反刍动物碳水化合物代谢及瘤胃调控技术研究进展
- 格式:doc
- 大小:92.00 KB
- 文档页数:8
反刍动物对碳水化合物的消化吸收反刍动物(Ruminant)消化碳水化合物的特点:一、反刍动物消化食物方式:1、反刍动物的消化系统可以划分为四个部分:舌、牙齿、胃和瘤胃。
2、反刍动物把食物放进瘤胃,通过有齿的牙齿和舌将食物细碎,并含有消化酶。
3、瘤胃中除了消化酶,还有细菌和发酵微生物,它们把碳水化合物分解成更小的部分,例如乳酸、硫酸等有机酸,以便吸收。
4、食物在瘤胃中经过发酵,大部分被彻底消化,然后放进胃中,最终由胃吸收进入血液中。
二、反刍动物对碳水化合物的消化率:1、由于反刍动物的消化系统的特殊结构,反刍动物对碳水化合物的消化率比其他动物要高得多,有达到90%以上。
2、反刍动物可以大量消化植物性食物,而不必改变植物性食物,因为它们可以把植物性食物分解成更小的部分,以方便吸收。
3、由于使用细菌和发酵微生物来参与消化,反刍动物的消化系统可以有效的消化大量碳水化合物,大大提高效率,而且不会浪费太多能量。
三、反刍动物利用碳水化合物的优势:1、反刍动物的消化系统结构可以有效的消化大量的碳水化合物,比起其他动物效率更高,而且可以把微小的有机酸吸收入体,从而大大提高消化效率。
2、反刍动物可以利用碳水化合物完成体能活动和生长发育,可以增加肉质量和大小,以及饲料利用率。
3、反刍动物胃内发酵细菌可以有效率的分解碳水化合物,从而为动物提供更多的营养物质,对于动物健康和生长有着重要的意义。
总结:反刍动物的消化系统结构可以有效的消化大量的碳水化合物,而且还有助于动物的体能活动、生长发育以及饲料利用率。
反刍动物利用碳水化合物的消化率可以达到90%以上,可以有效的分解碳水化合物,有助于动物获得更多营养物质,为动物健康成长服务。
动物营养学报2020,32(7):2997⁃3004ChineseJournalofAnimalNutrition㊀doi:10.3969/j.issn.1006⁃267x.2020.07.008反刍动物瘤胃运动机制㊁影响因素及其调控宋㊀阳㊀沈维军∗㊀殷㊀磊㊀赵㊀渊(湖南农业大学动物科学技术学院,长沙410128)摘㊀要:瘤胃运动在反刍动物生理活动㊁饲料消化吸收以及瘤胃疾病诊断上有着至关重要的作用,且受饲粮类型㊁激素㊁疾病㊁应激和动物生理阶段等影响㊂瘤胃运动主要受神经-体液的共同调节,而外部因素调控反刍动物瘤胃运动的主要方式是调节饲粮,其次是动物的生理健康以及饲养环境㊂本文综述了反刍动物瘤胃运动的机制㊁影响因素及其调控方法,以期为反刍动物瘤胃生理学提供一些参考资料,同时为反刍动物生产中瘤胃运动调控和健康养殖方面提供理论基础㊂关键词:瘤胃;运动机制;调控;健康养殖中图分类号:S823㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀文章编号:1006⁃267X(2020)07⁃2997⁃08收稿日期:2019-12-15基金项目:国家自然科学基金面上项目(31772633)作者简介:宋㊀阳(1995 ),男,内蒙古兴安盟人,硕士研究生,从事反刍动物营养和柔性人工瘤胃研究㊂E⁃mail:1215300847@qq.com∗通信作者:沈维军,教授,硕士生导师,E⁃mail:shenweijun@hunau.edu.cn㊀㊀反刍动物与单胃动物最大的区别在于瘤胃,反刍动物的瘤胃是一个供厌氧微生物繁殖的连续接种的发酵罐,70%的以上的营养物质在瘤胃内消化㊂瘤胃运动是反刍动物维持正常生理活动的必要保障,与瘤胃内微生物发酵息息相关㊂瘤胃内微生物发酵效率对饲粮的消化以及营养物质的合成有很大的影响,从而影响反刍动物的生长性能以及生理健康[1]㊂因此,通过瘤胃运动调控反刍动物营养代谢是研究反刍动物营养的关键㊂反刍活动是反刍动物最具特征性一种消化模式,它是由一系列网-瘤胃收缩活动来完成[2]㊂瘤胃运动方式为4个囊腔的收缩和舒张,瘤胃周期性运动分为瘤胃原发性收缩和瘤胃继发性收缩㊂当网胃第2次收缩至高峰时,瘤胃开始收缩,瘤胃的收缩先由瘤胃前庭开始,再沿着背囊由前向后扩张,到达后背盲囊,在背囊收缩期间腹囊属于舒张状态,后背盲囊收缩结束转到腹盲囊由后向前依次收缩,最后收缩终止于瘤胃前部[3]㊂这种起源于网胃两相收缩的收缩运动为瘤胃原发性收缩㊂在原发性收缩后,瘤胃有时候还可能发生一次单独的附加收缩,称为瘤胃继发性收缩,瘤胃继发性收缩仅涉及瘤胃部分区域,一般情况下收缩的部位是背侧冠状肌柱㊁背囊和后背盲囊,有时继发性收缩仅局限在背囊,在瘤胃出现继发性收缩时往往发生嗳气活动㊂正是由于瘤胃的周期性运动才让瘤胃内食糜按照一定规律反复运动,使得进入瘤胃内的饲料得到充分的发酵,以此来供应动物个体生长发育所需要的营养物质㊂瘤胃的运动主要受神经和体液调节,也受饲粮适口性㊁饲喂量㊁反刍活动㊁药物以及其他因素影响[4-7]㊂在实际生产中,研究者可以通过监测瘤胃运动频率和强度帮助诊断急㊁慢性疾病以及消化期生理异常情况[8],也可以通过测定瘤胃运动的各项指标来评定饲粮在瘤胃中发酵的效率,为反刍动物的健康养殖提供理论基础㊂1 反刍动物瘤胃运动的机制㊀㊀瘤胃运动主要受神经-体液调节,神经调节中枢在延髓,高级中枢在大脑皮质,传出神经为迷走神经和交感神经㊂动物采食饲料后,饲料通过刺激口腔黏膜感受器㊁瘤胃内机械和压力感受器,产生一系列神经信号,神经信号通过传入神经传至㊀动㊀物㊀营㊀养㊀学㊀报32卷神经中枢,然后通过传出神经将指令传送到瘤胃,引起瘤胃的规律性运动[9-11]㊂乙酰胆碱是胆碱能系统中的主要神经递质,它通过激活位于瘤胃神经系统平滑肌细胞或神经细胞上的受体发挥作用,引起瘤胃平滑肌层的收缩㊂当传出神经迷走神经兴奋时,瘤胃运动加强,当交感神经兴奋时,瘤胃运动减弱㊂由于反刍动物复胃系统存在反馈调节,其他胃部运动与瘤胃运动是相互协调的㊂当饲料刺激网胃感受器,不仅可使瘤-网胃收缩增强,还会促发反刍动作㊂皱胃被内容物充盈时,会通过反馈调节抑制瘤胃和网胃的运动,反之则会增强瘤胃的运动㊂瘤胃运动的神经调节过程如图1所示㊂㊀㊀体液调节机体的各种生理机能及内环境的稳态已成为共识㊂机体通过激素及神经激素传递化学信息,使机体的组织细胞相互协调,以适应内外环境的变化,保证动物生命活动㊂下丘脑是内分泌活动的调节中枢,它通过对垂体分泌活动的调节,来控制其他内分泌腺的激素分泌㊂下丘脑-垂体轴通过反刍动物垂体释放激素及各种肽类物质,如胆囊收缩素㊁促性腺激素释放激素㊁促甲状腺激素释放激素㊁胰岛素等,经血液循环到达瘤胃,作用于瘤胃上的靶器官,以此来辅助调节瘤胃运动[12]㊂瘤胃运动的体液调节过程如图2所示㊂图1㊀瘤胃运动的神经调节图Fig.1㊀Diagramofrumenmovement⁃nervousregulation2㊀反刍动物瘤胃运动的影响因素2.1㊀饲粮因素对瘤胃运动的影响2.1.1㊀饲料原料㊀㊀饲料的物理特性和化学成分是影响反刍动物瘤胃运动频率和强度的重要因素之一㊂研究表明,在利用荨麻干草替代苜蓿干草饲喂新疆细毛羊时,饲喂荨麻干草可使瘤胃蠕动的频率减慢[13],对反刍动物饲喂三叶草以及过高的大麦时也会抑制瘤胃运动[14-15],原因是饲料本身物理特性导致采食量降低,进而影响了瘤胃运动㊂也有研究表明面筋蛋白经瘤胃微生物降解产生的阿片肽类物质能加强瘤胃运动,显著促进活体瘤胃平滑肌收缩力加强㊁收缩持续时间延长以及收缩频率变慢[16],这是饲料本身含有的特殊化学成分被转化为促瘤胃动力分子的结果㊂饲料粉碎粒度在影响瘤胃运动上起着重要作用㊂饲料的粉碎粒度较大,颗粒较粗糙,会降低瘤胃乳头角质层厚度,有利于营养物质的吸收,同时提高瘤胃表层的血液流动,加强瘤胃运动的频率㊂如果饲料的粉碎粒度较小,瘤胃内的饲粮不能通过充分地摩擦来降低乳头角质层厚度,导致瘤胃乳头表面覆膜,不利于营养物质的吸收,同时降低瘤胃的运动频率和强度[17-18]㊂2.1.2㊀饲粮精粗比㊀㊀饲粮的精粗比是保证饲粮营养平衡和科学饲养反刍动物的关键因素,大量研究表明,饲粮精粗比差异对反刍动物的采食量[19]㊁生产性能[20]和血浆激素指标[21]有很大的影响㊂此外,饲粮精粗比也是调控瘤胃内环境及瘤胃运动的重要因素[22]㊂饲粮中精饲料比例过高,瘤胃内微生物发酵加快,产生过量的挥发性脂肪酸,造成酸沉积,严重时导致瘤胃酸中毒,使瘤胃内环境紊乱,瘤胃运动停止;粗饲料比例过高,能量释放缓慢,造成瘤胃能量吸收降低,瘤胃内粗饲料容易凝集成团,严重时会转变为瘤胃积食㊁胀气等疾病,导致瘤胃生长和运动受阻,进而影响动物个体的生长性能和生理健康㊂2.1.3㊀饲料添加剂㊀㊀在2020年全面禁止使用饲用抗生素的趋势下,新型饲料添加剂层出不穷㊂研究表明,在反刍动物饲粮中添加植物提取物[23-24]㊁中草药[25]㊁益生菌[26-27]㊁酶制剂[28]等对反刍动物的生长性能和瘤胃发酵都有一定的有益效果㊂由于各类型饲料添加剂所包含成分不同,其影响瘤胃运动的方式也有区别㊂研究表明生姜提取物以及薄荷精油可提高瘤胃平滑肌收缩频率,主要原因是生姜提取物和薄荷精油中存在胆碱㊁皂苷等促胃肠动力作89927期宋㊀阳等:反刍动物瘤胃运动机制㊁影响因素及其调控用的成分[29-30]㊂大蒜氧化物可提高瘤胃收缩频率,减少收缩持续时间,增加瘤胃液稀释率和周转率,加强瘤胃排空能力[31],直接作用是刺激瘤胃平滑肌化学感受器加强兴奋活动,间接作用是通过神经反射性调节作用,增强下丘脑摄食中枢的兴奋活动,加强瘤胃运动以及瘤胃排空㊂图2㊀瘤胃运动的体液调节图Fig.2㊀Diagramofrumenmovement⁃humoralregulation2.2㊀摄食对瘤胃运动的影响㊀㊀摄食行为与瘤胃运动有着密不可分的关系,摄食行为反映能量摄入与能量消耗的动态平衡㊂在下丘脑神经元网络和神经肽递质方面发现,瘤胃在运动过程中会向大脑发送关于身体能量平衡状况的信号循环肽,以便它可以相应地调整进食行为[32]㊂在能量缺乏时期,瘤胃向大脑发送缺乏信号,大脑神经元分泌神经肽Y和促肾上腺皮质激素相关肽,从而抑制促甲状腺激素和促肾上腺皮质激素的分泌,激活动物摄食行为,瘤胃运动加强;在能量过剩时期,下丘脑的弓状核分泌促黑素细胞刺激素㊁可卡因和调节苯丙胺的转录物,导致垂体分泌促甲状腺激素和促肾上腺皮质激素,减弱动物摄食行为,瘤胃运动减弱[33]㊂2.3㊀激素对瘤胃运动的影响㊀㊀早在1951年,研究者就发现将山羊的脑皮层切除后注射肾上腺素,可引起瘤胃收缩[34],并认为瘤胃的不同部位有α和β受体分布[35];另有研究表明,在绵羊第三脑室注射内啡肽[36]以及静脉注射乙酸钠[37]均能显著抑制瘤胃运动㊂对绵羊十二指肠酸化与瘤胃运动关系的研究表明十二指肠灌注乳酸(pH=2.0)抑制瘤胃收缩幅度和频率,交叉循环和血液转移试验的观察表明双缩醛酸会释放出1种或多种激素,类似于胆囊收缩素,对胃肠运动有刺激作用,对瘤胃运动有抑制作用[38]㊂促胰液素对瘤胃运动影响的研究表明,促胰液素降低了瘤胃收缩频率和瘤胃描记波收缩幅度,延长了瘤胃收缩波间距,由此揭示缺乏胃窦的反刍动物瘤胃运动也能被促胰液素调节[39]㊂胰岛素㊁胰高血糖素和抗利尿激素等对瘤胃运动的调控作用仍然不清楚㊂2.4㊀疾病和治疗对瘤胃运动的影响㊀㊀近年来反刍动物的集约化养殖逐步崛起,但是由于饲养经验不足和生长环境的突变,反刍动物的前胃疾病发病率较高㊂前胃原发性病变是由瘤胃壁收缩周期中断或菌群发酵过程中断引起9992㊀动㊀物㊀营㊀养㊀学㊀报32卷的,继发性病变是由瘤胃收缩或发酵异常引起的,主要包括腺胃乏力㊁瘤胃嵌顿㊁瘤胃胀大和瘤胃酸中毒㊂在前胃疾病发生前后,瘤胃平滑肌细胞都能表现出一定的节律性运动和可测量的蠕动波,但是可测量蠕动波的强度存在差异且发生周期性变化,表明前胃疾病的发病伴有瘤胃机械运动障碍,动物瘤胃功能明显减弱[40-42]㊂当反刍动物患瘤胃亚急性酸中毒时,瘤胃内pH降低,丙酸和丁酸的含量增高,瘤胃运动受到抑制,其中丁酸对瘤胃运动的抑制作用最强,其次是乙酸㊁丙酸和乳酸[43-44]㊂㊀㊀前胃疾病如瘤胃胀气㊁瘤胃迟缓㊁瘤胃酸中毒的临床症状大多数为瘤胃运动减慢,严重时瘤胃运动停止,最后导致死亡,治疗原则为消除瘤胃发酵气体㊁兴奋瘤胃蠕动和恢复瘤胃内环境稳态㊂研究表明甲氧氯普胺㊁莫沙必利等药物可增强牛的瘤胃动力,原因为乙酰胆碱与平滑肌上的毒蕈碱受体结合并诱导收缩,药物选择性地作用于5-羟色胺4(5⁃HT4)受体,增加瘤胃胆碱能神经末梢的乙酰胆碱释放量[45]㊂在兴奋瘤胃蠕动治疗过程中有以下几种方法可以促进瘤胃运动:1)腹泻疗法㊂可以一次性灌服液体石蜡油㊁菜籽油㊁硫酸镁和硫酸钠等刺激瘤胃收缩,加速瘤胃内容物排出㊂2)强心补液法㊂通过静脉注射安呐咖㊁氯化钠溶液和氯化钠葡萄糖等,皮下注射比赛可林,或者肌肉注射复合维生素B1来促进瘤胃运动㊂3)针刺疗法㊂针刺疗法在治疗反刍动物前胃疾病方面已经取得了明显的疗效㊂王林安等[46]研究表明,针刺交巢㊁百会穴组和左侧第5㊁6㊁7㊁8肋间穴组,瘤胃收缩波幅明显增高,而针刺脾俞穴后瘤胃收缩波幅则明显降低㊂2.5㊀热应激对瘤胃运动的影响㊀㊀研究表明气候变化能对畜体产生影响,特别是环境高温导致的热应激,其可对反刍动物瘤胃结构造成负面影响,降低瘤胃蠕动和反刍[47]㊂热应激下,动物采食量减少[48-49],胃肠道中食糜的通过速度比在热中性环境时慢,饲料不能充分刺激瘤胃上皮,瘤胃上皮的血液流动受到抑制,从而降低瘤胃运动和反刍[50]㊂此外,热应激过程中动物脑垂体会通过减少生长激素的分泌来调节畜体的代谢,进而会影响瘤胃运动[51]㊂热应激下奶牛瘤胃内pH较低,这意味着在热应激期间较低的瘤胃内pH会抑制瘤胃运动[52]㊂在短期热应激期间,下丘脑-垂体-肾上腺皮质轴释放糖皮质激素,糖皮质激素通过能量动员的方式改善健康状况,并影响前胃运动等生理活动㊂2.6㊀反刍动物生理阶段对瘤胃运动的影响㊀㊀反刍动物个体因自身遗传性状差异会导致瘤胃发育程度不同,间接影响着瘤胃运动的强度和频率㊂不同个体间的瘤胃会按照一定节律性㊁周期性运动,但在蠕动波峰和波形上会有一些小差异㊂在反刍动物不同的生长阶段瘤胃运动差异很大,在幼畜刚出生时,皱胃是反刍胃中最大的胃,随着日龄的增长和对植物性饲料采食量的逐渐增加,瘤胃才迅速发育,据研究发现,牛㊁羊幼畜在2 