关于干热岩
- 格式:docx
- 大小:15.92 KB
- 文档页数:6
干热岩用途
干热岩是一种稀有的火山岩,可以在各种地质环境中形成。
它属于普通火山岩,但与其他火山岩有所不同,因为它含有比其他火山岩更高的温度。
因此,干热岩具有独特的一些性质,这使得它可以在许多不同的领域被用来利用,从而为人类的生活带来越来越便利。
本文将讨论干热岩的用途,以及它对人类健康和环境的影响。
首先,干热岩可以用来生产能源。
它可以产生巨大的能量,被用来发电。
它的发电效率高,更重要的是它可以被用来替代传统的煤炭发电,减少对环境的污染。
此外,干热岩可以用来供热,因为它拥有较高的温度,可以被用来替代传统的煤气取暖,从而减少污染。
其次,干热岩可以用来制造食物和药物。
由于它能够保持高温,它可以用来烹饪食物,从而保留食物的营养成分和香味。
此外,干热岩还可以用来消毒药物,从而消除细菌和病毒,确保药物的有效性。
最后,干热岩可以用来改善人类的健康。
干热岩可以被用来热水浴,从而帮助放松肌肉、改善血液循环、强化免疫系统等。
它也可以用来热敷,有助于缓解关节炎和肌肉疼痛等症状。
此外,干热岩的有色矿物质可以被用来制作护肤品,以改善皮肤的健康状态。
总之,干热岩是一种非常有用的火山岩,它可以在能源生产、食物制作、药物消毒以及改善人类健康等多个领域得到应用,给人类的日常生活带来更多便利。
它也可以减少对环境的污染,从而为
人类提供更加绿色、可持续的发展环境。
干热岩1. 什么是干热岩干热岩是一种地热资源,指的是地下深部岩石中的高温岩体。
这些岩体通常位于地下几千米深处,温度可以达到200℃以上。
相比之下,传统地热资源主要来自于热液和蒸汽,而干热岩则不需要地下水的存在。
干热岩能量来源于地球内部的辐射热,属于一种无限可再生的资源。
2. 干热岩资源利用2.1 干热岩发电利用干热岩发电是目前对干热岩资源利用最主要的方式。
通过在地下钻探井中注水,注入高压高温的水使其与岩石发生热交换,形成蒸汽,然后利用蒸汽驱动涡轮发电机发电。
相比传统地热发电,干热岩发电具有更高的温度和压力条件,可以获得更高的发电效率。
2.2 干热岩热能利用除了发电,干热岩还可以直接利用其热能进行供暖、加热和工业过程。
通过在地表进行钻探,将高温岩体的热能输送到地表,再经过换热器进行热交换,将热能转移到需要加热的介质上,实现供热和加热的目的。
干热岩热能利用可以广泛应用于居民区、工业区和温室等场所,提供清洁、可持续的热能。
2.3 干热岩矿物资源利用干热岩中含有丰富的矿物资源,可以进行开采和利用。
例如,干热岩中的伴生物质,如铀、钍、稀土元素等,都具有重要的经济价值。
此外,干热岩中的岩盐、花岗岩等也可以用于建材、化工等领域。
3. 干热岩资源开发与环境影响干热岩资源开发对环境有一定的影响。
首先,干热岩资源的开采需要进行地下钻探和水力压裂等工作,可能会引起地震活动。
其次,注入的水和地下岩石的接触可能会导致岩石中的矿物质释放,对地下水质产生影响。
此外,干热岩资源开发需要大量的用水,可能会对水资源造成一定的压力。
为了减少环境影响,干热岩资源开发需要采取合适的技术和措施。
例如,使用先进的地震监测设备进行地震监测,控制地震活动的范围和强度。
此外,注水前需要对地下岩石进行充分的矿物学研究,了解矿物质释放的情况,并采取防护措施。
同时,可以推广水资源的节约利用和回收利用,减少对水资源的压力。
4. 干热岩资源的前景干热岩资源作为一种清洁、可持续的能源资源,具有广阔的发展前景。
干热岩的利用
热岩是极具价值的自然资源,它可以利用当地流水或冷水进行湿式冷热,从而获取温度范围较窄的舒适温度,以满足居民的舒适空调需求。
一、热岩的利用可以改善居民的环境温度,使居民享受舒适的室内温度。
利用热岩,可以有效温度范围获取7-35摄氏度,使得温度需求得到满足。
二、利用热岩,也有助于减少对煤炭、石油和其他化石燃料的依赖。
热岩能源保证温度和室内温度舒适,而且它不排放碳二氧化物,这是一种很好的替代煤炭的节能技术。
三、利用热岩,可以降低室内能耗。
热岩利用了温度差,利用自然回路,以尽可能低的成本提供舒适室内舒适空调的温度。
热岩的能源消耗更低,能耗更低,可以降低室内单位面积的电流消耗,从而节约能源。
四、热岩能源具有几个重要优势,可以节约时间和成本,安全可靠,不受天气影响,适合长期使用,准确可控,可以实现室外温度的准确控制。
总的来说,热岩的利用有益于节能减排、居民生活环境改善、室内空调温度舒适调控等,它是一种有效的节能减排技术。
它可以发挥其独特的优势,利用自然资源,有助于实现绿色和可持续发展。
干热岩及其开发技术(1)胡经国一、广义与狭义干热岩1、干热岩一般定义众所周知,地球内部蕴藏着巨大的能量,地心温度高达6000℃。
地球通过火山、地震、地热等方式源源不断地释放着内部的能量。
干热岩(Hot Dry Rock,HDR)是地球内部热能的一种赋存介质。
自20世纪70年代美国Los Alamos国家实验室提出干热岩地热能的概念以来,干热岩的定义也在不断地发展。
