高一数学函数的基本性质1
- 格式:ppt
- 大小:818.00 KB
- 文档页数:66
沪教版新课标高一数学函数的基本性质(一) 函数的概念本文介绍了函数的基本性质,分为三节:函数的概念、函数的奇偶性与单调性以及函数的最值与值域。
其中,第一节详细介绍了函数的定义和三要素:定义域、对应法则和函数值域。
同时解释了符号f(x)的三种含义,以及判定两个函数是否为同一个函数的方法。
此外,文章还讲述了函数图像的基本特征,并阐述了函数定义域的含义和求法。
函数是描述两个变量之间对应关系的数学工具。
具体来说,如果在某个变化过程中有两个变量x和y,对于x在某个实数集合D内的每一个确定的值,按照某个对应法则f,y都有唯一确定的实数值与之对应,那么y就是x的函数,记作y=f(x)。
其中,x叫自变量,x的取值范围D叫做函数的定义域,和x的值相对应的y的值叫做函数值,函数值的集合叫做值域。
函数由三个基本要素构成,即定义域D、对应法则f以及函数值域。
其中,定义域D和对应法则f起到核心作用,当定义域和对应法则确定时,值域也随之被确定。
符号f(x)有三种含义:表示一个函数、表示一个函数的解析式和表示函数值。
判断两个函数是否为同一个函数,可以通过函数定义来判定,即只要两个函数定义域、对应法则以及值域都相同,则它们为同一个函数。
函数图像是平面直角坐标系中的一个点集,反映了自变量与因变量之间的关系。
函数的定义域是指自变量的取值范围,可以通过对应法则来求得。
需要注意的是,通常用x表示自变量,y表示因变量,但这不是绝对的。
函数的定义域D指的是自变量x的取值范围,也就是函数f的作用对象的取值范围。
这个范围通常是一个数集。
例如,如果一个函数f(x)的定义域为[0,1],那么在表达式f(2x+1)中,2x+1(而不是x)的取值范围必须是[0,1]。
这也是本节的重点知识。
一般来说,函数的定义域可以分为三种情况:1.自然定义域:指使函数解析式有意义的自变量的取值范围。
比如,函数f(x)=√x的定义域是[0,+∞)。
2.给定定义域:函数自带定义域。
高一数学第三章函数的基本性质知识要点函数的基本性质高一数学第三章函数的基本性质知识要点函数是数学中的基本概念之一,它在数学和实际问题的求解中起到重要的作用。
本文将介绍高一数学第三章中关于函数的基本性质,帮助大家更好地理解和掌握这一知识点。
一、函数定义函数是一种特殊的关系,表示一个集合中的每个元素都与另一个集合中的唯一元素相对应。
函数可以用符号表示,例如:f(x) = 2x + 1其中f表示函数名,x表示自变量,2x + 1表示函数的表达式,它们之间用等号连接。
二、函数的定义域和值域定义域是指函数的自变量的所有可能取值的集合,通常用D表示。
在上面的函数例子中,自变量x可以取任意实数值,所以定义域为全体实数。
值域是指函数的因变量的所有可能取值的集合,通常用R表示。
同样以例子函数f(x) = 2x + 1为例,它的值域是全体实数。
三、函数的奇偶性如果对于定义域内的任意一个实数x,都有f(-x) = f(x),则函数f(x)是偶函数;如果对于定义域内的任意一个实数x,都有f(-x) = -f(x),则函数f(x)是奇函数;如果一个函数既不是偶函数也不是奇函数,则称其为非奇非偶函数。
四、函数的图像与性质函数的图像是函数在平面直角坐标系上的几何表示。
函数的图像可以通过绘制函数的各个点来获得。
函数的图像具有以下性质:1. 对称性:偶函数的图像以y轴为对称轴,奇函数的图像以原点为对称中心;2. 单调性:如果对于定义域内的两个实数x1和x2,若x1 < x2,则有f(x1) < f(x2),则称函数f(x)在该区间上是递增的;如果x1 < x2,则有f(x1) > f(x2),则称函数f(x)在该区间上是递减的;3. 最值:函数在定义域上的最大值称为最大值,函数在定义域上的最小值称为最小值;4. 零点:函数的零点是指使得f(x) = 0的自变量取值。
五、函数的初等函数性质初等函数是指常见的基本函数,包括常数函数、幂函数、指数函数、对数函数、三角函数等。
高一数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f(某)定义域内的任意某都有f(-某)=-f(某),则称f(某)为奇函数;如果对于函数f(某)定义域内的任意某都有f(-某)=f(某),则称f(某)为偶函数。
如果函数f(某)不具有上述性质,则f(某)不具有奇偶性.如果函数同时具有上述两条性质,则f(某)既是奇函数,又是偶函数。
注意:1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个某,则-某也○一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-某)与f(某)的关系;○3作出相应结论:○若f(-某)=f(某)或f(-某)-f(某)=0,则f(某)是偶函数;若f(-某)=-f(某)或f(-某)+f(某)=0,则f(某)是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;②设f(某),g(某)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶2.单调性(1)定义:一般地,设函数y=f(某)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量某1,某2,当某1<某2时,都有f(某1)<f(某2)(f(某1)>f(某2)),那么就说f(某)在区间D上是增函数(减函数);注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2必须是对于区间D内的任意两个自变量某1,某2;当某1<某2时,总有f(某1)<f(某2)○(2)如果函数y=f(某)在某个区间上是增函数或是减函数,那么就说函数y=f(某)在这一区间具有(严格的)单调性,区间D叫做y=f(某)的单调区间。
高一数学必修一多项式函数的基本性质多项式函数是高中数学中的重要内容之一,掌握多项式函数的基本性质对于研究数学和解决实际问题具有重要意义。
本文将介绍多项式函数的一些基本性质。
一、多项式函数的定义多项式函数是指由常数和变量的乘积再进行有限次的加法运算所得到的函数。
它由若干项组成,每一项包含一个系数和变量的幂次。
多项式函数的一般形式可表示为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$$其中,$a_n, a_{n-1}, \ldots, a_1, a_0$ 是常数,$x$ 是变量,$n$ 是非负整数,称为多项式的次数。
二、多项式函数的性质1. 多项式函数的次数:多项式函数的次数等于其中最高次幂的指数,记作 $\deg f(x)$。
例如,$f(x) = 2x^3 + 5x^2 - 3x + 1$ 的次数为 3。
2. 多项式函数的零次项和首项:多项式函数 $f(x)$ 中次数为$n$ 的项称为首项,系数为 $a_n$;次数为 0 的项称为常数项或零次项,系数为 $a_0$。
3. 多项式函数的导函数:多项式函数 $f(x)$ 的导函数是将每一项的幂次减 1,然后再乘以原来的系数。
例如,$f(x) = 2x^3 + 5x^2 - 3x + 1$ 的导函数为 $f'(x) = 6x^2 + 10x - 3$。
4. 多项式函数的奇偶性:若多项式函数中的所有项都是偶次项或奇次项,则多项式函数为偶函数或奇函数。
若多项式函数中同时存在奇次项和偶次项,则多项式函数既不是偶函数也不是奇函数。
例如,$f(x) = x^4 - x^2$ 是偶函数,$g(x) = x^3 - x$ 是奇函数。
5. 多项式函数的图像特征:多项式函数的图像是连续的、光滑的曲线。
对于 $n$ 次多项式函数 $f(x)$,当 $n$ 是奇数时,图像的起始方向和终止方向相反;当 $n$ 是偶数时,图像的起始方向和终止方向相同。