3周龄才出现短时间的反刍活动,表明了幼畜的瘤胃活动偏低,与成年个体瘤胃运动有较大差异[53]㊂反刍动物处于不同的生理阶段瘤胃运动也会有差异,当处于妊娠生理阶段时,通过神经调节或体液调节所生成的激素抑制瘤胃运动,短时间停止反刍活动[54-55]㊂3㊀瘤胃运动的调控㊀㊀瘤胃运动在机体内主要受神经和体液共同调控,外部环境中最易受饲粮成分变化的影响,其次是疾病和环境因素㊂瘤胃运动与瘤胃发育及功能相辅相成,因此通过改变饲粮是最易实现的调控手段㊂㊀㊀研究表明,玉米蛋白㊁小麦谷蛋白和大麦胶蛋白等降解的肽类产物中含有阿片样活性物质,被称为 外啡肽 [56-57]㊂反刍动物的中枢及瘤胃平滑肌上分布有大量阿片样受体细胞,阿片样活性物质能够与阿片受体结合,实现对瘤胃运动的调节[58]㊂有研究表明瘤胃运动也可以受粗饲料类型㊁粒度和摄入量的调节,饲喂禾本科饲料的绵羊瘤胃收缩频率高于饲喂谷壳和颗粒饲料的绵羊[59],饲喂新鲜苜蓿的绵羊瘤胃运动频率比饲喂苜蓿干草的绵羊更快[60-61]㊂在广泛的饲喂试验中得知,饲粮的类型㊁粒度以及饲喂方式都是调控瘤胃运动的重要因素㊂由于不同个体在调节瘤胃运动方面有所不同,不同个体间饲粮类型㊁粒度㊁饲喂时间和精粗比例需要更多的研究来确定㊂以下几方面是通过饲粮手段调控瘤胃运动的关键:1)配制饲粮时应注意饲料间的组合效应,平衡蛋白质能量比,碳水化合物中非纤维性碳水化合物与中性洗涤纤维的比例以及氮源必须要保持平衡状00037期宋㊀阳等:反刍动物瘤胃运动机制㊁影响因素及其调控况㊂2)饲粮的阴阳离子差可对瘤胃运动进行调控,研究发现饲粮的阴阳离子差可通过影响机体的酸碱平衡影响反刍动物的自由采食量,进而对瘤胃进行营养调控[62]㊂3)饲粮中含硫化合物和矿物元素占比应合理㊂适当添加瘤胃调控剂如脲酶抑制剂㊁离子载体㊁活性酵母培养物等维持瘤胃内环境稳定,促使饲粮调控瘤胃运动达到更好的效果[63-64]㊂㊀㊀在实际饲养中反刍动物出现采食量下降㊁瘤胃运动减慢情况时,首先检查动物饲料原料的安全,调整饲粮配方和饲喂方式[59],然后适当增加饲料的粉碎粒度以及在饲粮中添加促瘤胃动力药物来刺激瘤胃壁收缩,加强瘤胃运动[16,51],最后增加动物的户外运动时间,加快瘤胃血液循环,促进瘤胃运动㊂㊀㊀反刍动物在发生瘤胃胀气㊁瘤胃迟缓㊁瘤胃酸中毒等疾病时,多数伴有瘤胃机械运动障碍,严重时还会导致瘤胃运动停止㊂治疗的首要任务是紧急恢复瘤胃正常生理活动㊂通过灌服硫酸镁和硫酸钠加快瘤胃的收缩,肌肉注射比赛可林㊁维生素B1等促瘤胃动力药物来增强瘤胃运动㊂㊀㊀为了更有效地对瘤胃运动进行调控,在生产中应根据季节调整反刍动物户外运动时间,提高动物免疫力,保持畜舍内卫生,注意防热㊁防寒,减少疾病和应激对瘤胃运动造成的影响㊂4㊀小㊀结㊀㊀瘤胃运动是一个复杂的过程,并且是按照一定规律运动的生理活动㊂由于瘤胃内附有多重感受器以及多种激素受体,机体外因素如饲料粉碎粒度㊁饲粮精粗比㊁疾病治疗和应激等最终都会转化为神经-体液调节方式对瘤胃运动产生影响㊂体外调控瘤胃运动最重要的方式是对饲粮进行调节,而目前对于饲粮营养物质消化率和瘤胃内微生物多样性因素对瘤胃运动规律和调控技术的研究还不够深入㊂因此,还需进一步开展试验来阐述瘤胃运动的影响因素和调控技术,通过研发瘤胃运动调控技术为反刍动物生理学提供理论参考,为畜牧业健康养殖提供科学方法㊂参考文献:[1]㊀SCHÄRENM,FRAHMJ,KERSTENS,etal.Interre⁃lationsbetweentherumenmicrobiotaandproduction,behavioral,rumenfermentation,metabolic,andimmu⁃nologicalattributesofdairycows[J].JournalofDairyScience,2018,101(5):4615-4637.[2]㊀HUFFMANCF.Ruminantnutrition[J].AnnualRe⁃viewofBiochemistry,1953,22:399-422.[3]㊀刘敏雄.反刍动物消化生理学[M].北京:北京农业大学出版社,1991:18-24.[4]㊀ROUSSEAUJP,FALEMPINM.Neuralcontrolofthemotilityofthereticulo⁃rumen[J].Reproduction,Nutri⁃tion,Development,1985,25(4B):763-775.[5]㊀KANIABF.Opioidinhibitorycontroloftheruminantstomachmotility:functionalimportanceofthehypo⁃thalamus[J].VeterinaryMedicineSeriesA,1992,39(1/2/3/4/5/6/7/8/9/10):445-452.[6]㊀KARASUA,GENÇCELEPM.TheeffectofxylazineHClusedinrepeatedsedationsforsheeponbiochemi⁃calandclinicalvalues[J].KafkasUniversitesiVeteri⁃nerFakultesiDergisi,2015,21(6):831-836.[7]㊀MCFARLANEZD,BARBERORP,NAVERLG,etal.Effectofforagespeciesandsupplementtypeonrumenkineticsandserummetabolitesingrowingbeefheifersgrazingwinterforage[J].JournalofAnimalScience,2017,95(12):5301-5308.[8]㊀NAGYDW.Diagnosticapproachtoforestomachdis⁃eases[J].VeterinaryClinicsofNorthAmerica:FoodAnimalPractice,2017,33(3):441-450.[9]㊀RUCKEBUSCHY,THIVENDP.Digestivephysiologyandmetabolisminruminants[M].Dordrecht:Spring⁃er,1980.[10]㊀SEJRSENK,HVELPLUNDT,NIELSENMO.Rumi⁃nantphysiology:digestion,metabolismandimpactofnutritionongeneexpression,immunologyandstress[M].Wageningen:AcademicPublishers,2006:345-346.[11]㊀DEHORITYBA.Gastrointestinaltractsofherbivores,particularlytheruminant:anatomy,physiologyandmi⁃crobialdigestionofplants[J].JournalofAppliedAni⁃malResearch,2002,21(2):145-160.[12]㊀韩正康.瘤胃代谢的神经内分泌调节[J].动物医学进展,2006,27(9):9-13.[13]㊀许行浩,侯宇,赵树林,等.饲喂荨麻干草对羊胃肠动力的影响[J].新疆农业科学,2019,56(5):964-971.[14]㊀PARSONSAR,NEUMANNAL,WHITEHAIRCK,etal.Isolatedgutandrumenmotilityasaffectedbyextractsfrombloatproducingforages[J].JournalofAnimalScience,1955,14(2):403-411.1003㊀动㊀物㊀营㊀养㊀学㊀报32卷[15]㊀MANNSO.Someeffectsontherumenmicro⁃organ⁃ismsofoverfeedingahighbarleyration[J].JournalofAppliedBacteriology,1970,33(2):403-409.[16]㊀孙镇平,袁海星,金良等.小麦面筋蛋白对山羊瘤胃运动的影响[J].畜牧兽医学报,2006,37(4):348-351.[17]㊀TEIMOURIYANSARIA,VALIZADEHR,NASERI⁃ANA,etal.Effectsofalfalfaparticlesizeandspecificgravityonchewingactivity,digestibility,andperform⁃anceofholsteindairycows[J].JournalofDairySci⁃ence,2004,87(11):3912-3924.[18]㊀孔庆斌,张晓明.苜蓿干草切割长度对荷斯坦育成母牛采食与反刍行为和营养物质消化的影响[J].中国畜牧杂志,2008,44(19):47-51.[19]㊀PAPIN,MOSTAFA⁃TEHRANIA,AMANLOUH,etal.Effectsofdietaryforage⁃to⁃concentrateratiosonperformanceandcarcasscharacteristicsofgrowingfat⁃tailedlambs[J].AnimalFeedScienceandTechnolo⁃gy,2011,163(2/3/4):93-98.[20]㊀SHIHT,ZHANGJ,LISL,etal.Effectsofawiderangeofdietaryforage⁃to⁃concentrateratiosonnutri⁃entutilizationandhepatictranscriptionalprofilesinlimit⁃fedHolsteinheifers[J].BMCGenomics,2018,19:148.[21]㊀THORPCL,WYLIEARG,STEENRWJ,etal.Effectsofincrementalchangesinforage:concentrateratioonplasmahormoneandmetaboliteconcentrationsandproductsofrumenfermentationinfatteningbeefsteers[J].AnimalScience,2000,71(1):93-109.[22]㊀HANXF,LIBB,WANGXL,etal.Effectofdietaryconcentratetoforageratiosonruminalbacterialandanaerobicfungalpopulationsofcashmeregoats[J].Anaerobe,2019,59:118-125.[23]㊀COSTAM,ALVESSP,CAPPUCCIA,etal.Effectsofcondensedandhydrolyzabletanninsonrumenme⁃tabolismwithemphasisonthebiohydrogenationofun⁃saturatedfattyacids[J].JournalofAgriculturalandFoodChemistry,2018,66(13):3367-3377.[24]㊀ZHANJS,LIUMM,WUCX,etal.Effectsofalfal⁃faflavonoidsextractonthemicrobialfloraofdairycowrumen[J].Asian⁃AustralasianJournalofAnimalSciences,2017,30(9):1261-1269.[25]㊀LIANGX,JINJ,BIX,etal.EffectsofChineseherbalmedicineandcoldexposureonplasmaglucose,leu⁃cineandenergymetabolisminsheep[J].JournalofAnimalPhysiologyandAnimalNutrition,2018,102(2):e534-e541.[26]㊀KUMAGAIH,KUMAGAES,MITANIK,etal.Effectsofsupplementaryprobioticstotwodifferentdi⁃etsondrymatterintake,dailygain,digestibility,rumi⁃nalpH,andfecalmicrobialpopulationsandmetabo⁃litesinewes[J].AnimalScienceJournal,2004,75(3):219-224.[27]㊀SUPRATMANH,RAMDANID,KUSWARYANS,etal.Applicationofprobioticsanddifferentsizeofso⁃diumbicarbonatepowdersforfeedlotsheepfattening[J].AIPConferenceProceedings,2018,1927(1):030045.