于智能优化的近似算法。
1) 基于数学规划(最优化)的近似算法是根据对问题建立的数学规划模型,运用如拉格朗日松弛、列生成等算法以获得问题的近似解,是以数学模型为基础,采用列生成、拉格朗日松弛和状态空间松弛等求解问题。
拉格朗日松弛(LR)算法求解问题的主要思想是分解和协调。
首先对于NP难的优化问题,其数学模型须具有可分离性。
通过使用拉格朗日乘子向量将模型中复杂的耦合约束引入目标函数,使耦合约束解除,形成松弛问题,从而分解为一些相互独立的易于求解的子问题,设计有效的算法求得所有子问题的最优解。
利用乘子的迭代更新来实现子问题解的协调。
列生成(Column generation, CG)算法是一种已经被认可的成功用于求解大规模线性规划、整数规划及混合整数规划问题的算法。
与智能优化算法相比,基于数学规划的近似算法的优点是通过建立问题的数学模型,松弛模型中难解的耦合约束或整数约束,得到的松弛问题的最优解可以为原问题提供一个下界。
华东理工大学网络教育学院(全部答在答题纸上,请写清题号,反面可用。
试卷与答题纸分开交)运筹学(本)_201906_模拟卷2_答案一、判断题(共5题,每题2分,共10分)1. 目标规划中正偏差变量应取正值,负偏差变量应取负值。
()(2分)( ) .★标准答案:错误2. 动态规划的维数是由决策变量的个数决定的(2分)( ).★标准答案:错误3. 在其他费用不变的条件下,随着单位存储费的增加,最优订货批量也相应增加(2分)( ).★标准答案:错误4. 用分支定界法求解一个整数规划问题,若已求得一个不违反任何整数约束的解,则停止分支(2分)( ).★标准答案:错误5. 指派问题效率矩阵的每个元素都乘上同一个不为0的常数k,将不影响最忧解。
()(2分) ( ).★标准答案:错误二、单选题(共5题,每题3分,共15分)1. Kruskal算法属于哪种思路的方法()。
(3分)A.破圈B.避圈C.智能搜索D.枚举.★标准答案:A2. 最优性原理是1951哪位数学家提出的()。
(3分)nd DoigB.BellmanC.CooperD.Dantzig.★标准答案:B3. 1931谁设计出了第一张投入产出表()。
(3分)A.ErlangB.HarrisC.ShewhartD.Leontief .★标准答案:D4. 1924年谁给出了第一张质量控制图()。
(3分)A.ErlangB.NeumannC.ShewhartD.Dantzig.★标准答案:C5. 1947年谁得到了线性规划的单纯形法()。
(3分)A.ErlangB.HarrisC.ShewhartD.Dantzig.★标准答案:D三、问答题(共5题,每题15分,共75分)1.(15分)★标准答案:2. (15分)★标准答案:3. 某农场有100公顷土地及25万元资金可用于发展生产。
农场劳动力情况为秋冬季4500人日,春夏季6000人日,如劳动力本身过剩可外出打工,春夏季收入为20元/人日,秋冬季12元/人日。
2013年3月 March,2013 运筹学学报 Operations Research Transactions 第17卷第1期 Vl01.17 No.1
-…● ●・● _●● ^ tSicriteria aDproximation algorithms t-or the lower--bounded facility location problem —h penalties and SOft—capacitywith penaltles and SO capacity木一 币 LI Gaidi1,十WANG ZhenI WU YulinI Abstract Wle study the lower—bounded facility location problem with penalties (LBFLP)and the soft—capacity LBFLP.For the LBFLP,we present an updated bicriteria approximation algorithm which maintains the same performance factor 1l+一a
rn as that for
the problem without penalties in Hierarchical placement and network design problems (Guha S,Meyerson A,Munagala K.Hierarchical placement and network design problems [C]//Proceedings ofFoundations of Computer Science,2000:892328,DOI:10.1l09/SFC- s.2000.892328)and Building steiner trees with incomplete global knowledge(Karger D R,Minkoff M.Building steiner trees with incomplete global knowledge[C]//Proceedings Foundations of Computer Science,2000:892329,DOI:10.1109/SFCS.2000.892329). We further extend this result to the soft.capacitated LBFLP and achieve a performance factor twice as much as that for LBFLP. Keywords lower—bounded facility location,approximation algorithm,bicriteria al— gorithm. Chinese Library Classification O221.4
2010 Mathematics Subject Classification 90C30
带有惩罚和软容量约束的下界设施选址 问题的双标准近似算法研究 李改弟 ,十 王真1 吴裕林
摘要研究带惩罚和软容量约束的下界设施选址问题.扩展Guha等fGuha S,Meyerson A,Munagala K.Hierarchical placement and network design problems fC1//Proceedings 0.,Foundations of Computer Science,2000:892328,DOI:10.1109/SFCS.2000.892328) 和Karger等(Karger D R,Minkoff M.Building steiner trees with incomplete global knowledge[C]//Proceedings of Foundations of Computer Science,2000:892329,DOI: lO.1109/SFCS.2000.892329)的工作到带有惩罚的下界约束设施选址问题,提出了一个新的 双标准近似算法,得到了同样的近似比÷ p.进一步考虑带惩罚和软容量约束的下界设施选