在最新的《地热能术语》中,干热岩被定义为:内部不存在或仅存在少量流体、温度高于180℃的异常高温岩体。
2、广义与狭义干热岩定义另外,考虑其客观性、科学性、可行性和经济性,干热岩的基本含义可分为广义干热岩和狭义干热岩两类。
广义干热岩是指流体含量很少、温度为150~400℃的储热岩体。
狭义干热岩必须考虑地热能发电的经济性和可行性,主要是指流体含量少、埋深为3~8千米、温度为200~350℃的储热岩体。
其岩性主要是各种变质岩或结晶岩体,较常见的干热岩体有黑云母片麻岩、花岗岩、花岗闪长岩等。
二、干热岩开发利用潜力1、干热岩开发利用潜力概述干热岩资源就是存在于岩体中的热量资源。
人们通常通过温度对干热岩体中的热量资源量进行评估。
那么,干热岩体中赋存的热量究竟有多大?以一个边长为1千米、温度为200℃的高温岩体为例,其温度下降10℃所释放的热量可实现发电量约为1000万MWh,可满足2000万平方米1年的建筑供暖需求。
在地下达到一定的深度以后,这样的高温岩体无处不在,可以说干热岩资源的潜力是巨大的。
目前,限制干热岩开发主要是技术问题。
但是,就现阶段而言,由于技术和手段等限制,能被人类所揭露及开发利用的干热岩资源主要集中在埋深较浅、温度较高、有开发经济价值的地下干热岩体。
据保守估计,地壳中干热岩(通常指3~10 千米深处)所蕴藏的能量相当于全球所有石油、天然气和煤炭所蕴藏能量的30倍。
2、中国干热岩开发利用潜力中国地质调查局的评价数据显示,中国大陆3~10千米深处的干热岩资源总量为2.5×1025 J,相当于856万亿吨标煤);若能开采出2%,则相当于中国2015年全国一次性能耗总量的4400倍。
干热岩1、干热岩:是指地层深处(深埋超过2000m)普遍存在的没有水或蒸汽的、致密不渗透的热岩体,主要是各种变质岩或结晶岩体,赋存状态有蒸汽型、热水型、地压型、岩浆型的地热资源。
较常见的干热岩有黑云母片麻岩、花岗岩、花岗闪长岩等。
干热岩型地热资源是专指埋藏较深,温度较高,有开发经济价值的热岩体。
2、地热梯度:又称“地热梯度”、地热增温率。
指地球不受大气温度影响的地层温度随深度增加的增长率。
表示地球内部温度不均匀分布程度的参数。
一般埋深越深处的温度值越高,以每百米垂直深度上增加的℃数表示。
不同地点地温梯度值不同,通常为(1—3)℃/百米,火山活动区较高。
在实际工作中,通常用每深100米或1千米的温度增加值来表示地热梯度;在地热异常区,也常用每深10米或1米的温度增加值来表示地热梯度。
地壳的近似平均地热梯度是每千米25℃,大于这个数字就叫做地热梯度异常。
近地表处的地热梯度则因地而异,其大小与所在地区的大地热流量成正比,与热流所经岩体的热导率成反比。
因此,地热梯度的区域性变化可能来源于热流量的变化,也可能来源于近地表岩体的热导率的变化。
而在整个地球内部,地温梯度随深度的增加逐渐降低。
地热梯度的方向一般指向温度增加的方向,称正梯度。
如果温度向下即随深度的增加反而降低时,称负梯度。
热田钻孔穿透热储层后,常出现负梯度。
3、地热增温陡度(geothermal degree),又称地热增温级(geothermaldegree):地热梯度的倒数,其物理意义可以理解为温度相差1℃时两个等温面之间的距离。
4、干热岩的最佳选址问题:由于在地温梯度和热流量值较高的地方最有利于干热岩的开发利用,从宏观的大地构造角度来考虑,应选择板块碰撞地带:包块海洋板块和大陆板块的碰撞带,大陆内部,大陆和大陆板块之间的碰撞带以及大陆内部的断陷盆地地区。
5、干热岩资源开发系统的设计与运行关键技术参数包括系统的出力(设计年限内允许提取的地热资源量)和寿命(可提取资源量的枯竭期限)、注水井与生产井的井口压力、注水流量、生产井的温度等。
干热岩——沉睡的宝贝地热能在线干热岩是新兴能源,温度一般大于200℃,深埋数千米,内部不存在流体,获仅有少量流体的高温岩体,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。
中国首次大规模发现干热岩资源位于青海省共和盆地。
温度高达153℃,它们埋藏浅、温度高、分布广、填补了我国干热岩地热资源的空白。
干热岩就在我们脚下我们赖以生存的地球蕴含着巨大的能量,地心温度高达6000℃。
地球通过火山、地震、地热等方式源源不断地释放着内部能量。
我们所熟悉的温泉正是地球比较温和地释放能量的方式,属于地热资源的一种。
干热岩是深埋地下、没有或极少量含有水或蒸汽的热岩体,属于另一种地热资源。
从理论上来讲,从地球表面向内部延伸,温度会逐渐增加。
任何区域达到一定深度,内部高温都足以开发干热岩。
可以说,干热岩是无处不在的自然资源,是可再生能源的主力军。
干热岩资源量巨大然而,地球内部的地热能并非我们都能开采。
由于当前技术条件有限,干热岩型地热资源专指埋深较浅(3千米~10千米)、温度较高(>150℃)、具有经济开发价值的热岩体。