[28]㊀赵连生,王典,王有月,等.饲粮中添加复合酶制剂对奶牛瘤胃发酵㊁营养物质表观消化率和生产性能的影响[J].动物营养学报,2018,30(10):4172-4180.[29]㊀MAMAGHANIA,MAHAMM,DALIR⁃NAGHA⁃DEHB.Effectsofgingerextractonsmoothmuscleac⁃tivityofsheepreticulumandrumen[J].VeterinaryResearchForum:AnInternationalQuarterlyJournal,2013,4(2):91-97.[30]㊀JALILZADEH⁃AMING,MAHAMM,DALIR⁃NAGHADEHB,etal.EffectsofMenthalongifoliaes⁃sentialoilonruminalandabomasallongitudinalsmoothmuscleinsheep[J].JournalofEssentialOilResearch,2012,24(1):61-69.[31]㊀柏冬星.大蒜氧化物对山羊瘤胃消化代谢及激素水平的影响[D].硕士学位论文.扬州:扬州大学,2010.[32]㊀ROCHEJR,BLACHED,KAYJK,etal.Neuroen⁃docrineandphysiologicalregulationofintakewithparticularreferencetodomesticatedruminantanimals[J].NutritionResearchReviews,2008,21(2):207-234.[33]㊀PULINAG,AVONDOM,MOLLEG,etal.Modelsforestimatingfeedintakeinsmallruminants[J].Re⁃vistaBrasileiradeZootecnia,2013,42(9):675-690.[34]㊀COMLINERS,TITCHENDA.Reflexcontractionoftheoesophagealgrooveinyoungruminants[J].TheJournalofPhysiology,1951,115(2):210-226.[35]㊀CLARYJJ,MITCHELLJR,LITTLECO,etal.Pan⁃creaticamylaseactivityfromruminantsfeddifferentrations[J].CanadianJournalofPhysiologyandPhar⁃macology,1969,47(2):161.[36]㊀KANIABF,DOMANᶄSKIE.Centraladrenergicpath⁃wayparticipationintheinhibitoryeffectsofendor⁃phinsonforestomachmotilityinsheep[J].SmallRu⁃minantResearch,1996,19(3):247-254.[37]㊀KANIABF,MOTYLT,KULASEKG.Inhibitoryac⁃tionofintravenouslyadministeredammoniumacetate20037期宋㊀阳等:反刍动物瘤胃运动机制㊁影响因素及其调控onthemotilityoftherumeninsheep[J].VeterinaryQuarterly,1981,3(3):105-110.[38]㊀BRUCELA,HUBERTL.Inhibitoryeffectofacidintheintestineonrumenmotilityinsheep[J].JournalofAnimalScience,1973,37(1):164-168.[39]㊀崔思列.促胰液素对山羊瘤胃运动调节效应的新发现[J].兽医科技信息,1994(8):14.[40]㊀WANCY,GONGDC,YANGFL.Effectofanteriorstomachdiseaseonrumenfunctionofbeefcattle[J].AnimalHusbandryandFeedScience,2017,9(5):315-317.[41]㊀臧明实.肉牛常见前胃疾病的临床症状和防治措施[J].现代畜牧科技,2019(11):76-77.[42]㊀陈莹.前胃疾病在牛羊养殖中的鉴别诊断方法[J].吉林农业,2019(20):67.[43]㊀SHABANIE,CERONIV.Clinicalfindingsdictatedbysubacuterumenacidosis(SARA)conditionincowsformilkproduction[J].AlbanianJournalofAgricul⁃turalScience,2013,12(3):327-331.[44]㊀CEBRATE.Rumenmotilityinexperimentalacidosisoftherumeninsheep[J].ActaPhysiologicaPoloni⁃ca,1979,30(4):533-541.[45]㊀ARAIS,HARITANIM,SAWADAH,etal.Effectofmosaprideonruminalmotilityincattle[J].JournalofVeterinaryMedicalScience,2019,81(7):1017-1020.[46]㊀王林安,VELLEW.针刺对牛网胃㊁瘤胃蠕动机能影响的试验观察[J].黑龙江畜牧兽医,1990(8):27-29.[47]㊀HIRAYAMAT,KATOHK,OBARAY.Effectsofheatexposureonnutrientdigestibility,rumencontrac⁃tionandhormonesecretioningoats[J].AnimalSci⁃enceJournal,2004,75(3):237-243.[48]㊀NARDONEA,RONCHIB,LACETERAN,etal.Effectsofclimatechangesonanimalproductionandsustainabilityoflivestocksystems[J].LivestockSci⁃ence,2010,130(1/2/3):57-69.[49]㊀SORIANIN,PANELLAG,CALAMARIL.Rumina⁃tiontimeduringthesummerseasonanditsrelation⁃shipswithmetabolicconditionsandmilkproduction[J].JournalofDairyScience,2013,96(8).5082-5094.[50]㊀SILANIKOVEN.Effectsofwaterscarcityandhoten⁃vironmentonappetiteanddigestioninruminants:are⁃view[J].LivestockProductionScience,1992,30(3):175-194.[51]㊀BEEDEDK,COLLIERRJ.Potentialnutritionalstrat⁃egiesforintensivelymanagedcattleduringthermalstress[J].JournalofAnimalScience,1986,62(2):543-554.[52]㊀MISHRAM,MARTZFA,STANLEYRW,etal.Effectofdietandambienttemperature⁃humidityonru⁃minalpH,oxidationreductionpotential,ammoniaandlacticacidinlactatingcows[J].JournalofAnimalScience,1970,30(6):1023-1028.[53]㊀KOSTOVY,ALEXANDROVAV.Appearanceanddynamicsofrumenmotilityinnewborncalves[J].BulgarianJournalofAgriculturalScience,2010,16(5):665-668.[54]㊀MALAŠAUSKIENED,TELEVIC㊅IUSM,JUOZA⁃ITIENEV,etal.Ruminationtimeasanindicatorofstressinthefirstthirtydaysaftercalving[J].PolishJournalofVeterinarySciences,2019,22(2):363-368.[55]㊀CELLINIM,HUSSEINHA,ELSAYEDHK,etal.Theassociationbetweenmetabolicprofileindices,clinicalparameters,andultrasoundmeasurementofbackfatthicknessduringtheperiparturientperiodofdairycows[J].ComparativeClinicalPathology,2019,28(3):711-723.[56]㊀孙镇平,周业飞,朱王飞,等.蛋白质过瘤胃保护增强植物外啡肽对山羊生长代谢的调节作用[J].畜牧兽医学报,2004,35(1):6-9.[57]㊀ZIOUDROUC,STREATYRA,KLEEWA.Opioidpeptidesderivedfromfoodproteins.Theexorphins[J].TheJournalofBiologicalChemistry,1979,25(7):2446-2449.[58]㊀王修启,张兆敏,阎祥洲,等.麦谷蛋白源外啡肽研究进展[J].食品与发酵工业,2003,29(10):75-78,89.[59]㊀WAGHORNGC,REIDCSW.Rumenmotilityinsheepandcattlegivendifferentdiets[J].NewZealandJournalofAgriculturalResearch,1983,26(3):289-295.[60]㊀MCLEAYLM,KOKICHDC,HOCKEYHU,etal.Motilityofthereticulumandrumenofsheepgivenjuice⁃extractedpasture[J].BritishJournalofNutri⁃tion,1982,47(1):79-85.[61]㊀ULYATTMJ,WAGHORNGC,JOHNA,etal.Effectofintakeandfeedingfrequencyonfeedingbe⁃haviourandquantitativeaspectsofdigestioninsheepfedchaffedlucernehay[J].TheJournalofAgricultur⁃alScience,1984,102(3):645-657.[62]㊀HERSOMMJ,HANSENGR,ARTHINGTONJD.3003㊀动㊀物㊀营㊀养㊀学㊀报32卷Effectofdietarycation⁃aniondifferenceonmeasuresofacid⁃basephysiologyandperformanceinbeefcattle[J].JournalofAnimalScience,2010,88(1):374-382.[63]㊀陈沫,臧长江,陈晖,等.不同离子型表面活性剂对反刍动物瘤胃发酵调控的研究进展[J].中国畜牧兽医,2018,45(5):1203-1210.[64]㊀郭永清,赵宇飞,张小宇.酵母培养物对断奶犊牛生长性能及瘤胃发酵的影响[J].饲料研究,2019,42(11):10-13.∗Correspondingauthor,professor,E⁃mail:shenweijun@hunau.edu.cn(责任编辑㊀菅景颖)RumenMovementMechanism,InfluencingFactorsandItsRegulationinRuminantsSONGYang㊀SHENWeijun∗㊀YINLei㊀ZHAOYuan(CollegeofAnimalScienceandTechnology,HunanAgriculturalUniversity,Changsha410128,China)Abstract:Rumenmovementplaysanimportantroleinphysiologicalactivity,feeddigestionandabsorptionanddiagnosisofrumendiseasesinruminants.Itisalsoinfluencedbythetypeofdiet,hormones,disease,stressandanimalphysiologicalstages.Rumenmovementismainlyregulatedbybothhumoralandneuralfac⁃tors,andthemainwayofexternalfactorstoregulaterumenmovementisregulatingbyruminantdiet,followedbythephysiologicalhealthandfeedingenvironmentofanimal.Thispapersummarizedthemechanism,influen⁃cingfactorsandregulationmethodsofrumenmovementinruminants,inordertoprovidesomereferencemate⁃rialsforrumenphysiologyandprovidetheoreticalbasisforrumenmovementregulationandhealthybreedinginruminantproductionatthesametime.[ChineseJournalofAnimalNutrition,2020,32(7):2997⁃3004]Keywords:rumen;movementmechanism;regulation;healthybreeding4003。
