薄膜太阳能电池光电转换材料研究进展
- 格式:pdf
- 大小:586.46 KB
- 文档页数:6
薄膜太阳能电池种类薄膜太阳能电池是一种新型的太阳能电池技术,相比传统的硅基太阳能电池,薄膜太阳能电池具有更轻薄、柔性、低成本等优点。
随着科技的不断进步,薄膜太阳能电池也在不断发展和演进。
本文将介绍几种常见的薄膜太阳能电池种类。
1. 铜铟镓硒薄膜太阳能电池(CIGS)铜铟镓硒薄膜太阳能电池是目前应用最广泛的薄膜太阳能电池之一。
它是由铜(Copper)、铟(Indium)、镓(Gallium)和硒(Selenium)等元素组成的薄膜材料。
CIGS薄膜太阳能电池具有高光电转换效率、良好的低光照性能和较高的稳定性。
此外,CIGS 薄膜太阳能电池制造工艺简单,可采用卷绕式生产,适用于大规模生产。
2. 钙钛矿薄膜太阳能电池钙钛矿薄膜太阳能电池是近年来兴起的一种新型薄膜太阳能电池。
钙钛矿材料具有优异的光电转换效率,可以达到甚至超过传统硅基太阳能电池的效率。
钙钛矿薄膜太阳能电池制作工艺相对简单,可以采用喷涂、印刷等低成本制备技术。
然而,钙钛矿薄膜太阳能电池的稳定性仍然是一个挑战,需要进一步的研究和改进。
3. 有机薄膜太阳能电池有机薄膜太阳能电池是一种利用有机半导体材料制作的薄膜太阳能电池。
有机薄膜太阳能电池具有柔性、轻薄、透明等特点,可以应用于更广泛的场景,如可穿戴设备、建筑外墙等。
有机薄膜太阳能电池的制备工艺相对简单,可以采用印刷、喷涂等低成本的大面积制备技术。
然而,有机薄膜太阳能电池的光电转换效率相对较低,稳定性也有待提高。
4. 硒化镉薄膜太阳能电池硒化镉薄膜太阳能电池是一种利用硒化镉材料制作的薄膜太阳能电池。
硒化镉薄膜太阳能电池具有高光电转换效率和较好的稳定性。
硒化镉薄膜太阳能电池的制备工艺相对简单,可以采用蒸镉、蒸硒等方法制备。
然而,硒化镉薄膜太阳能电池的环境友好性存在争议,因为镉元素对环境有一定的污染风险。
总结一下,薄膜太阳能电池是太阳能电池技术的重要分支,具有轻薄、柔性、低成本等优点。
铜铟镓硒薄膜太阳能电池、钙钛矿薄膜太阳能电池、有机薄膜太阳能电池和硒化镉薄膜太阳能电池是其中的几种常见类型。
光电转换技术的发展与研究随着社会科技的不断进步,光电转换技术已经成为了现代科技领域的热点之一。
该技术将光能、化学能和电能有效地转换成相互可转换的能量形式,为当今世界提供了一个高效、可靠的能源选择。
本文将就近年来光电转换技术的发展、应用以及未来的研究方向进行探讨。
一、光电转换技术的发展人类早在数百年前就开始探索光电转换领域的基础知识。
1779年,意大利科学家伏打发现了电池,使得人类首次将光能转化为电能。
20世纪初,伏打效应也被人们重视,一些实验室开始对光电材料的制备和性质进行研究。
1941年,美国科学家奥茨开发出有机金属卤化物光电材料基础,开创了现代光电转换技术的先河。
到了20世纪中后期,光电转换技术已经接近于成熟。
在晶体管和太阳能技术的开发过程中,人们发现了高效的光电转换材料。
1970年代和1980年代,钙钛矿材料和有机/无机杂化材料被广泛研究,这些研究显著提高了光电转换效率。
目前,人们已经可以制备出具有高效能量转换效率的薄膜太阳能电池,用于城市的采光照明,汽车的照明雾灯等多个领域。
二、光电转换技术的应用1. 太阳能电池太阳能电池属于光电转换技术的一种,主要是将太阳能转化为电能,为现在的社会提供高效、环保的能源。
太阳能电池的应用领域包括居住和商业建筑的照明和供电,电动汽车以及通信基站的供电等。
2. 光电探测器光电探测器是另一种常见的光电转换技术应用,主要用于红外对抗、紫外线、雷达、接收和发信机的信号采集。
目前,光电探测器已经被广泛应用于安全监控、现场调查、医疗诊断等领域。
3. LED灯LED灯作为一种新型照明方式,由于其长寿命、低功率等优点,被广泛应用于家庭照明、道路照明、广告等场所的照明。
4. 生物医学应用在生物医学领域,光电转换技术也被应用于光动力治疗、成像和诊断。
它可以改变生物细胞和分子的状态,为疾病的治疗开辟新的途径。
三、光电转换技术的未来研究方向1. 高效太阳能电池技术未来的研究方向之一将致力于太阳能电池技术的改进,提高功率转换效率。
光热调控与光电转换膜材-概述说明以及解释1.引言1.1 概述概述部分的内容:光热调控与光电转换膜材是当今研究领域中备受关注的两个重要方面。