据保守估计,地壳浅部干热岩(3千米~10千米)所蕴含的能量相当于全球所有石油、天然气和煤炭能量的30倍。
有关数据显示,中国大陆(3千米~10千米)干热岩地热资源总量为2.5×1025J,相当于860万亿吨标准煤,按2%的可开采资源量计算,相当于我国2016年能源消耗总量的3927倍。
同时,地热发电生命周期内二氧化碳的排放量比太阳能发电还要低,是燃煤发电二氧化碳排放量的1/60,天然气发电二氧化碳排放量的1/30。
所以,开发这种巨大的清洁型能源,不仅可以改变当前社会能源结构,还可以遏制污染排放,还一片碧海云天。
我国干热岩分布我国地热资源丰富。
经科学测算,有国内专家认为,中国大陆3-10公里深处干热岩资源总计为2.09×107EJ,合7.149×1014吨标准煤,高于美国本土(不含黄石公园)干热岩地热资源量(1.4×107EJ)。
干热岩科普近日,《中国国土资源报》一则有关《我国第一口干热岩科学钻探深井开钻》的新闻引起了人们的广泛关注。
5月21日,由中国地质调查局组织实施的我国首个干热岩科学钻探深井,在福建省漳州龙海市东泗乡清泉林场开钻,钻探深度将达4000米,这标志着我国干热岩勘查开发进入实践探索阶段。
据悉,实施干热岩科学钻探,在我国尚属首次。
那究竟什么是干热岩?干热岩有什么用途?本期,小编给您简略介绍一些有关干热岩的知识。
一、干热岩的定义和特点干热岩是一种没有水或蒸汽的热岩体,主要是各种变质岩或结晶岩类岩体,埋藏于距地表2~6公里的深处,其温度范围很广,在150~350℃之间。
干热岩的热能赋存于岩石中,较常见的岩石有黑云母片麻岩、花岗岩、花岗闪长岩等。
一般干热岩上覆盖有沉积岩等隔热层。
图一地球内部推测温度分布曲线干热岩是一种地热资源。
在学术界,干热岩有时被称为“热干岩”,其英文名称为“Hot Dry Rock”。
干热岩的分布几乎遍及全球,用一些科学家的话说,它是无处不在的资源。
从理论上说,随着地球向深部的地热增温,任何地区达到一定深度都可以开发出干热岩,因此干热岩又被称为是无处不在的资源。
但就现阶段来看,由于技术和手段等限制,干热岩资源专指埋深较浅、温度较高、有开发经济价值的热岩体。
目前干热岩开发利用潜力最大的地方,是新火山活动区,或地壳已经变薄的地区,这些地区主要位于全球板块或构造地体的边缘。
二、干热岩的用途1、干热岩可用于发电目前,人们对干热岩的开发利用,主要是发电。
利用干热岩发电技术可大幅降低温室效应和酸雨对环境的影响,且不受季节、气候制约。
而且将来利用干热岩发电的成本仅为风力发电的一半,只有太阳能发电的十分之一。
干热岩发电的基本原理是:通过深井将高压水注入地下2000~6000米的岩层,使其渗透进入岩层人工压裂造出的缝隙并吸收地热能量;再通过另一个专用深井(相距约200~600米左右)将岩石裂隙中的高温水、汽提取到地面;取出的水、汽温度可达150~200℃,通过热交换及地面循环装置用于发电;冷却后的水再次通过高压泵注入地下热交换系统循环使用。
干热岩技术要求
干热岩技术是一种能够使温度和水分梯度稳定的新型可再利用热回收新技术。
它具有下列特点:
(一)热能差将㈡
1、热量利用效率高:采用干热岩技术,可实现节能降耗,可显著提高系统热能利用率,同时减少热源中废热加热器、冷却系统等耗损。
2、易于安装和控制:采用干热岩技术,安装和操作简单,变形小,可实现热负荷温度的快速改变,温度梯度可调,满足不同热利用体系的需求。
(二)干热岩技术要求
1、热源水可循环利用:采用干热岩技术,安装热岩的热源水可多次循环利用,可大大降低热剂消耗,从而节约成本。
2、外型小:采用干热岩技术,可减少热力学损失,进而压缩设备致密性,外型小巧,有利于节约空间。
3、耐高温:采用干热岩技术,可运行温度高,热损失小,并且拥有抗腐蚀能力强,能够长期安全运行。
4、安全稳定:采用干热岩技术,安装热岩无需考虑液体管道腐蚀和污染,可保证运行的安全稳定性。
(三)应用
1、建筑空调:采用干热岩技术,可将大量的热能储存在岩石组成的干热岩中,供空调使用,从而节约能源。
2、汽车用冷空调:采用干热岩技术,能够大大降低汽车用冷空调的能耗,同时也可以节省润滑剂消耗。
3、工业热利用:采用干热岩技术,可在多个工业厂炉水循环系统中利用干热岩储藏温度差,节约热量,降低热源的消耗。
青海省科学技术厅关于干热岩开发利用工作的报告文章属性•【制定机关】青海省科学技术厅•【公布日期】2020.03.31•【字号】青科党组发〔2020〕25号•【施行日期】2020.03.31•【效力等级】地方规范性文件•【时效性】现行有效•【主题分类】能源及能源工业其他规定,能源科技正文青海省科学技术厅关于干热岩开发利用工作的报告省委:2月4日,王建军书记在省政协赴冰岛、丹麦、摩洛哥学习考察团报告上就青海省地热资源开发科技创新重点在干热岩做出“涉及科技研发的事情请科技厅考虑”的重要批示。
省科技厅党组高度重视,认真学习研究,及时与省自然资源厅沟通,并与水文地质工程地质环境地质调查院相关专家进行深入讨论。