反刍动物过瘤胃保护技术作者:马晨来源:《新农业》2016年第06期由于反刍动物消化系统的特殊性,饲料中添加的一些营养物质(包括蛋白质、氨基酸、非蛋白氮、脂肪、淀粉、维生素类等)进入瘤胃后会被瘤胃微生物所降解,不能完全被小肠等后消化道所吸收和利用,降低其生物学效价,因此需要通过一定的物理、化学等工艺手段来处理这些营养物质,保护其有效组分活性,降低其在瘤胃内的降解效率,从而提高营养物质的消化利用率。
1 过瘤胃保护技术1.1 物理加压加热方法研究报道,通过加压或加热等物理手段对淀粉、蛋白质等常规饲料养分进行加工,以增加营养物质的稳定性,减少瘤胃微生物的降解程度。
一般淀粉饲料主要通过加压方式处理,降低淀粉在瘤胃中的降解率,提高小肠对淀粉的可消化利用率。
蛋白质饲料主要通过加热烘干方式处理,通过热处理后导致蛋白质变性,引起蛋白质的自由氨基与碳水化合物中的羰基相结合,以此抵抗酶的水解,使饲料蛋白质受到保护,更多的通过瘤胃进入后消化道被有效利用。
1.2 化学保护方法化学保护方法所采用的化学试剂主要有甲醛、单宁、乙醇、戊二醛、锌盐、氯化钠和氢氧化钠等。
这种方法主要用于蛋白质类营养物质,通过这些化学试剂与蛋白质分子间的交叉反应,以及酸性环境中可逆的特性,来达到保护瘤胃中蛋白质的目的。
例如甲醛能使蛋白质分子的氨基、羧基和硫氢基发生烷基化反应,并且在酸性条件下甲醛与蛋白质反应可逆,以此来降低蛋白质的溶解度,改变蛋白质的消化部位。
1.3 物理包被方法物理包被方法是用富含蛋白质的动物性原料(全血或脂肪酸)对营养物质进行包被,这些包被材料通常是C12~C22的脂肪酸,其特点是在瘤胃这样的中性环境中不易被降解,而在真胃等酸性环境中分解,并在真胃中消化利用。
而全血、血粉、干血浆、骨粉、鱼粉等血液制品及其他动物性饲料由于其易传播疾病等原因已禁止用于反刍动物饲料中。
1.4 微包被技术微包被技术是反刍动物营养中使用较为广泛、生产方式较为先进且过瘤胃保护效果较好的一类过瘤胃技术,这种方法常用于营养物质单体,如胆碱、维生素、氨基酸和尿素等。
反刍动物瘤胃酸中毒的病因及营养调控方法闫丽红【摘要】瘤胃酸中毒是危害反刍动物常见的一种代谢病.反刍动物日粮中含有大量易发酵碳水化合物、日粮纤维含量较低,饲养管理不当,都会导致瘤胃产生酸性物质过多,引起瘤胃微生物区系失调,瘤胃功能紊乱,造成瘤胃酸中毒.文章对反刍动物瘤胃酸中毒的病因及营养调控方法作以论述.【期刊名称】《饲料博览》【年(卷),期】2017(000)008【总页数】3页(P47-49)【关键词】瘤胃酸中毒;反刍动物;病因;营养调控【作者】闫丽红【作者单位】黑龙江兽药饲料监察所,哈尔滨150069【正文语种】中文【中图分类】S856.9;S823瘤胃酸中毒是因过量吞食谷物饲料而引发。
由于瘤胃中淀粉类食物发酵产生大量乳酸,吸收入血而发病。
病程发展迅速,治疗不及时常危及生命,患畜多在2~4 d 死亡。
临床症状包括瘤胃膨大、疼痛尖叫、精神沉郁、呼吸及心跳加快等。
瘤胃酸中毒可分为急性瘤胃酸中毒和亚急性瘤胃酸中毒,两者发病机制相似,但临床症状不同。
目前对于瘤胃酸中毒的发病机制存在不同的说法。
一种观点认为,瘤胃内微生物紊乱,特别是乳酸产生菌与乳酸利用菌之间的菌群失调导致瘤胃内乳酸积累是诱发瘤胃酸中毒的直接原因[1-2]。
另一种观点认为,瘤胃酸中毒是由于动物采食的大量可溶性碳水化合物在瘤胃内代谢所产生的VFA浓度增加,导致瘤胃液pH大幅度下降所致。
还有一种观点认为,瘤胃酸中毒是由于饲粮中大量可发酵碳水化合物进入瘤胃时使其内环境发生剧变,瘤胃内微生物失衡,pH急剧下降,结果导致纤维素分解菌数量下降,释放出大量内毒素和组胺,这些内毒素和组胺被吸收进入血液,使得肝脏和外周血液中的内毒素水平升高,形成内毒素血症型酸中毒[3]。
本文就反刍动物瘤胃酸中毒的病因及营养调控方法作以论述,以期为生产实践提供理论依据。
1.1 饲养管理不当反刍动物饥饿后自由采食、突然改变日粮、从干乳期到泌乳期的日粮缺乏足够的过渡期、由人工饲养过渡为机械饲养以及其他新工艺规程或饲喂量不合适等都会导致瘤胃酸中毒。
过瘤胃技术(RPT)在反刍动物饲料业的应用前景过瘤胃技术(RPT)在反刍动物饲料业的应用前景过瘤胃技术(Rumen Protected Techniques)就是将一些营养物质(如蛋白质、氨基酸、脂肪和淀粉等)经过一些技术处理,使其保护起来,减少在反刍动物瘤胃内发酵、降解,而直接进入小肠后再被消化吸收,从而达到提高饲料利用率的目的。
使用过瘤胃技术降低了营养物质在瘤胃中的降解率,增加了其在小肠的消化和吸收,从而提高了这些营养物质的利用率。
1、过瘤胃技术的应用现状过瘤胃技术的目的,是既要保护足够比例的营养物质,不被瘤胃微生物降解而进入小肠,同时又要保护过瘤胃后的营养物质进入小肠后,能在小肠内被有效地消化和利用。
1.1保护蛋白质过瘤胃一般来说,进入瘤胃的蛋白质约有60%被分解,分解的产物是氨、挥发性脂肪酸、二氧化碳和其它含氮物质,其余未被消化的部分则随前胃食糜的运动进入瘤胃后消化,被皱胃和小肠的蛋白酶进一步消化,这部分未被瘤胃微生物分解的蛋白质,称为“过瘤胃蛋白质”。
2001年3月1日我国农业部下发了《禁止在反刍动物饲料中添加和使用动物性饲料的通知》,动物性饲料尤其是肉骨粉、鱼粉、血粉是反刍动物饲料中最常用的过瘤胃蛋白来源,因此肉骨粉、鱼粉、血粉等动物性饲料的禁用提高了反刍动物饲料配方技术的难度,于是动物营养和饲料加工研究者们设法寻求技术上的替代措施。
1.2 保护胆碱过瘤胃奶牛需要胆碱形成体内某些磷脂,胆碱是乙酰胆碱的前体物质。
胆碱作为甲基的供给体在肝脏合成脂肪,然后又从肝脏输出用作能量源。
因而可减少形成脂肪肝的威胁。
在日粮中添加过瘤胃保护胆碱,能够促进奶牛泌乳,提高产奶量,并有可能提高乳脂率。
研究者们(Bonomi et a1,1996)已经证实:饲喂三个不同水平的RPC (Rumen-Protected Choline )(2克、6克、10克)或饲喂10克未进行保护处理的胆碱(氯化胆碱)能影响乳产量和其组成。
动物营养学报2020,32(11):5013⁃5022ChineseJournalofAnimalNutrition㊀doi:10.3969/j.issn.1006⁃267x.2020.11.005反刍动物瘤胃甲烷生成相关研究进展王㊀坤1㊀南雪梅1㊀熊本海1∗㊀蒋林树2(1.中国农业科学院北京畜牧兽医研究所,动物营养学国家重点实验室,北京100193;2.北京农学院奶牛营养学北京市重点实验室,北京102206)摘㊀要:反刍动物能将人类不能直接利用的纤维性植物原料转化成肉和奶等优质的畜产品,然而反刍动物每年向环境中排放甲烷约1亿t,不但加剧全球温室效应,而且降低饲料利用率㊂本文详细综述了近年来瘤胃甲烷生成机制㊁瘤胃甲烷生成相关微生物㊁瘤胃甲烷测定方法及瘤胃甲烷排放调控措施等方面的相关研究进展,以期为调控反刍动物瘤胃甲烷排放研究提供参考㊂关键词:反刍动物;瘤胃;甲烷生成;产甲烷古菌中图分类号:S811.6㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀文章编号:1006⁃267X(2020)11⁃5013⁃10收稿日期:2020-03-30基金项目:国家 十三五 重大专项课题(2017YFD0701604)作者简介:王㊀坤(1990 ),男,山东烟台人,博士研究生,研究方向为反刍动物营养与饲料科学㊂E⁃mail:cang327@163.com∗通信作者:熊本海,研究员,博士生导师,E⁃mail:xiongbenhai@caas.cn㊀㊀反刍动物能将人类不能直接利用的纤维性植物原料转化成肉和奶等优质的畜产品,对人类社会发展具有重要意义㊂随着世界人口的增长以及居民生活水平的提高,人类社会对优质畜产品的需求越来越多,反刍动物生产的重要性也越来越大㊂然而,反刍动物在消化植物纤维的同时会向环境中排放甲烷等温室气体,反刍动物每年向环境中排放甲烷约1亿t,约占全球每年甲烷排放总量的20%[1]㊂甲烷的温室效应约为二氧化碳的25倍,反刍动物生产对环境的影响引起了越来越多的关注,各国科学家围绕反刍动物瘤胃甲烷排放展开了大量研究,通过适当的措施调控反刍动物瘤胃甲烷排放具有重要意义㊂1 甲烷生成机制㊀㊀甲烷生成通常被认为是产甲烷古菌在严格厌氧的条件下独有的生命现象㊂但有研究报道,除产甲烷古菌外,蓝藻细菌和真核生物也具有产生甲烷的能力,甚至可以在有氧的情况下产生甲烷[2-4]㊂产甲烷古菌是一种生态多样性的微生物,广泛存在于多种陆生及水生厌氧环境中,包括湿地㊁海洋沉积物㊁淡水沉积物以及动物胃肠道等㊂甲烷是产甲烷菌厌氧呼吸的终产物[5],作为主要的甲烷产生源头,大气中70%的甲烷是由产甲烷菌产生的[6]㊂㊀㊀甲烷生成是生物质厌氧降解的终端过程,通常发生在氧㊁硝酸盐㊁Fe3+及硫酸盐等末端电子受体不足或快速耗尽的环境中[5-6]㊂甲烷生成的底物主要有二氧化碳㊁乙酸盐和甲基化合物㊂根据反应底物的不同,甲烷生成可分为3条途径:二氧化碳还原途径㊁解乙酸途径和甲基营养途径㊂3条途径的最后1步反应均为甲基辅酶M被甲基辅酶M还原酶还原生成甲烷㊂氢气是二氧化碳还原途径的主要电子供体,因此该途径也被称为氢营养途径,此外,甲酸㊁甲醇及一氧化碳也可作为该途径的电子供体[5]㊂氢营养途径是最常见的甲烷生成途径,甲烷杆菌目(Methanobacteriales)㊁甲烷球菌目(Methanococcales)㊁甲烷微菌目(Methanomi⁃crobiales)㊁甲烷八叠球菌目(Methanosarcinales)㊁甲烷火菌目(Methanopyrales)及甲烷胞菌目(Methanocellales)的产甲烷菌均可通过该途径生成甲烷㊂在解乙酸途径中,乙酸裂解为羧基和甲基,羧基被氧化为二氧化碳,甲基被还原为甲烷㊂作为最不常见的途径,仅存在于Methanosarcina⁃㊀动㊀物㊀营㊀养㊀学㊀报32卷les,但由解乙酸途径生成的甲烷约占全球生物甲烷总量的2/3[5]㊂在甲基营养途径中,甲醇㊁甲胺及甲基硫化物等甲基化合物的甲基团传递给辅酶M,生成的甲基辅酶M最终被甲基辅酶M还原酶还原生成甲烷㊂对于常见的甲基营养型甲烷菌(主要来自Methanosarcinales),甲基还原所需的电子是通过额外的甲基被氧化成二氧化碳得到,但是Methanomicrococcusblatticola和Methanospha⁃era的甲基营养型甲烷菌以氢气作为电子供体[5-7]㊂最近研究发现,Methanomassiliicoccales的甲烷菌也以氢气作为电子供体,其甲烷生成途径属于氢气依赖型甲基营养途径[8]㊂甲基营养型甲烷菌主要存在于海洋沉积物中,以及动物胃肠道和一些极端环境中[5]㊂2㊀反刍动物瘤胃甲烷生成㊀㊀反刍动物瘤胃微生物发酵碳水化合物产生甲烷,不但加剧全球温室效应,而且降低饲料利用率㊂反刍动物以甲烷形式所损失的能量占饲料总能的2% 