收稿日期:2011年l1月13日 The research is supported by National Natural Science Foundation ofChina(Nos.11201013,11071268). 1.Department of Applied Mathematics,Beijing University of Technology,Beijing 100124,China;北京 工业大学应用数理学院,北京100124 t通讯作者Corresponding author,Email:ligd@bjut.edu.ca 1l8 LI Gaidi.WANG Zhen.WU Yulin 17卷 址问题,得到了近似比为2÷ p的双标准近似算法. 关键词下界约束设施选址,近似算法,双标准算法 中图分类号O221.4 2010数学分类号90C30
0 Intr0ducti0n The fields of facility location problem fFLP1 and its variants have been extensively investigated in the operations research,computer science and management science literatures (e.g.[1-10])。The most basic FLP is the uncapacitated facility location problem(UFLP), for which,the first constant factor approximation algorithm has been obtained by Shmoys et all111 using LP-rounding technique.Since then a great deal of approximation algorithms
with different techniques have been proposed to improve the approximation factor.The current best factor for the UFLP is 1.488 due to Li[1 .which improves the approximation
factor 1.50 of Byrka and Aardal[1a].Furthermore.Guha and Khuller[14]proved that the
approximation factor can not be better than 1.463 unless P=ⅣP. Among its many variants,our work is particularly related to the lower—bounded facility location problem(LBFLP).The LBFLP includes an additional set of constraints,which requires that each open facility must be serving at least B clients.Such problem reduces to the traditional FLP if B drops to 0.The LBFLP was introduced independently by Guha et all15】and by Karger and Minkoff[16]f0r solving certain network design problems.They
both gave bicriteria approximation algorithms for the LBFLP.These bicriteria algorithms generated a constant factor P of the optimal solution cost,but violated the lower bound con— straint with a constant factor o1.Recently,Svitkina[17】presented a constant approximation ratio for the lower—bounded facility location problem,which is the first real approximation algorithm. In this paper,we are interested in two different variants that are both relevant to the LBFLP.The first variant is the LBFL with penalties LBFLP.This problem does not require that each client should be assigned to an open facility.Instead,it can be rejected by paying a penalty.The UFLP with penalties was first studied by Charikar et all18J,who gave a primal—
dual 3一approximation algorithm.Later,Xu and Xu[19,20]improved the ratio to(2+2/e)
and 1.8526 using LP—rounding and primal-dual with greedy adding technique respectively. The second variant we are interested in is the soft—capacity LBFLP fSCLBFLP1.This problem requires that each open facility i serves at most ui clients and the same facility can open any number of times.Many constant—factor approximation algorithms have been proposed for the soft—capacity facility location problem(SCFLP).Chudak and Shmoys[21】 gave a 3一approximation algorithm for the SCFLP with uniform capacities using LP—rounding technique.Jain and Vazirani[22j reduced this problem to the UFLP and obtained a primal—