现将具体情况汇报如下。
一、基本情况干热岩作为极具开发前景的战略性清洁能源,国际上对干热岩的开发利用研究已有40余年的历史,美国、英国、德国、法国、澳大利亚、瑞士、日本等发达国家先后建立了39处干热岩开发利用研究基地,均以增强型地热系统(压裂-储层建造-换热)的形式进行开发试验,但总体上仍然处于试验和示范阶段,尚未实现商业化开发。
与国外相比,我国干热岩资源技术开发尚处于起步阶段,国内干热岩的钻探仅限于获取干热岩的温度、岩性、埋深、分布范围等基础资料,压裂改造工作未取得实质性进展。
2017年我省在共和盆地3705米深处钻获温度达到236摄氏度以上的干热岩体,这是我国首次发现温度超过200摄氏度的高温优质干热岩体,为我省融入国家战略,推进清洁能源示范省建设奠定了坚实基础。
省委省政府高度重视,安排部署我省干热岩资源勘查及开发利用研究工作。
2019年3月,中国地质调查局、青海省自然资源厅和中国石油化工集团联合成立了干热岩勘查与试验性开发工程领导小组、专家指导委员会和干热岩试采工程指挥部。
协调领导小组组长由中国地质调查局局长钟自然、青海省副省长田锦尘担任。
三方共同编制了《青海共和盆地干热岩勘查与试验性开发科技攻坚战实施方案(2018~2025年)》,计划到2021年,实现装机容量2兆瓦试验性发电。
来自地球的温暖—“干热岩”提起干热岩,我想大多数人可能都一头雾水,心中默默在想,什么干热岩?我只知道热干面。
然而,对于能源界业内人士来说,这已经成为朋友圈热议的名词之一了。
实际上,干热岩已经从开发走向应用,并且深刻影响着整个新能源行业。
借用著名地质学家李德威老师的一句话—开发固热能,中国能崛起!那么到底什么是干热岩呢?简单来讲它就是“我们脚下会发热的石头”。
我们赖以生存的地球蕴含着巨大的能量,地心温度高达6000度,地球通过火山、地震、地热等方式源源不断地释放着内部能量,我们熟悉的温泉正是地球比较温和地释放能量的方式,属于地热资源的一种。
干热岩是深埋地下、没有水或蒸汽、致密不渗透的高温岩体,属于另一种地热资源。
理论上来说,从地球表面向内部延伸,温度会逐渐增加,任何区域达到一定深度,内部温度都足以开发干热岩。
所以,干热岩是无处不在的自然资源,是可再生能源的主力军。
目前,人们对干热岩的开发利用,主要是发电,通过将地面冷水注入地下深处以获取热能,然后将热水导出地面进行发电。
因为干热岩发电既不像火电那样,向大气排放大量的二氧化碳等温室气体;也不像水电那样,因水坝的修建而破坏河流的生态系统;同时不受季节、气候的制约,能够源源不断地提供稳定高效的能量。
因此,干热岩发电几乎完全摆脱了外界的干扰,干热岩能源也成为当前国际社会公认的高效低碳清洁能源。
正是因为拥有诸多优点,世界各国都在研究干热岩的开采利用,我国在这方面的研究虽然起步较晚,存在技术瓶颈,但是在科研人员的努力下,先后攻克了地址选址、高温钻井、深孔高温高压测温等关键技术,在青海共和盆地钻获了236度的干热岩,实现了我国干热岩勘查的重大突破。
从页岩气到可燃冰,再到干热岩,中国三大新能源连续获得突破,我们为之鼓舞,作为新能源领域中的“翘楚”,热切盼望干热岩的开发利用,能真正安全稳定地还我们以青山绿水、蓝天白云,真正推动祖国的未来“有深度,就有热度”。
地下天然---干热岩文童海奎朱进守世人都明白一个自然规律:越往地球深部,温度越高。
干热岩是指埋藏于地下深处,通常温 度大于1801,不含或含少量流体高温岩体。
通俗 点说,就是地下“发烧”的岩石。
它被认为是极具 战略潜力的替代清洁能源,欧美等发达国家已经 开展了40多年的研究,目前国际社会对干热岩的 勘查开发尚处于探索阶段。
干热岩的用途目前,美、法、德、英、日、澳等国家目前已经 建立了25个试验性质的EGS工程(欧洲15项,美 国6项,澳大利亚2项,曰本2项),累积发电能力 约12兆瓦。
但是,我国对干热岩的研究和开发起 步较晚。
据中国工程院院士、国家地热中心指导委员会主任、中国地源热泵产业联盟名誉理事长 曹耀峰的研究报告显示,我国干热岩地热能优势 可简单概括为四点:一是资源丰富,3 ~ 10千米内 资源总量大;二是分布广泛,陆地边缘和大陆内 部都有分布,青藏高原及周边、东部等地区资源 尤为丰富;三是绿色无污染,可再生,用途广泛。
利用干热岩地热能发电和梯级利用,不产生环境 污染,地热能源可再生;四是可靠性强,利用系数 高,能量输出稳定。
对于干热岩的利用,实际上就是利用高热量的水或蒸汽中的能量。
遵循地热梯级利用原则,根据热水或蒸汽的不同温度逐级利用,更能 达到充分、高效的目的。
200~4001的蒸汽直接用于发电及综合利用;150-2001的蒸汽用于双 循环发电,制冷,工业干燥,工业热加工等;10018 I IEARTH特别策划I地球〜150尤的蒸汽用于双循环发电,供暖,制冷,工业干燥,脱水加工,回收盐类,罐头食品等;50〜100尤的热水用于供暖,温室,家庭用热水,工业干燥;20〜501的热水用于沐浴,水产养殖,牲畜饲养,土壤加温,脱水加工等。