12%[9]㊂研究人员围绕甲烷生成及其调控措施展开了大量研究,然而瘤胃微生物发酵碳水化合物生成挥发性脂肪酸的过程部分依赖于可排出代谢氢的甲烷生成过程,因此单纯抑制瘤胃甲烷生成的调控措施往往不能起到长期调控的目的[10-11]㊂产乙酸作用和丙酸生成等一些瘤胃内可与甲烷生成途径竞争代谢氢的内在代谢过程,在瘤胃甲烷调控方面的潜在作用越来越多的引起了公众的关注[12-13]㊂一方面,这些代谢过程通过与甲烷生成途径竞争代谢氢来抑制甲烷生成,不会因为瘤胃中的氢无法被及时排出而影响发酵;另一方面,乙酸和作为瘤胃葡萄糖前体物的丙酸均为反刍动物的能量来源物质,通过增加乙酸和丙酸的产量来竞争性抑制瘤胃甲烷生成可提高饲料能量的利用率㊂㊀㊀碳水化合物是反刍动物主要的能量来源,纤维素㊁半纤维素和淀粉等多糖首先在瘤胃内水解为葡萄糖等单糖㊂各种单糖在瘤胃微生物的作用下进一步代谢为挥发性脂肪酸㊁二氧化碳及氢气㊂氢气是瘤胃发酵过程中重要的中间产物,在葡萄糖分解为丙酮酸以及丙酮酸氧化脱羧生成乙酰辅酶A的过程中产生(图1)㊂为了保证瘤胃发酵的正常进行,产生的氢气需要被及时从瘤胃排出[10]㊂甲烷生成是瘤胃主要的排出氢气的途径,细菌㊁原虫以及真菌产生的氢气被传递给产甲烷古菌通过氢营养途径还原二氧化碳生成甲烷㊂瘤胃产甲烷古菌在数量和多样性上不如瘤胃细菌丰富,且在全世界范围内的反刍动物中高度保守[14]㊂Hen⁃derson等[14]对来自35个国家的瘤胃和前肠样品(379头牛㊁106头绵羊㊁59头鹿㊁52头山羊和72头其他物种)的微生物群落组成进行了全面的全球普查㊂研究发现,尽管样品的来源千差万别,但主要的古菌群体却惊人地相似㊂Methanobrevi⁃bactergottschalkii和Methanobrevibacterruminanti⁃um出现在所有样品中,且占比高达74%㊂Metha⁃nosphaera和Methanomassiliicoccaceae的2个古菌群体占比也比较高,这5个主要的产甲烷古菌群体约占整个古菌群落的90%㊂瘤胃中大约78%的产甲烷古菌通过氢营养途径产生甲烷,22%的产甲烷古菌通过甲基营养途径产生甲烷,解乙酸途径在瘤胃中较为少见[15]㊂甲烷短杆菌(Methanobre⁃vibacter)是瘤胃中主要氢营养型甲烷菌[16],Meth⁃anosphaera㊁Methanimicrococcus和甲烷细菌属(Methanobacterium)也是瘤胃中重要氢营养型甲烷菌属[13]㊂瘤胃中的甲基营养型甲烷菌主要包括Methanosarcinales㊁Methanosphaera和Methanomas⁃siliicoccaceae[5]㊂㊀㊀除甲烷生成外,瘤胃中的丙酸生成过程以及由氢气和二氧化碳生成乙酸的过程都可消耗氢气㊂硝酸盐和硫酸盐等一些无机盐也可作为电子受体消耗氢气,但是这些物质在瘤胃中的含量通常不多[17-19],而且含量过多可能会增加反刍动物中毒的风险[20]㊂3㊀反刍动物瘤胃甲烷生成相关微生物㊀㊀瘤胃甲烷的生成是瘤胃内各种微生物共同作用的结果,产甲烷古菌是直接的甲烷产生微生物,而原虫㊁细菌及真菌等其他微生物也在瘤胃甲烷生成过程中发挥着重要作用㊂㊀㊀瘤胃原虫根据其结构和活性不同,主要有2种类型:Holotrich原虫,具有完全被纤毛覆盖的柔性表膜,主要消化可溶性底物;Entodiniomorphid原虫,具有坚硬的表膜,纤毛仅位于口部附近区域,能够消化微粒状物质[22]㊂尽管瘤胃原虫不能产生甲烷,但其可通过自身的氢化酶产生大量氢气供氢营养型产甲烷古菌使用,因此在瘤胃甲烷生成中发挥重要作用㊂此外,原虫的表面和体内附着410511期王㊀坤等:反刍动物瘤胃甲烷生成相关研究进展以及寄生有产甲烷古菌,这种共生关系也使原虫成为瘤胃甲烷生成重要的参与者[22]㊂Methano⁃brevibacter和Methanomicrobium被认为是最主要的2个与原虫具有共生关系的产甲烷古菌属[23-24]㊂尽管原虫在瘤胃中普遍存在,但原虫对于瘤胃并不重要,且驱除原虫可以降低9% 37%的甲烷排放[25-26]㊂然而,也有一些研究表明,驱除原虫对瘤胃甲烷产生的影响并不明显[27-28]㊂Newbold等[29]通过Meta分析研究发现,通过驱除原虫平均可降低11%的甲烷产量,然而产甲烷古菌的丰度并没有显著降低㊂图1 瘤胃发酵及甲烷生成途径Fig.1㊀Rumenfermentationandpathwaysofmethanogenesis[13,19,21]㊀㊀同原虫类似,真菌通过产生大量氢气参与瘤胃甲烷生成,此外真菌发酵也可产生二氧化碳㊁甲酸和乙酸等代谢终产物[30]㊂目前已知的瘤胃中的真菌属有6个,Neocallimastix㊁Caecomyces㊁Piromy⁃ces㊁Anaeromyces㊁Orpinomyces和Cyllamyces[31]㊂一些产甲烷古菌可能也与真菌有共生关系,然而这种关系并没有得到证实[32]㊂由于真菌能产生氢气,通常认为真菌的丰度可能与甲烷生成有关,但Kittelmann等[33]研究发现,绵羊瘤胃甲烷排放与真菌群落结构没有相关性㊂Newbold等[29]通过Meta分析研究发现,驱除原虫虽然对产甲烷古菌的丰度没有影响,但降低了真菌的丰度,而真菌丰度的降低是否与甲烷产量的降低有关尚不清楚㊂㊀㊀细菌是瘤胃内最多样化的微生物类群,能分解纤维㊁淀粉㊁蛋白质和糖等多种物质,瘤胃中最丰富的3个细菌门是厚壁菌门(Firmicutes)㊁拟杆菌门(Bacteroidetes)和变形菌门(Proteobacte⁃ria)[14]㊂属于Firmicutes的纤维分解菌瘤胃球菌属(Ruminococcus)和优杆菌属(Eubacterium)能够产生氢气,纤维杆菌属(Fibrobacter)不产生氢气,而Bacteroidetes是纯粹的氢气消耗菌[34]㊂Kittel⁃mann等[33]通过分析236份来自于118头不同甲烷排放量绵羊的瘤胃液样品,发现瘤胃微生物的群落结构与绵羊甲烷排放水平相关㊂一种类型的低甲烷排放量绵羊瘤胃中具有较高含量的丙酸生成菌Quinellaovalis;另一种类型的低甲烷排放量绵羊瘤胃中具有较高含量的乳酸和琥珀酸生成菌,包括Fibrobacterspp.㊁Kandleriavitulina㊁Olsenellaspp.㊁Prevotellabryantii和Sharpeaaza⁃buensis;高甲烷排放量绵羊的瘤胃中具有较高含量属于瘤胃球菌属(Ruminococcus)的一些菌种,以及瘤胃球菌科(Ruminococcaceae)㊁毛螺旋菌科(Lachnospiraceae)㊁Catabacteriaceae㊁粪球菌属(Coprococcus)和普雷沃菌属(Prevotella)等㊂Danielsson等[35]和Wallace等[36]均研究发现,高甲烷排放动物个体的瘤胃中Proteobacteria的含量较少㊂琥珀酸弧菌科(Succinivibrionaceae)是Pro⁃teobacteria的优势科,有研究发现肠道中较高含量5105㊀动㊀物㊀营㊀养㊀学㊀报32卷的Succinivibrionaceae是导致Tammar袋鼠相比反刍动物甲烷生成效率低的原因[37]㊂Prevotella是一种多功能的菌属,该属的部分菌种在高甲烷排放个体中含量较高,而部分菌种又在低甲烷排放个体中含量较高[16,35]㊂通常情况下,高甲烷排放的动物个体肠道中有更多的氢气产生菌,而低甲烷排放的动物个体肠道中有更多的氢气消耗菌㊂4㊀反刍动物瘤胃甲烷测定方法㊀㊀准确测定反刍动物甲烷排放量对于研究甲烷生成机制及其减排措施具有重要意义㊂呼吸舱法以其高的准确性及可重复性被认为是甲烷测定的 金标 方法,但由于其成本高㊁技术要求严格且对动物应激较大,因此限制了该方法的广泛使用[38]㊂六氟化硫示踪法相比于呼吸舱法,可直接在生产条件下对动物的甲烷排放进行测定,但该方法的准确性受当地天气变化影响较大且存在残留问题,因此该方法的广泛使用亦受到限制[39]㊂此外,直接测定法还包括头箱法㊁面罩法㊁便携式收集舱法㊁甲烷/二氧化碳比例法㊁GreenFeed体系法㊁嗅探器法㊁甲烷激光探测器等短期测定方法,以及适用于大群体测定的塑料大棚法和微气象法[40]㊂直接测定法虽然设备成本高㊁技术要求苛刻且操作难度大,但直接测定法是研究甲烷排放的基础方法,是其他方法参考和对比的标准㊂㊀㊀间接测定甲烷产量的方法主要有体外法和统计模型法㊂体外法通过模拟体内瘤胃环境来研究气体生成,故而其影响因素较多[41]㊂统计模型法通常根据营养物质或能量摄入量建立线性或非线性模型估测甲烷排放量,实用性强㊂国家水平以及全球水平甲烷排放量的测定均采用统计模型法估测[40]㊂随着技术水平的不断改进,模型法预测的准确性越来越高,并且发展了针对不同种类反刍动物的专用模型(表1)㊂此外,间接测定法还包括根据乳中特定脂肪酸的浓度预测甲烷产量的方法以及乳中红外光谱法[42]㊂统计模型法是一种非常有效的甲烷估测方法,但代表性强的统计模型需要以直接测定法为基础㊂表1㊀甲烷产量预测模型Table1㊀ModelsusedtopredictCH4production动物Animals方程式EquationRMSER2RMSPE/%绵羊Sheep[20]方程1Eq.1CH4(MJ/d)=0.208(ʃ0.040)+0.049(ʃ0.0039)ˑGEI(MJ/d)0.240.8622.7方程2Eq.2CH4(MJ/d)=0.550(ʃ0.172)+1.299(ʃ0.126)ˑDMI(kg/d)-0.266(ʃ0.053)ˑFL-0.00093(ʃ0.00042)ˑNDF(g/kg)0.220.9222.4方程3Eq.3CH4(MJ/d)=-0.784(ʃ0.269)+0.138(ʃ0.0084)ˑME(MJ/d)-0.378(ʃ0.062)ˑFL+0.00294(ʃ0.00046)ˑOMDm(g/kg)-1.943(ʃ0.381)ˑmetabolizability0.210.9424.5方程4Eq.4CH4(MJ/d)=5.699(ʃ1.94)-[5.699(ʃ1.94)-0.133(ʃ0.047)]ˑexp[-0.021(ʃ0.0071)ˑME(MJ/d)]0.140.9120.7山羊Goat[43]方程5Eq.5CH4(MJ/d)=0.242(ʃ0.073)+0.0511(ʃ0.0073)ˑDEI(MJ/d)0.310.8330.3方程6Eq.6CH4(MJ/d)=-1.042(ʃ0.271)+2.205(ʃ0.395)ˑNDFI(kg/d)-2.417(ʃ1.102)ˑEEI(kg/d)+1.456(ʃ0.323)ˑNFC(kg/d)+0.0208(ʃ0.0039)ˑOMDm(g/kg)-0.513(ʃ0.137)ˑFL0.140.8230.3方程7Eq.7CH4(MJ/d)=0.885(ʃ0.154)+0.809(ʃ0.0867)ˑDMI(kg/d)-0.397(ʃ0.0494)ˑFL+0.0198(ʃ0.0022)ˑOMDm(g/kg)+2.04(ʃ0.234)ˑADFI(kg/d)-8.54(ʃ0.548)ˑEEI(kg/d)0.240.8836.6方程8Eq.8CH4(MJ/d)=1.721(ʃ0.151)ˑ{1-exp[-0.0721(ʃ0.0092)ˑMEI(MJ/d)]}0.170.7938.0水牛Buffalo[44]方程9Eq.9CH4(MJ/d)=1.29(ʃ0.576)+0.788(ʃ0.099)ˑDMI(kg/d)0.8119.4610511期王㊀坤等:反刍动物瘤胃甲烷生成相关研究进展续表1动物Animals方程式EquationRMSER2RMSPE/%方程10Eq.10CH4(MJ/d)=-0.436(ʃ0.665)+0.678(ʃ0.184)ˑDMI(kg/d)+0.697(ʃ0.347)ˑNDFI(kg/d)0.8516.1方程11Eq.11CH4(MJ/d)=21.71(ʃ3.84)-[21.71(ʃ3.84)-0.732(ʃ0.637)]-exp[-0.0485(ʃ0.0094)ˑDMI(kg/d)]0.7921.2牛Cattle[45]方程12Eq.12CH4(MJ/d)=9.311(ʃ1.060)+0.042(ʃ0.001)ˑGEI(MJ/d)+0.094(ʃ0.014)ˑNDF(%)-0.381(ʃ0.092)ˑEE(%)+0.008(ʃ0.001)ˑBW(kg)+1.621(ʃ0.119)ˑMF(%)2.59 15.6方程13Eq.13CH4(MJ/d)=2.880(ʃ0.200)+0.053(ʃ0.001)ˑGEI(MJ/d)-0.190(ʃ0.049)ˑEE(%)1.29 14.4方程14Eq.14CH4(MJ/d)=1.487(ʃ0.318)+0.046(ʃ0.001)ˑGEI(MJ/d)+0.032(ʃ0.005)ˑNDF(%)+0.006(ʃ0.0007)ˑBW(kg)1.23 18.6方程15Eq.15CH4(MJ/d)=0.221(ʃ0.151)+0.048(ʃ0.001)ˑGEI(MJ/d)+0.005(ʃ0.0005)ˑBW(kg)0.9215.1热带牛Tropicalcattle[46]方程16Eq.16CH4(MJ/d)=1.29(ʃ0.906)+0.878(ʃ0.125)ˑDMI(kg/d)5.490.7031.0方程17Eq.17CH4(MJ/d)=0.910(ʃ0.746)+1.472(ʃ0.154)ˑDMI(kg/d)-1.388(ʃ0.451)ˑFL-0.669(ʃ0.338)ˑADFI(kg/d)4.220.8422.2方程18Eq.18CH4(MJ/d)=71.47(ʃ22.14)ˑ[1-exp(-0.0156(ʃ0.0051)ˑDMI(kg/d))]3.560.8330.3㊀㊀GEI:总能采食量grossenergyintake;DEI:消化能采食量digestibleenergyintake;DMI:干物质采食量drymatterintake;NDF(I):中性洗涤纤维含量或采食量neutraldetergentfibercontentorintake;FL:饲喂水平feedinglevel;ADFI:酸性洗涤纤维采食量aciddetergentfiberintake;MEI:代谢能采食量metabolizableenergyintake;EE(I):粗脂肪含量或采食量etherex⁃tractcontentorintake;NFCI:非纤维性碳水化合物采食量non⁃fibercarbohydrateintake;OMDm:采食维持水平有机物消化率organicmatterdigestibilityatmaintenanceleveloffeedintake;MF:乳脂肪含量milkfatcontent;BW:体重bodyweight;RMSE:均方根误差rootmeanssquareerror;RMSPE:均方根预测误差rootmeansquarepredictionerror㊂5 