4抽样与抽样分布
- 格式:pptx
- 大小:1.55 MB
- 文档页数:54
抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
第五章抽样与抽样分布一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。
)1.抽样推断的主要目的是( )。
A.用统计量来推算总体参数B.对调查单位作深入研究C.计算和控制抽样误差D.广泛运用数学方法[答案] A[解析] 抽样调查是指从总体中按随机原则抽取部分单位作为样本,进行观察研究,并根据这部分单位的调查结果来推断总体,以达到认识总体的一种统计调查方法,因此,抽样推断的主要目的是用已知的统计量来推算未知的总体参数。
2.抽样调查中,无法消除的误差是( )。
A.抽样误差B.责任心误差C.登记误差D.系统性误差[答案] A[解析] 抽样误差是指在遵循了随机原则的条件下,不包括登记误差和系统性误差在内的,用样本指标代表总体指标而产生的不可避免的误差。
3.在其他条件相同的情况下,重复抽样的抽样平均误差和不重复抽样相比,( )。
A.前者一定小于后者B.前者一定大于后者C.两者相等D.前者可能大于,也可能小于后者[答案] B[解析] 以抽样平均数的抽样平均误差为例进行说明:在重复抽样条件下,抽样平均数的平均误差的计算公式:;在不重复抽样条件下,抽样平均数的平均误差的计算公式:。
因为,故。
4.拟分别对甲、乙两个地区大学毕业生在试用期的工薪收入进行抽样调查。
据估计甲地区大学毕业生试用期月工薪的方差要比乙区高出一倍。
在样本量和抽样方法相同的情况下,甲区的抽样误差要比乙区高( )。
A.41.4% B.42.4% C.46.8% D.48.8%[答案] A[解析] 假设乙地区的大学毕业生试用期月工薪的方差为σ2,甲地区的大学毕业生试用期月工薪的方差为2σ2,则:,那么,在样本量和抽样方法相同的,情况下,甲区的抽样误差要比乙区高=41.4%。
5.对某天生产的2000件电子元件的耐用时间进行全面检测,又抽取5%进行抽样复测,资料如表5-1所示。
表5-1耐用时间(小时) 全面检测(支) 抽样复测(支)3000以下3000~4000 4000~5000 50600990230505000以上总计36020018100规定耐用时间在3000小时以下为不合格品,则该电子元件合格率的抽样平均误差为( )。
抽样检验和抽样分布1. 引言抽样是统计学中非常重要的概念,通过对总体的一局部样本进行研究和分析,可以得出关于总体的推断和结论。
抽样检验是统计推断的一种方法,用于判断样本与总体之间是否存在显著差异。
抽样分布是抽样统计量的概率分布,是基于样本的随机变量,用于进行统计推断和估计。
2. 抽样检验抽样检验是统计推断的一种方法,用于判断样本与总体之间是否存在显著差异。
在抽样检验中,我们首先提出一个原假设和一个备择假设,然后通过计算样本统计量的概率来判断原假设是否成立。
常用的抽样检验方法包括:2.1 单样本 t 检验单样本 t 检验用于判断一个样本的均值是否与总体均值存在显著差异。
通过计算样本的 t 统计量来进行判断,如果 t 统计量的值较大,说明样本均值与总体均值之间存在显著差异。
2.2 双样本 t 检验双样本 t 检验用于判断两个样本的均值是否存在显著差异。
通过计算两个样本的 t 统计量来进行判断,如果 t 统计量的值较大,说明两个样本的均值之间存在显著差异。
2.3 卡方检验卡方检验用于判断两个或多个分类变量之间是否存在关联性。
通过计算卡方统计量来进行判断,如果卡方统计量的值较大,说明分类变量之间存在关联性。
2.4 方差分析方差分析用于判断一个因变量在不同组之间是否存在显著差异。
通过计算方差比率统计量来进行判断,如果方差比率统计量的值较大,说明不同组之间的因变量存在显著差异。
3. 抽样分布抽样分布是抽样统计量的概率分布,是基于样本的随机变量,用于进行统计推断和估计。
常用的抽样分布包括:3.1 正态分布在很多情况下,当样本容量足够大时,抽样分布可以近似地认为是正态分布。
正态分布是一种对称的连续概率分布,其概率密度函数可由均值和标准差完全描述。
3.2 学生 t 分布学生 t 分布是在样本容量较小、总体标准差未知的情况下使用的抽样分布。
学生 t 分布相比于正态分布,具有更宽的尾部,适用于小样本量的情况。
3.3 卡方分布卡方分布是基于正态分布的样本推断中经常使用的一种抽样分布。
抽样与抽样分布抽样是统计学中一种重要的数据收集方法,通过从总体中选择一部分样本来代表整体,可以更方便、更经济地进行数据分析和推断。
而抽样分布则是与抽样密切相关的概念,指的是样本统计量的概率分布。
本文将从抽样的定义和目的、抽样方法和抽样分布的性质等方面进行探讨。
一、抽样的定义和目的抽样是统计学中利用一定的方法和技术从总体中选取一部分个体作为样本,以了解总体特征或者对总体进行推断的过程。
抽样的目的在于通过对样本的观测和研究来推断总体的特征,而无需对整个总体进行调查。
抽样可以减少调查或实验的成本、节约时间,并且在一定程度上能够保证结果的可靠性和精确度。
二、抽样方法1. 简单随机抽样:简单随机抽样是指从总体中随机选择样本,使每一个样本都有相同的概率被选中。
简单随机抽样通常需要使用随机数表、随机数发生器或者抽签等方法来实现。
2. 系统抽样:系统抽样是按照一定的规则和系统性地从总体中选择样本,例如每隔一个固定的间隔选取一个样本。
系统抽样的优点在于操作简单,但是如果总体中存在某种周期性或者规律性的分布,可能会导致抽样结果的偏差。
3. 整群抽样:整群抽样是将总体根据某些特征进行分类,然后从每个分类中随机选择一定数量的群体作为样本。
整群抽样适用于总体中存在明显的群体结构的情况,可以提高样本的代表性。
4. 分层抽样:分层抽样是按照某种特征将总体分为若干层,然后从每一层中随机选择一定数量的样本。
分层抽样可以更好地体现总体的结构和差异,提高样本的代表性和准确性。
三、抽样分布的性质抽样分布是样本统计量的概率分布,其具有以下几个重要性质:1. 无偏性:如果样本统计量的期望值等于总体参数的真值,那么称该统计量是无偏的。
即样本统计量是对总体参数的无偏估计。
无偏性是抽样分布的重要性质,保证了样本统计量的可靠性和准确性。
2. 一致性:当样本数量趋向无穷大时,样本统计量的值趋向于总体参数的真值。
即样本统计量在大样本情况下能够接近总体参数,具有一致性。