中国地质调查局水文地质环境专家认为,“钻孔深度达到2000米以上,岩体温度普遍高,增温梯度异常明显,每加深100米,最高可增加 7尤,根据增温速率测算,估计钻探到地下4000米左右,温度可以达到260尤,可以直接用来示范 蒸汽发电,共和盆地干热岩研究示范应用前景非 常广阔。
基本信息中文名:干热岩英文名:HDR别称:增强型地热系统类别:新兴地热能源开发方式开发干热岩资源的原理是从地表往干热岩中打一眼井(注入井),封闭井孔后向井中高压注入温度较低的水, 产生了非常高的压力。
在岩体致密无裂隙的情况下, 高压水会使岩体大致垂直最小地应力的方向产生许多裂缝。
若岩体中本来就有少量天然节理, 这些高压水使之扩充成更大的裂缝。
当然, 这些裂缝的方向要受地应力系统的影响。
随着低温水的不断注入, 裂缝不断增加、扩大, 并相互连通, 最终形成一个大致呈面状的人工干热岩热储构造。
在距注入井合理的位置处钻几口井并贯通人工热储构造, 这些井用来回收高温水、汽, 称之为生产井。
注入的水沿着裂隙运动并与周边的岩石发生热交换, 产生了温度高达200-300℃的高温高压水或水汽混合物。
从贯通人工热储构造的生产井中提取高温蒸汽, 用于地热发电和综合利用。
利用之后的温水又通过注入井回灌到干热岩中, 从而达到循环利用的目的。
开发进程共和盆地位于青藏高原腹地,这次钻获的干热岩资源具有埋藏浅、温度高、分布范围广的特点,填补了我国一直没有勘查发现干热岩资源的空白。
据青海省水文地质工程地质环境地质调查院专家介绍,在共和盆地钻获的干热岩致密不透水,1600米以下无地下水分布迹象,符合干热岩的特征条件。
该岩体在共和盆地底部广泛分布,钻孔控制干热岩面积达150平方公里以上,干热岩资源潜力巨大。
有关专家称,青藏高原在隆升过程中形成了一系列地热资源,从干热岩地热资源区域分布看,青藏高原南部约占我国大陆地区干热岩总资源量的1/5,资源量巨大。
"干热岩发电技术可大幅降低温室效应和酸雨对环境的影响,且不受季节、气候制约,"青海省水文地质工程地质勘查院院长严维德说,"利用干热岩发电的成本仅为风力发电的一半,只有太阳能发电的十分之一。
"我国资源青海地勘人员在共和盆地成功钻获温度高达153从干热岩地热资源区域分布上看,青藏高原南部占中国大陆地区干热岩总资源量的20.5%,温度亦最高;其次是华北(含鄂尔多斯盆地东南缘的汾渭地堑)和东南沿海中生代岩浆活动区(浙江—福建—广东),分别占总资源量的8.6%和8.2%;东北(松辽盆地)占5.2%;云南西部干热岩温度较高,但面积有限,占总资源量的3.8%基于现有地热测量数据,中国大陆地区3—10Km深度段干热岩地热资源总量(基数)为2.09×107EJ,低于中国地质调查局报道的资源基数(2.52×107EJ),相当于71.5×105亿t标准煤;即便按2%的可开采资源量计算,亦达4.2×105EJ,相当于14.3×103亿t标准煤,是中国大陆2010年能源消耗总量的4400倍。
干热岩及其开发利用(6)胡经国十、干热岩开发利用前景1、干热岩的特点与优势干热岩是一种没有水或蒸汽的热岩体,主要为变质岩或结晶岩类岩体,普遍埋藏于距地表2~6公里的深处,其温度范围在150~650℃之间。
干热岩的热能赋存于岩体中,较常见的干热岩岩石类型有黑云母片麻岩、花岗岩、花岗闪长岩以及花岗岩小丘等。
干热岩也是一种地热资源。
而且,是温度高于150℃的高温地热资源,其性质和赋存状态有别于蒸汽型、热水型、地压型和岩浆型地热资源。
在现阶段,干热岩地热资源是专指埋深较浅、温度较高、有开发经济价值的干热岩体。
更重要的是,干热岩资源的特点与优势使其拥有巨大的开发利用潜力,并且有可能成为在关停小型火电厂以后国家电网能量补充的重要渠道。
⑴、分布广泛干热岩具有分布广泛的特点。
一些科学家甚至说,它是无处不在的资源。
有关研究表明,世界各大陆地下都蕴藏有干热岩资源。
⑵、储量巨大干热岩储量巨大,取之不尽。
有关研究表明,全球干热岩蕴藏的热能十分丰富,比蒸汽型、热水型和地压型地热资源大得多,比煤炭、石油、天然气的热能总和还要大。
在较浅层的干热岩中,蕴藏的热能等同于100亿夸特,是所有热液地热资源评估能量的800倍还多,是包括石油、天然气和煤在内的所有化石燃料能量的300倍还多。
具备这些特点和优势,从理论上说,随着相关技术的发展,利用干热岩发电一定可以补齐因小火电关停而形成的电力缺口;干热岩电厂也必将会成为国家电网中不可或缺的重要组成部分。
⑶、清洁环保干热岩是一种洁净环保的新能源。
目前,人们主要利用干热岩来发电。
其基本原理是:通过深井将高压水注入地下2~6公里的岩体内,使其渗透进入岩体中的裂隙并吸收地热能量;再通过另一个专用深井将岩石裂隙中的高达150~200℃的高温水、汽提取到地面,通过热交换及地面循环装置用于发电;冷却后的发电用水,再次通过高压泵注入地下热交换系统循环使用。