反刍动物瘤胃甲烷排放调控措施㊀㊀瘤胃甲烷产量受动物个体㊁饲粮组成㊁瘤胃发酵模式㊁瘤胃微生物组成及活性等多种因素影响㊂研究人员围绕反刍动物瘤胃甲烷调控展开了大量研究,主要的调控措施包括:调整饲粮结构,改变瘤胃发酵模式;使用甲烷抑制剂,抑制甲烷生成途径及甲烷生成相关微生物活性;增加其他电子受体,竞争性抑制甲烷产生㊂此外,提高动物的生长性能,优化畜群结构减少非生产动物的数量,以及选育低甲烷排放品种等也是调控瘤胃甲烷排放的有效措施(图2)㊂通常情况下,不同调控措施之间可相互影响,共同发挥调控作用㊂㊀㊀调整饲粮结构,改善瘤胃发酵模式和瘤胃微生物组成及活性进而调控瘤胃甲烷排放㊂饲粮组成对瘤胃甲烷生成具有重要影响㊂随饲粮精料比例的增加,瘤胃中乙酸比例降低,丙酸比例升高,瘤胃发酵模式以丙酸型发酵为主,而丙酸是瘤胃中仅次于甲烷的氢利用物质,可竞争性抑制瘤胃甲烷产生[10]㊂高精料饲粮会降低瘤胃pH,抑制产甲烷古菌及原虫活性进而降低甲烷产量[47]㊂然而,增加饲粮精料比例不但增加了饲养成本,而且易引起亚急性或急性瘤胃酸中毒㊁蹄叶炎等营养代谢病㊂Meale等[48]通过体外法研究发现,墨西哥丁香(Gliricidiasepium)和臂形草(Brachiariaruziziensis)具有降低甲烷排放的潜力㊂Machado等[49]通过体外法研究了多种海藻类植物发现,钥形毛藻(Asparagopsis)和鞘藻(Oedogonium)具有显著降低甲烷排放的作用㊂Wang等[12]研究发现,增加饲粮中非粗料来源纤维的含量,有降低体外甲烷产量的趋势,并增加了发酵液中丙酸的比例㊂因此,开发利用新型优质饲料比单纯增加饲粮精料水平更有应用前景㊂㊀㊀使用甲烷抑制剂,抑制甲烷生成途径及甲烷7105㊀动㊀物㊀营㊀养㊀学㊀报32卷生成相关微生物活性㊂甲烷抑制剂主要包括植物次级代谢物㊁脂类㊁卤代物㊁离子载体及硝基物等㊂单宁等植物次级代谢物一方面可抑制产甲烷古菌活性抑制甲烷生成,另一方面可减少原虫数量抑制甲烷生成[50]㊂脂类可通过抑制产甲烷古菌活性抑制甲烷生成,且不饱和脂肪酸还可通过生物氢化作用竞争性抑制甲烷生成[51]㊂卤代物和离子载体对甲烷的抑制作用主要是通过毒害产甲烷古菌直接降低甲烷产量[52-53]㊂离子载体还可刺激产琥珀酸菌和丙酸菌生长,通过增加丙酸产量从而竞争性抑制甲烷生成[40]㊂3-硝基丙醇可在不损害动物生产性能和健康的情况下持续降低甲烷产量并增加丙酸产量[54],被认为是目前最有潜力及应用价值的甲烷抑制剂㊂此外,科学家通过免疫法使用产甲烷古菌疫苗抑制瘤胃甲烷产生[55],但由于大部分瘤胃产甲烷菌无法纯培养,因而利用纯培养产甲烷古菌开发的疫苗可能导致瘤胃未培养产甲烷菌数量增加㊂甲烷抑制剂普遍存在成本高㊁毒副作用及生物残留等诸多弊端,且抑制剂可使产甲烷古菌产生抗性,因此甲烷抑制剂长期作用效果有待观察㊂图2㊀反刍动物瘤胃甲烷排放调控措施Fig.2㊀StrategiestomitigateCH4emissioninrumen[40]㊀㊀增加其他电子受体,竞争性抑制甲烷生成㊂硝酸盐在瘤胃中对氢的亲和力大于二氧化碳,可通过与产甲烷古菌竞争氢进而减少瘤胃甲烷生成[49],硝酸盐自身被还原为亚硝酸盐,进一步生成氨㊂Lee等[56]研究发现,饲粮中添加硝酸盐能降低肉牛12%的甲烷排放㊂VanZijderveld等[57]在奶牛饲粮中添加硝酸盐,降低了16%的甲烷排放㊂硝酸盐和亚硝酸盐具有一定的毒性,饲喂硝酸盐会增加其在组织和奶中的残留[58-59]㊂此外,饲粮中添加延胡索酸和苹果酸等丙酸前体物,可通过增加丙酸生成竞争性抑制甲烷生成[60]㊂6㊀小㊀结㊀㊀消耗氢气生成甲烷从而促进碳水化合物的降解吸收是反刍动物在物种进化过程中形成的正常生理机制,各种直接抑制甲烷生成的调控措施在瘤胃微生物复杂的自我调节下很难长期发挥作用㊂丙酸生成是瘤胃内可与甲烷生成途径竞争代谢氢的内在代谢过程,通过竞争性抑制甲烷产生从而增加丙酸产量,不会因为瘤胃中的氢无法被及时排出而影响发酵,同时作为瘤胃葡萄糖前体物的丙酸是反刍动物重要的能量来源物质㊂因此,竞争性抑制甲烷生成,在调控甲烷生成的同时提高饲料能量利用率是一种具有应用前景的甲烷调控模式㊂810511期王㊀坤等:反刍动物瘤胃甲烷生成相关研究进展参考文献:[1]㊀CONRADR.Theglobalmethanecycle:recentad⁃vancesinunderstandingthemicrobialprocessesin⁃volved[J].EnvironmentalMicrobiologyReports,2009,1(5):285-292.[2]㊀LENHARTK,BUNGEM,RATERINGS,etal.Evi⁃denceformethaneproductionbysaprotrophicfungi[J].NatureCommunications,2012,3:1046.[3]㊀LIUJG,CHENH,ZHUQA,etal.Anovelpathwayofdirectmethaneproductionandemissionbyeu⁃karyotesincludingplants,animalsandfungi:anover⁃view[J].AtmosphericEnvironment,2015,115:26-35.[4]㊀BIZ㊅ICᶄM,KLINTZSCHT,IONESCUD,etal.Cya⁃nobacteria,themostancientandabundantphotoau⁃totrophsonearthproducethegreenhousegasmethaneduringphotosynthesis[J].BioRxiv,2019:398958.[5]㊀LIUYC,WHITMANWB.Metabolic,phylogenetic,andecologicaldiversityofthemethanogenicarchaea[J].AnnalsoftheNewYorkAcademyofSciences,,2008,1125(1):171-189.[6]㊀LYUZ,SHAONN,AKINYEMIT,etal.Methano⁃genesis[J].CurrentBiology,2018,28(13):R727-R732.[7]㊀THAUERRK,KASTERAK,SEEDORFH,etal.Methanogenicarchaea:ecologicallyrelevantdiffer⁃encesinenergyconservation[J].NatureReviewsMi⁃crobiology,2008,6(8):579-591.[8]㊀SÖLLINGERA,URICHT.Methylotrophicmethano⁃genseverywhere⁃physiologyandecologyofnovelplayersinglobalmethanecycling[J].BiochemicalSo⁃cietyTransaction,2019,47(6):1895-1907.[9]㊀JOHNSONKA,JOHNSONDE.Methaneemissionsfromcattle[J].JournalofAnimalScience,1995,73(8):2483-2492.[10]㊀MCALLISTERTA,NEWBOLDCJ.Redirectingru⁃menfermentationtoreducemethanogenesis[J].Aus⁃tralianJournalofExperimentalAgriculture,2008,48(2):7-13.[11]㊀DENMANSE,FERNANDEZGM,SHINKAIT,etal.Metagenomicanalysisoftherumenmicrobialcom⁃munityfollowinginhibitionofmethaneformationbyahalogenatedmethaneanalog[J].FrontiersinMicrobi⁃ology,2015,6:1087.[12]㊀WANGK,NANXM,CHUKK,etal.Shiftsofhy⁃drogenmetabolismfrommethanogenesistopropionateproductioninresponsetoreplacementofforagefiberwithnon⁃foragefibersourcesindietsinvitro[J].FrontiersinMicrobiology,2018,9:2764.[13]㊀LANW,YANGCL.Ruminalmethaneproduction:associatedmicroorganismsandthepotentialofapply⁃inghydrogen⁃utilizingbacteriaformitigation[J].Sci⁃enceoftheTotalEnvironment,2019,654:1270-1283.[14]㊀HENDERSONG,COXF,GANESHS,etal.Rumenmicrobialcommunitycompositionvarieswithdietandhost,butacoremicrobiomeisfoundacrossawidege⁃ographicalrange[J].ScientificReports,2015,5:14567.[15]㊀SESHADRIR,LEAHYSC,ATTWOODGT,etal.CultivationandsequencingofrumenmicrobiomemembersfromtheHungate1000collection[J].NatureBiotechnology,2018,36(4):359-367.[16]㊀KITTELMANNS,SEEDORFH,WALTERSWA,etal.Simultaneousampliconsequencingtoexploreco⁃occurrencepatternsofbacterial,archaealandeukaryot⁃icmicroorganismsinrumenmicrobialcommunities[J].PLoSOne,2013,8(2):e47879.[17]㊀NEWBOLDCJ,LÓPEZS,NELSONN,etal.Propio⁃nateprecursorsandothermetabolicintermediatesaspossiblealternativeelectronacceptorstomethanogene⁃sisinruminalfermentationinvitro[J].BritishJournalofNutrition,2005,94(1):27-35.[18]㊀VANZIJDERVELDSM,GERRITSWJJ,APA⁃JALAHTIJA,etal.Nitrateandsulfate:effectivealter⁃nativehydrogensinksformitigationofruminalmeth⁃aneproductioninsheep[J].JournalofDairyScience,2010,93(12):5856-5866.[19]㊀BEAUCHEMINKA,UNGERFELDEM,ECKARDRJ,etal.Review:fiftyyearsofresearchonrumenmethanogenesis:lessonslearnedandfuturechallengesformitigation[J].Animal,2020,14(Suppl.1):S2-S16.[20]㊀PATRAAK.Predictionofentericmethaneemissionfrombuffaloesusingstatisticalmodels[J].Agricul⁃ture,Ecosystems&Environment,2014,195:139-148.[21]㊀SHIWB,MOONCD,LEAHYSC,etal.Methaneyieldphenotypeslinkedtodifferentialgeneexpressioninthesheeprumenmicrobiome[J].GenomeRe⁃search,2014,24(9):1517-1525.[22]㊀BELANCHEA,DELAFUENTEG,NEWBOLDCJ.Studyofmethanogencommunitiesassociatedwithdifferentrumenprotozoalpopulations[J].FEMSMi⁃9105㊀动㊀物㊀营㊀养㊀学㊀报32卷crobiologyEcology,2014,90(3):663-677.[23]㊀JANSSENPH,KIRSM.Structureofthearchaealcommunityoftherumen[J].AppliedandEnviron⁃mentalMicrobiology,2008,74(12):3619-3625.[24]㊀PATRAA,PARKT,KIMM,etal.Rumenmethano⁃gensandmitigationofmethaneemissionbyanti⁃meth⁃anogeniccompoundsandsubstances[J].JournalofAnimalScienceandBiotechnology,2017,8:13.[25]㊀HOOKSE,WRIGHTADG,MCBRIDEBW.Meth⁃anogens:methaneproducersoftherumenandmitiga⁃tionstrategies[J].Archaea,2010,2010:945785.