与火电厂相比,在发电的过程中不会向大气排放大量的二氧化碳等温室气体、粉尘等气溶胶颗粒物;与水电相比,不会因水坝的修建而破坏局部乃至整条河流的生态系统,以及在水电站周围引起各种程度不一的地质灾害。
干热岩普查设计一、干热岩概述干热岩(Dry Hot Rock)是一种地下热能资源,通常指地下深处(数十至数千米)的岩石层,其温度高于地面温度,且含水量较低。
干热岩资源丰富,具有广泛的应用前景,包括发电、供暖、温泉开发等。
二、干热岩普查意义干热岩普查是为了了解和评估干热岩资源的分布、储量、温度、压力等基本情况,为后续的开发和利用提供科学依据。
开展干热岩普查,有助于我国发掘和利用这一可再生能源,促进能源结构调整,减少对化石能源的依赖,降低环境污染。
三、干热岩普查方法干热岩普查主要包括地质调查、地球物理勘探、钻探和测试等方法。
地质调查通过对地表特征、地质结构、岩性等方面的研究,为普查提供基础资料。
地球物理勘探利用电磁法、地震法等技术,探测地下岩石的温度、含水量等情况。
钻探和测试是普查的关键环节,通过钻井取样、测温、压力测试等手段,直接获取地下干热岩的详细信息。
四、干热岩普查设计步骤1.前期调研:收集目标区域的地表地质、气象、水文等资料,了解区域构造、岩性、地热异常等信息。
2.地球物理勘探:根据前期调研成果,选择合适的方法进行地球物理勘探,确定干热岩靶区。
3.钻探和测试:在地球物理勘探结果的基础上,设计钻探工程,进行钻井取样、测温、压力测试等,获取干热岩的详细参数。
4.数据分析与评价:对获取的数据进行综合分析,评估干热岩资源的储量、温度、压力等指标,为后续开发提供依据。
5.成果报告:编制普查报告,总结普查成果,提出干热岩开发建议。
五、干热岩开发与应用前景干热岩开发具有广泛的应用前景,包括发电、供暖、温泉开发等。
干热岩发电技术成熟,投资成本相对较低,具有较好的经济效益。
此外,干热岩开发有助于减少温室气体排放,减缓全球气候变化,具有良好的社会和环境效益。
随着技术的不断进步,干热岩开发将在未来能源领域发挥重要作用。
总之,干热岩普查是发掘和利用这一可再生能源的重要环节。
干热岩及其开发利用(全文)胡经国一、寻找新能源——干热岩1、人类面临能源资源短缺为了解决能源短缺的问题,人们做了许多努力。
人们因地制宜,在地势平坦的地区建起了核电站;在沿海城市推进了潮汐发电;在偏远的山区架设了风力发电机,在阳光充足的地方安装了一片片的太阳能电池板实施光伏发电,等等。
这些新型能源大家似乎已耳熟能详。
但是实际上,在地球深处还隐藏着一种巨大的能源。
它存在于那些不起眼的岩石之中。
这种利用岩石中的热能发电的技术被称为干热岩发电。
说起能源问题,中国自1993年起就从能源净出口国变成了净进口国。
也就是说,我们的本地能源产出已经供不应求,从此走上了从别的国家购买能源的不归路。
2、人类目睹火山喷发的巨大能量人类在目睹了火山喷发的巨大能量之后,就一直在寻找开发这种古老而巨大的能量的方法。
经过多年的寻寻觅觅,人们终于找到了一种利用干热岩发电的技术。
它是在1970年由美国人莫顿和史密斯提出;但是,它的提出并没有引起多少人的注意。
甚至到了科学技术迅猛发展的2018年,它的潜在价值也没有被很好地发掘。
3、石化和常规清洁能源的局限性随着日本地震引发福岛核电站事故,核电发展在全球降温,而采用化石能源也越来越受到碳减排的制约。
发展清洁能源成为各国加快发展的关键,而中国随着国民经济高速发展,目前碳排放已居世界第一。
继续增大碳排放量必然受到西方大国的反制。
因此,发展清洁能源是为中国经济高速发展提供能源保障的必然之选。
目前,虽然太阳能、风能、水能都是清洁能源,但是水能经过几十年持续开发,继续发展潜力有限,而风能、光能成本仍是制约其进一步发展的关键。
在这种形势下,发展地热资源成为一种相对经济、可行的途径。
在地热能中,干热岩是一种分布最为广泛、热储量最大的一类能源载体。
随着人类对能源需求的不断增长,全世界的人们越来越担心传统矿物能源大量使用带来的资源枯竭问题和对环境的污染问题,并开始关注可再生且无污染的能源,如太阳能、风能、水能等。
干热岩基本特征及分布胡经国能源问题举世瞩目。
人们长期以来所依赖的常规能源,如媒、石油、天然气等都是一次性能源,不可再生;随着人类不断地开发利用,终究会枯竭。
而且,在利用这些常规能源时,不可避免地对人类生存环境产生巨大的污染。
因此,科学家们都在积极寻找其它清洁的、可再生的新型替代能源。
地热能正是这样一种清洁、可再生的能源。
地热资源属于宝贵的资源。
早在1970年,李四光先生就高瞻远瞩地提出:“地下是一个大热库,是人类开辟自然能源的一个新来源,就像人类发现煤炭、石油可以燃烧一样”。
而且,大部分的地热能都储存于岩石中,大家称其为干热岩。
在地热资源中,干热岩具有应用价值和利用潜力。
一、干热岩基本特征干热岩是指在地壳深处(埋深超过3000米)普遍存在的、没有水或蒸汽的、致密不渗透的热岩体。
它主要是各种变质岩或结晶岩体;较常见的干热岩有黑云母片麻岩、花岗岩,花岗闪长岩等。
干热岩本身具有很高的温度,呈干热状态,温度范围很广,在150~650℃之间,可以作为热能资源加以利用。
因为,这种热能系统不要求岩石具有孔隙渗渗条件和含有流体,因而在目前钻探技术可达到的深度范围(约10千米)以上分布十分广泛,几乎是一种无限的能源类型。
干热岩的热能储量十分丰富,比煤炭、石油、天然气的热能总和还要多。
在较浅层的干热岩资源中,蕴藏的热能等同于100亿夸特(1夸特相当于18000万桶石油,而美国200年能源消耗总量才90夸特)。
这些能量是所有常规地热资源评估能量的800多倍,是包括石油、天然气和煤在内的所有化石燃料能量的300多倍。
1、绿色稳定高效干热岩的形成与地球的结构有关。
地球是由地壳、地幔和地核组成的。
地核的半径大约在3500公里左右。
地核是由铁和镍这样一些金属,在7000多摄氏度高温下形成的炽热熔浆;其热量向上传导,经过地幔会传导至地壳。
地壳中不含水等流体或者含流体极少的岩层就会获得高温能量,从而形成干热岩。
干热岩有广义和狭义之分。
关于干热岩一、什么是干热岩
干热岩(HDR),也称增强型地热系统(EGS),或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。
这种岩体的成分可以变化很大,绝大部分为中生代以来的中酸
性侵入岩,但也可以是中新生代的变质岩,甚至是厚度巨大的块状沉积岩。
干热岩主要被用来提取其内部的热量,因此其主要的工业指标是岩体内部的温度。
二、干热岩资源的成因类型
根据地壳结构和成因机制,中国干热岩资源主要可分为高放射性产热型、近代火山型、沉积盆地型及强烈构造活动带型。
1、高放射性产热型干热岩资源:类似于法国Soultz地区及澳大利亚Cooper盆地等高放射性花岗岩地区,中国东南沿海地区,地表及地壳浅部发育许多大型的中生代酸性花岗岩类岩体,该类岩体具有较高的放射性产热特征,在壳源产热和幔源产热均理想的情况下大地热流值可超过100μW/m2。
在覆盖层理想的地方,可以获取理想的干热岩资源。
高放射性产热干热岩资源主要集中在中国东南沿海,如广东、福建、江西、海南以及广西部分地区,以燕山期大范围形成的酸性岩体为赋存体形成干热岩资源区。
2、沉积盆地型干热岩资源:沉积盆地型干热岩资源具有基岩覆盖层较大、表层地温梯度较大、增温稳定的特点。
深部热源向上传导到达覆盖层时,由于沉积覆盖层热导率小的特点,阻止了热量的散失。
本类干热岩资源虽然地表热流值并不太高,但由于热量在浅部的聚集,其底部基岩岩体温度可以达到150℃以上。
沉积盆地型干热岩资源主要分布在关中、咸阳、贵德、共
和、东北等白垩系形成盆地的下部,由于沉积覆盖层具有较高的地温梯度,通常与水热型地热田共生。
3、近代火山型干热岩资源:近代火山型干热岩资源和火山活动密切相关。
国际上很多知名的干热岩资源区均属于这种类型。
受底部未冷却岩浆的作用,地表具有明显的水热活动现象。
通常在较浅的地方就可以获得较高的温度。
近代火山型干热岩资源分布在中国腾冲、长白山、五大连池等地区。
其热源特征与底部岩浆活动历史和岩浆活动特征密切相关。
4、强烈构造活动带型干热岩资源:强烈构造活动带型干热岩资源分布在青藏高原。
受亚欧板块和印度样板块的挤压,新生代以来青藏高原逐渐隆升,局部有岩浆底侵的存在,在这些区域可能形成理想的干热岩资源。
受构造活动的影响,自第四纪以来,西藏高原受到南北向强烈挤压,随着地质应力的变化,早期以东西向展布为主的构造格局逐渐遭受破坏,产生了一系列的北西向走滑断裂及近南北向的张性和张扭性的活动构造带。
在这些近南北向断裂带内现代地热活动强烈,又以那曲—羊八井—多庆错活动构造带和查去俄—古堆—错那构造带最为显着。
查去俄—古堆—错那构造带内由南往北有错那、古堆、日多、沃卡、松多、查去俄等中—高温地热显示区。
这些地区可作为强烈构造活动带型干热岩资源的理想前景区。
三、寻找干热岩的勘查工作步骤
首先是收集地、物、化、遥、地热等各种区域性资料;通过对所收集资料进行分析,选择有远景的地区开展地质调查、物化探、深部钻探工作,然后对岩心进行采样、对钻孔进行测温,获取各种有用信息。
最后通过实际工作成果,结合收集相关资料对干热岩资源进行评价。
四、干热岩勘查手段与要求
干热岩地质勘查工作,依据勘查地的具体条件,有选择地选用航卫片解译、地面地质调查、地球化学调查、地球物理勘查、地热地质钻探及岩、土、水实验测试等综合手段。
1.航卫片解译
主要应用于干热岩地质勘查工作的初期,配合地面地质调查工作进行,通过最新航卫片图像的解译,判断工作区地貌、地质构造基本轮廓及其隐伏构造,工作区及其相邻地区地面泉点、泉群、地热溢出带及地表热显示的位置,地表的水热蚀变带分布范围,为开展地面地质调查提供依据和工作方向。
2.地质调查
在航卫片解译及充分利用区域地质调查资料的基础上进行。
通过调查,实地验证航卫片解译的成果、难点;查明工作区的地层时代、岩性特征、地质构造、岩浆活动及地热形成的地质条件;查明地表热显示的类型、规模、分布范围及其与地质构造的关系;选定进一步工作的重点地区,为下一步的勘查工作提供依据。