[26]㊀MORGAVIDP,FORANOE,MARTINC,etal.Mi⁃crobialecosystemandmethanogenesisinruminants[J].Animal,2010,4(7):1024-1036.[27]㊀HEGARTYRS,BIRDSH,VANSELOWBA,etal.Effectsoftheabsenceofprotozoafrombirthorfromweaningonthegrowthandmethaneproductionoflambs[J].BritishJournalofNutrition,2008,100(6):1220-1227.[28]㊀BIRDSH,HEGARTYRS,WOODGATER.Persist⁃enceofdefaunationeffectsondigestionandmethaneproductioninewes[J].AustralianJournalofExperi⁃mentalAgriculture,2008,48(2):152-155.[29]㊀NEWBOLDCJ,DELAFUENTEG,BELANCHEA,etal.Theroleofciliateprotozoaintherumen[J].FrontiersinMicrobiology,2015,6:1313.[30]㊀GRUNINGERRJ,PUNIYAAK,CALLAGHANTM,etal.Anaerobicfungi(phylumNeocallimastigomy⁃cota):advancesinunderstandingtheirtaxonomy,lifecycle,ecology,roleandbiotechnologicalpotential[J].FEMSMicrobiologyEcology,2014,90(1):1-17.[31]㊀ISHAQSL,KIMCJ,REISD,etal.Fibrolyticbacte⁃riaisolatedfromtherumenofnorthamericanmoose(Alcesalces)andtheiruseasaprobioticinneonatallambs[J].PLoSOne,2015,10(12):e0144804.[32]㊀WEIYQ,LONGRJ,YANGH,etal.Fiberdegrada⁃tionpotentialofnaturalco⁃culturesofNeocallimastixfrontalisandMethanobrevibacterruminantiumisolatedfromyaks(Bosgrunniens)grazingontheQinghaiTibetanPlateau[J].Anaerobe,2016,39:158-164.[33]㊀KITTELMANNS,PINARES⁃PATINOCS,SEED⁃ORFH,etal.Twodifferentbacterialcommunitytypesarelinkedwiththelow⁃methaneemissiontraitinsheep[J].PLoSOne,2014,9(7):e103171.[34]㊀TAPIOI,SNELLINGTJ,STROZZIF,etal.Theru⁃minalmicrobiomeassociatedwithmethaneemissionsfromruminantlivestock[J].JournalofAnimalSci⁃enceandBiotechnology,2017,8:7.[35]㊀DANIELSSONR,DICKSVEDJ,SUNL,etal.Meth⁃aneproductionindairycowscorrelateswithrumenmethanogenicandbacterialcommunitystructure[J].FrontiersinMicrobiology,2017,8:226.[36]㊀WALLACERJ,ROOKEJA,MCKAINN,etal.Therumenmicrobialmetagenomeassociatedwithhighmethaneproductionincattle[J].BMCGenomics,2015,16:839.[37]㊀POPEPB,SMITHW,DENMANSE,etal.IsolationofSuccinivibrionaceaeimplicatedinlowmethanee⁃missionsfromtammarwallabies[J].Science,2011,333(6042):646-648.[38]㊀GRAINGERC,CLARKET,MCGINNSM,etal.Methaneemissionsfromdairycowsmeasuredusingthesulfurhexafluoride(SF6)tracerandchambertechniques[J].JournalofDairyScience,2007,90(6):2755-2766.[39]㊀WILLIAMSSRO,MOATEPJ,HANNAHMC,etal.BackgroundmatterswiththeSF6tracermethodforestimatingentericmethaneemissionsfromdairycows:acriticalevaluationoftheSF6procedure[J].AnimalFeedScienceandTechnology,2011,170(3/4):265-276.[40]㊀PATRAAK.RecentAdvancesinmeasurementanddietarymitigationofentericmethaneemissionsinru⁃minants[J].FrontiersinVeterinaryScience,2016,3:39.[41]㊀RYMERC,HUNTINGTONJA,WILLIAMSBA,etal.Invitrocumulativegasproductiontechniques:histo⁃ry,methodologicalconsiderationsandchallenges[J].AnimalFeedScienceandTechnology,2005,123-124:9-30.[42]㊀NEGUSSIEE,DEHAASY,DEHARENGF,etal.In⁃vitedreview:large⁃scaleindirectmeasurementsforen⁃tericmethaneemissionsindairycattle:areviewofproxiesandtheirpotentialforuseinmanagementandbreedingdecisions[J].JournalofDairyScience,2017,100(4):2433-2453.[43]㊀PATRAAK,LALHRIATPUIIM,DEBNATHBC.Predictingentericmethaneemissioninsheepusinglin⁃earandnon⁃linearstatisticalmodelsfromdietaryvari⁃ables[J].AnimalProductionScience,2016,56(2/3):574-584.[44]㊀PATRAAK,LALHRIATPUIIM.Developmentofstatisticalmodelsforpredictionofentericmethanee⁃missionfromgoatsusingnutrientcompositionandin⁃020511期王㊀坤等:反刍动物瘤胃甲烷生成相关研究进展takevariables[J].AgricultureEcosystems&Environ⁃ment,2016,215:89-99.[45]㊀MORAESLE,STRATHEAB,FADELJG,etal.Predictionofentericmethaneemissionsfromcattle[J].GlobalChangeBiology,2014,20(7):2140-2148.[46]㊀PATRAAK.Predictionofentericmethaneemissionfromcattleusinglinearandnon⁃linearstatisticalmod⁃elsintropicalproductionsystems[J].MitigationandAdaptationStrategiesforGlobalChange,2016:1-22.[47]㊀KUMARS,DAGARSS,PUNIYAAK,etal.Chan⁃gesinmethaneemission,rumenfermentationinre⁃sponsetodietandmicrobialinteractions[J].ResearchinVeterinaryScience,2013,94(2):263-268.[48]㊀MEALESJ,CHAVESAV,BAAHJ,etal.Methaneproductionofdifferentforagesininvitroruminalfer⁃mentation[J].Asian⁃AustralasianJournalofAnimalSciences,2011,25(1):86-91.[49]㊀MACHADOL,MAGNUSSONM,PAULNA,etal.Effectsofmarineandfreshwatermacroalgaeoninvitrototalgasandmethaneproduction[J].PLoSOne,2014,9(1):e85289.[50]㊀PATRAAK,SAXENAJ.Anewperspectiveontheuseofplantsecondarymetabolitestoinhibitmethano⁃genesisintherumen[J].Phytochemistry,2010,71(11/12):1198-1222.[51]㊀WILLIAMSSRO,MOATEPJ,DEIGHTONMH,etal.Methaneemissionsofdairycowscannotbepre⁃dictedbytheconcentrationsofC8ʒ0andtotalC18fat⁃tyacidsinmilk[J].AnimalProductionScience,2014,54(10):1757-1761.[52]㊀CHENM,WOLINMJ.Effectofmonensinandla⁃salocid⁃sodiumonthegrowthofmethanogenicandru⁃mensaccharolyticbacteria[J].AppliedandEnviron⁃mentalMicrobiology,1979,38(1):72-77.[53]㊀MARTINEZ⁃FERNANDEZG,DENMANSE,YANGCL,etal.Methaneinhibitionaltersthemicro⁃bialcommunity,hydrogenflow,andfermentationre⁃sponseintherumenofcattle[J].FrontiersinMicrobi⁃ology,2016,7:1122.[54]㊀HRISTOVAN,OHJ,GIALLONGOF,etal.Anin⁃hibitorpersistentlydecreasedentericmethaneemissionfromdairycowswithnonegativeeffectonmilkpro⁃duction[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,2015,112(34):10663-10668.[55]㊀WRIGHTADG,KENNEDYP,O'NEILLCJ,etal.Reducingmethaneemissionsinsheepbyimmuniza⁃tionagainstrumenmethanogens[J].Vaccine,2004,22(29/30):3976-3985.[56]㊀LEEC,ARAUJORC,KOENIGKM,etal.Effectsofencapsulatednitrateongrowthperformance,nitratetoxicity,andentericmethaneemissionsinbeefsteers:backgroundingphase[J].JournalofAnimalScience,2017,95(8):3700-3711.[57]㊀VanZIJDERVELDSM,GERRITSWJJ,DIJK⁃STRAJ,etal.Persistencyofmethanemitigationbydi⁃etarynitratesupplementationindairycows[J].JournalofDairyScience,2011,94(8):4028-4038.[58]㊀GUYADERJ,DOREAUM,MORGAVIDP,etal.Long⁃termeffectoflinseedplusnitratefedtodairycowsonentericmethaneemissionandnitrateandni⁃triteresidualsinmilk[J].Animal,2016,10(7):1173-1181.