3.地球化学调查
应用于干热岩地质勘查工作的各个阶段,主要是:采取工作区及其周边地区的地热水(井、泉)、常温地下水、地表水样进行化验分析,对比分析彼此的关系;利用地热水中特征离子(组分)如氟、二氧化硅等高于常温地下水的变化与分布规律,圈定工作区内的地热异常区的范围;测定工作区内代表性地热水(井、泉)中稳定同位素(18O、34S、2H)和放射性同位素(3H、14C)含量,推断地热水的成因和年龄;分析研究代表性地热水(井、泉)中特殊组分(SiO2、K、Na、Mg)等的含量变化,进行温标计算,推断深部热储温度;对地表岩石和钻孔(井)岩心中的水热蚀变矿物进行取样鉴定,分析推断地热活动特征及其发展历史等。
4.地球物理勘查
是干热岩资源勘查工作的重要组成部分,一般应在干热岩勘查的各个阶段进行。
主要是:圈定地热蚀变带、地热异常范围和热储体的空间分布;确定地热田的基底起伏及隐伏断裂的空间展布,圈定隐伏火成岩体和岩浆房位置;一般利用地温勘查圈定地热异常区;利用重力法确定地热田基底起伏(凸起和凹陷)及断裂构造的空间展布;利用磁法确定水热蚀变带位置和隐伏火成岩体的分布、厚度及其与断裂带的关系;利用电法、α卡、210Po法圈定热异常和确定热储体的范围、深度;利用人工地震法准确测定断裂位置、产状和热储构造;利用磁大地电流法确定高温地热田的岩浆房及热储位置与规模;利用微地震法测定活动断裂带。
地球物理勘查成果,是作为地热钻探井布置的重要依据。
5.深部地质钻探
干热岩资源勘查工作最重要也是耗资最多的手段,用于查明干热形成的地质条件、准确确定热储层的空间分布及其开发利用条件,查明热储的压力、温度、水位、地热流体的流量及质量,获取计算评价地热资源的各项参数。
钻探深度一般应达到有开采利用价值的热储层底界或当前技术经济合理的
开采深度内;钻探控制网度视勘查工作阶段不同而定,钻探井位的确定应进行严格审定。
钻探工程必须确保工程质量,取全取准各项资料。
6.地热水、土、岩实验分析
在地热资源勘查中,应比较系统的采取水、土、岩等样品进行分析鉴定,以获取热储的有关参数。
为评价地热水水质,应进行地热水的全分析(主要阴、阳离子和F、Br、I、SiO2、B、H2S)、微量元素(Li、Sr、Cu、Zn等)、放射性元素(U、Ra、Rn)及总放射性的分析,对温泉出露点和浅埋热储,还应增加污染指标(酚、氰等)的分析;为研究地热水的成因、年龄、补给来源等可视条件进行稳定同位素(18O、34S、2H)和放射性同位素(3H、14C)的测定;为确定热储的密度、比热、导热率、渗透率、孔隙度等物性参数,
则应选取代表性岩、土试样进行分析测定。
四、部分勘查工作手段的目的
1、地球物理方法:具体的是采用热红外遥感、高精度航磁测量、天然地震背景噪声层析成像技术、地震勘探、大地电磁测深、放射性γ能谱测量、重力测量等技术手段。
①热红外遥感:圈定地热场。
遥感解译:判断地热田地貌、地质构造基本轮廓及其隐伏构造,地热田及其相邻地区地面泉点、泉群、地热溢出带及地表热显示的位置,地表的水热蚀变带分布范围,为地热田地面地质调查提供依据和工作方向。
②高精度航磁测量:确定水热蚀变带位置和隐伏火成岩体的分布、厚度及其与断裂带的关系。
③大地电磁测深:利用磁大地电流法确定高温地热田的岩浆房及热储位置与规模;确定基岩面的埋深、断裂的发育程度。
④天然地震背景噪声层析成像:揭示工作区中上地壳速度结构的横向不均匀性,反映了区域内不同构造单元的地震波速度结构特征。
显示研究区内山脉、盆地等构造单元的分布特征。
⑤地震勘探:利用人工地震法准确测定断裂位置、产状和热储构造;利用微地震法测定活动断裂带。
⑥放射性γ能谱测量:γ能谱测量可用来勘查放射性矿产:铀、钍矿,钾盐矿等;岩性分类和地质填图;勘查水资源;工程地质中确定裂隙、断层。
寻找各种非放射性矿产(金矿床、铝土矿、油气田等);放射性环境评价。
主要用于地质填图,推断铀、钍成矿区的位置,寻找与放射性元素分布有关的某些非放射性矿产资源。
γ测量还可以在钻孔中进行,即用辐射仪在钻孔中测量岩矿石的天然γ射线强度,以寻找地下深处放射性矿床。
有γ测井(总量)和能谱测井两种。
⑦重力测量:利用重力法确定地热田基底起伏(凸起和凹陷)及断裂构造的空间展布;查明工作区内引起重力异常的地质体的形态、部位、性质、深度,发现和圈定工作区内隐伏、半隐伏岩浆岩体、深大断裂,寻找形成干热岩体最有利区域。
2、深部钻探:采用深部钻探工程,查明工作区的地层层序;控制构造的发育程度;了解覆盖层的保温隔热条件,取得有代表性的热物性参数评价干热岩资源开采技术条件。
3、岩心采样:了解岩石的密度、岩石生热率、岩石比热容、岩石热导率、岩石比热容等、岩石物理力学性质等参数。
4、测井:对全孔进行井温、井斜及井径测量;终孔后对主要目的层段进行稳态测温。
对全孔进行分阶段多参数测井工作,进行全孔岩性解释,进行视电阻率、自然伽玛、自然电位、声波等参数测量。
划分全孔地质剖面、裂隙发育带及破碎带等。