[59]㊀DOREAUM,ARBREM,POPOVAM,etal.Linseedplusnitrateinthedietforfatteningbulls:effectsonmethaneemission,animalhealthandresiduesinoffal[J].Animal,2017,12(3):501-507.[60]㊀LIXZ,LONGRJ,YANCG,etal.Rumenmicrobialresponsesinfermentationcharacteristicsandproduc⁃tionofCLAandmethanetolinoleicacidinassociatedwithmalateorfumarate[J].AnimalFeedScienceandTechnology,2010,155(2/3/4):132-139.1205㊀动㊀物㊀营㊀养㊀学㊀报32卷∗Correspondingauthor,professor,E⁃mail:xiongbenhai@caas.cn(责任编辑㊀陈㊀鑫)ResearchAdvancesonRumenMethanogenesisinRuminantsWANGKun1㊀NANXuemei1㊀XIONGBenhai1∗㊀JIANGLinshu2(1.StateKeyLaboratoryofAnimalNutrition,InstituteofAnimalScience,ChineseAcademyofAgriculturalSciences,Beijing100193,China;2.BeijingKeyLaboratoryforDairyCowNutrition,BeijingUniversityofAgriculture,Beijing102206,China)Abstract:Ruminantscanconvertplantmaterialsthatpeoplecan tutilizedirectlyintomeatandmilkproducts.However,ruminantsemitabout100milliontonsofmethaneintotheenvironmenteveryyear,whichnotonlyexacerbatestheglobalgreenhouseeffects,butalsoreducesfeedutilization.Thisarticlereviewedtherecentre⁃searchprogressinmethanogenesisintherumen,rumenmicroorganismsassociatedwithmethaneemissions,measurementmethodsandstrategiesinmitigatingmethaneemissionsinordertoprovideareferenceforstudiesofruminantmethaneemissions.[ChineseJournalofAnimalNutrition,2020,32(11):5013⁃5022]Keywords:ruminants;rumen;methanogenesis;methanogens2205。
1 反刍动物碳水化合物代谢及瘤胃调控技术研究进展 杨在宾 (山东农业大学动物科技学院, 泰安, 271018) 摘 要 本文综述了碳水化合物被瘤胃微生物降解成单糖,并进而分解成VFA的途经。反刍动物葡萄糖来源主要是丙酸糖异生。综述还阐述了甲烷能产生量估测、控制和过瘤胃碳水化合物调控技术。 关键词:碳水化合物,代谢规律,调控技术,反刍动物。 RECENT DEVELOPMENT ON METABOLISM AND CONTROL TECHNOLOGY OF CARBOHYDRATES FOR RUMINANTS (College Of Animal Science And Technology, Shandong Agricultural University, Taian 271018,China) YANG Zai-bin Abstract: This paper briefly reviewed the metabolic pathways that all the dietary carbohydrates are converted to glycoses, and the glycoses are promptly converted to VFA, propionate acid is largely converted to glucose by the liver, and it is the primary source of glucose for ruminants. This paper also discussed the ways of estimate and control on methane energy produced in rumen and the technology of by pass carbohydrates. Key words: carbohydrate, metabolism, control technology and ruminant 改革开发20余年,我国畜牧业发展迅速,生产结构已改变了长期以来以猪为首的传统饲养格局,实现了猪、鸡、牛、羊全面发展的新局面。然而由于饲料资源的限制,迅速发展的牛、羊业仍然以低质秸秆为主要饲料,奶牛主要靠提高精饲料维持产奶量,因此,能量饲料的均衡供应是制约牛、羊业生产水平的主要因素。碳水化合物是最低廉的供能物质,根据反刍动物消化生理特点,弄清碳水化合物的代谢规律,对提高反刍动物生产水平和饲料转化效率意义重大。 1.瘤胃碳水化合物代谢机理 碳水化合物在瘤胃中的代谢可分为两个阶段,第一个阶段是将各种复杂的碳水化合物降解成各种单糖,这一过程是在细胞外微生物酶催化下完成的;第二阶段是微生物将第一阶段降解产生的各种单糖立即吸收进入细胞内进一步分解。 1.1瘤胃微生物细胞外消化 饲料中的各种复杂碳水化合物,包括结构性和非结构性碳水化合物均被瘤胃微生物分泌至细胞外的各种酶,进行不同程度降解,最终形成各种单糖(如图1所示)。饲料中的纤维素被一种或几种β—1,3—葡萄糖苷酶降解成纤维二糖,并进一步分解成葡萄糖或在磷酸化酶的作用下转变成葡萄糖—1—磷酸。淀粉和糊精经淀粉酶作用转变成麦芽糖,再经麦芽糖酶、麦芽糖磷酸化酶或1,6—葡萄糖苷酶催化生成葡萄糖或葡萄糖—1—磷酸。果聚糖被相应酶水解成果糖。饲草中的半纤维素、戊聚糖和果胶,可被相应酶降解为木糖及其他戊糖或糖醛酸,并进一步进入糖代谢。木质素是一种特殊结构物质,基本上不能被分解。 2
纤 维 素 淀 粉 纤维二糖 葡萄糖—1—P 麦芽糖 葡萄糖 葡萄糖 糖醛酸 果糖—6—P 果聚糖、蔗糖 戊糖 果 胶 果糖—1,6—二P 果 糖 纤维素 戊聚糖 丙酮酸
图1:瘤胃中碳水化合物第一阶段降解(D. Lewis.及K.J.Hill,1983)
Fig.1 The metabolic pathways that carbohydrates is converted to single glycoses 1.2 瘤胃微生物细胞内代谢 碳水化合物在细胞外降解产生的各种单糖在瘤胃液中很难检测出来,它们会立即被微生物吸收进入细胞内代谢。进入细胞内的单糖代谢途径和动物体内相似,首先被细胞内的酶分解成丙酮酸,并进而分解成VFA(乙酸、丙酸、丁酸)和气体(CH4、CO2、、H2). 单 糖
丁酰COA 乙酰COA 丙酮酸 草酰乙酸 乙酰—P 甲 酸 乳 酸 CO2+H2
丁 酸 乙 酸 甲 烷 丙 酸 图2 挥发性脂肪酸(VFA)产生的代谢途径(D.Lewis及K.J.Hill,1983)
Fig. 2 The metabolic pathways that glycoses are converted to VFA Van.Soest(1977)根据Wolin(1974)提出的反刍动物消化代谢概念,把葡萄糖发酵生成VFA的过程归纳如下方程: 乙酸:C6H12O6+2H2O 2C2H4O2+2CO2+8H 丙酸:C6H12O6 2C3H6O2+2[O] 丁酸:C6H12O6 C4H8O2+2CO2+4H 由此证明,每摩尔葡萄糖降解成乙酸将产生8个H,丁酸4个H,丙酸4个H。因此,在VFA产生过程中,中间产物H有大量剩余,在厌氧条件下与CO2结合形成甲烷。饲料能是指C—H中化学能,每克氢氧化成水可产生42.26KJ热能,因此生H越多,能量损失越大。由此证明,转化成乙酸能量损失大,丙酸和丁酸较小。 1.3反刍动物葡萄糖代谢 相当长时期内,人们认为葡萄糖对反刍动物并不重要。事实上,反刍动物对葡萄糖的需要不比单胃动 3
物差,而是获取葡萄糖的途径不同。反刍动物体内葡萄糖供给有两条途径。其一是外源葡萄糖,即饲料中的可溶性糖和淀粉避开瘤胃发酵进入小肠被消化吸收的葡萄糖(BSEG)。其二是内源葡萄糖,即由体内丙酸或生糖氨基酸经糖异生途径合成的葡萄糖(POEG)。卢德勋(1996)将两者结合在一起,提出了代谢葡萄糖(MG)概念,所谓MG是指饲料中经过动物消化吸收后,可以给动物本身代谢提供能量的葡萄糖总量,并提出MG计算公式为: MG(克/天)=POEG+BSEG POEG=K1×0.5×180.16×Pr/1000 BSEG(克/天)=0.9×K2×BS K1=瘤胃丙酸吸收率;0.5—可吸收丙酸转化为葡萄糖的效率;180.16—葡萄糖的克分子量;Pr—瘤胃发酵产生的丙酸(mmol/d)。0.9—淀粉转化为葡萄糖的系数;K2—过瘤胃淀粉在小肠中的消化率;BS—过瘤胃淀粉量(克/天)。 反刍动物体内所需葡萄糖20%~90%由糖异生途径提供,在以粗饲料为主的日粮中,80%~90%葡萄糖由丙酸合成(Cridland,1984)。在放牧条件下,绵羊几乎不可能由小肠吸收葡萄糖(Weeks,1975),Leng等(1977)即使在日产40Kg奶的高产奶牛,所需葡萄糖60%来源于丙酸的糖异生(J.M.Elliot,1976)。 1.4碳水化合物供能方式 综上所述,饲料中的碳水化合物主要通过瘤胃发酵,降解为VFA通过瘤胃壁吸收利用,即使可溶性碳水化合物也大部分在瘤胃中被降解。Grey等(1976)发现苜蓿和小麦干草日粮可消化能的53%转化为VFA。Bergman等(1965)用牧草颗粒日粮试验证明,消化能的62%转化为VFA。VFA为反刍动物大约提供机体所需能量的70%~80%(韩正康,1991)。Blaxter(1962)测得维持能量水平下绵羊消化道24小时吸收的VFA和葡萄糖如下表,由表可以看出维持水平时,乙酸提供近1/2能量,葡萄糖供能很少。 表1:绵羊消化道VFA和葡萄糖吸收率(Blaxter,1962) Table 1 The absorptivity of VFA and glucose by sheep 克 Gram 克分子 mol 千卡cal. 乙酸 Acetic acid 120 2.00 418 丙酸 propionate acid 50 0.70 184 丁酸 Butyric acid 50 0.56 293
总计 Total 220 3.26 895 葡萄糖 Glucose 20 0.11 7.5 Leng and Brett 用11只绵羊测得4种日粮的VFA的摩尔百分数很相近,分别为乙酸65%,丙酸20%,丁酸9%,其他6%。VFA中各组分的比例随日粮结构不同而异,提高精料供给或添加莫能菌素可增加丙酸比例,全干草日粮时,乙酸65%,丙酸20%,丁酸12%,当精料增加至70%时,乙酸降至40%,丙酸增至37%。与此同时,反刍动物通过VFA或葡萄糖供能时,利用效率差别很大。Blaxter(1962)得出,VFA和葡萄糖利用效率见图3。由此看出,乙酸利用率最低。 4
020406080乙酸丙酸丁酸葡萄糖
VFA和葡萄糖利用效率(%)(Blaxter,1962)The utilization efficiency of VFA and glucase
2.瘤胃能量损失量及估测方法 瘤胃微生物的强大发酵作用,导致饲料能在瘤胃中两大损失:①甲烷能;②发酵热。 2.1瘤胃中甲烷的产生 甲烷是瘤胃发酵中产生的可燃性气体的主要成分,在瘤胃气体中,CO2占40%,甲烷占30-40%,氢气占5%,其它还有比例不恒定的少量氧化氮气。这些气体通常以嗳气方式经口排出体外。甲烷能主要是碳水化合物代谢过程中形成的终产物。很多研究发现,反刍动物每100g可消化碳水化合物可形成4.5gCH4,每天产生的甲烷能占饲料能的8%左右。甲烷还与地球的温室效应有关,据报道,来自反刍动物的CH4约占全球甲烷生产量的15%左右。 2.1.1甲烷生成的机制 甲烷的研究始于1910年。甲烷生产是一个包括叶酸和维生素B12参与的复杂反应过程,主要是由数种甲烷菌通过CO2和H2进行还原反应产生的,瘤胃内的代表性甲烷菌有反刍兽甲烷杆菌(Methanobacterium ruminantium)、甲酸甲烷杆菌(Methanobacterium)甲烷八叠球菌(Methanosarcina)等。由甲烷菌生成甲烷的路径如下: ①4H2+HCO3—+H+→CH4+3H2O ②4HCO2—+4H+→CH4+3CO2+2H2O ③CH3OH→3CH4+CO2+2H2O ④CH3CO2—+H+→CH4+CO2 2.1.2影响甲烷生产量的因素 2.1.2.1 动物品种 不同种类的反刍动物其甲烷产生量也不相同(见表)