随着科学技术的不断发展,人们对高效能源利用和环境保护的需求也越来越迫切。
光热调控作为一种新兴的能源调控技术,具有广泛的应用前景。
它通过调控材料的光吸收和热辐射特性,实现对热能的高效利用和分配,从而实现能源的节约与可持续发展。
在工业、建筑、农业等领域中,光热调控技术被广泛应用于节能降耗和环境温控方面,并取得了显著的经济和社会效益。
与此同时,光电转换膜材作为光电领域的重要组成部分,扮演着转换和储存太阳能光子能量的重要角色。
光电转换膜材的研究旨在利用光电材料的特异性质,将太阳能光子能量转化为电能或热能,从而实现可再生能源的有效利用。
在太阳能光伏发电、光电探测、光催化等领域中,光电转换膜材得到广泛的应用与研究。
本文旨在探讨光热调控与光电转换膜材的原理、应用和发展趋势。
首先,对光热调控进行深入的探讨,介绍其原理和应用场景,分析其发展趋势。
然后,对光电转换膜材进行全面的概述,包括定义、类型和应用领域的讨论。
最后,通过总结光热调控与光电转换膜材的重要性,展望其未来的发展方向,并以此结束本文。
通过对这两个方面的深入研究和探讨,我们可以更好地理解光热调控和光电转换膜材在能源领域的重要地位和作用,并为未来的研究和应用提供一定的传承和启示。
1.2 文章结构文章结构部分内容:本文主要分为四个部分进行探讨和分析,分别是引言、光热调控、光电转换膜材以及结论部分。
在引言部分,首先会对光热调控与光电转换膜材的概念进行简要介绍,明确本文的研究领域和重要性。
接着,会给出文章的整体结构,并列举各个部分的内容概要和目的。
第二部分是光热调控,将详细介绍光热调控的原理,包括光热效应、光热材料的选择和特性等方面的内容,并探讨光热调控在能源、环境和生物医学等领域的具体应用。
最后,考察光热调控的发展趋势和未来可能的突破点。
铜铟镓硒(CIGS)薄膜太阳能电池技术综述一、薄膜太阳电池概术铜铟镓硒(CIGS)薄膜太阳能电池由于效率高、无衰退、抗辐射、寿命长、成本低廉等特点,是备受人们关注的一种新型光伏电池产品,经过近30年的研究和发展,其光电转化效率为所有已知薄膜太阳能电池中最高的。
而且其光谱响应范围宽,在阴雨天条件下输出功率高于其他任何种类太阳电池,因而成为最有前途的光伏器件之一。
铜铟镓硒CuInSe2(简称CIS)薄膜材料是属于Ⅰ-Ⅲ-Ⅵ2族化合物直接带隙半导体,光吸收系数达到105量级,薄膜厚度约为1-2μm就能吸收太阳光,其禁带宽度为1.02eV。
通过掺入适量的Ga元素以代替部分的In,成为CuInSe2与CuGaSe2(简称CGS)的固溶半导体CuIn1-xGaxSe2(简称CIGS)。
CIGS电池在制作过程中,通过控制不同的Ga掺入量,其禁带宽度可在1.02-1.67eV范围内调整,这就为太阳能电池的带隙优化提供了很好的途径。
二、国内外研究现状(一)国外研究进展CIGS薄膜太阳电池材料与器件的实验室技术在发达国家趋于成熟,大面积电池组件和量产化开发是CIGS电池目前发展的总体趋势,而柔性电池和无镉电池是近几年的研究热点。
美国国家可再生能源实验室(NREL)在玻璃衬底上利用共蒸发三步工艺制备出最高效率达19.9%的电池。
这种柔性衬底CIGS太阳电池在军事上很有应用前景。
近期,CIGS小面积电池效率又创造了新的记录,达到了20.1%,与主流产品多晶硅电池效率相差无几。
美国NREL和日本松下电器公司在不锈钢衬底上制备的CIGS电池效率均超过17.5%;瑞士联邦材料科学与技术实验室(Empa)的科学家AyodhyaN.Tiwari领导的小组经过多年努力,完善了之前开发的柔性不锈钢衬底太阳能电池,实现了18.7%的效率。
由美国能源部国家光伏中心与日本“新能源和工业技术开发机构(NEDO)”联合研制的无镉CIGS电池效率达到18.6%。
光电材料与光电器件的研究进展光电材料和光电器件是近年来备受关注的领域之一,有着广泛的应用前景和发展空间。
本文将介绍光电材料和光电器件的基本概念、研究进展以及未来发展趋势。
一、光电材料的基础知识光电材料是指在光的作用下会发生电子跃迁并导致电子输运的材料,光电效应是其基本物理现象。
光电材料具有光储能、光转换、电光效应、光电导等性质,由于这些特性,使得光电材料在信息处理、能源领域、太阳能电池等方面有着广泛的应用。
二、光电材料的研究进展光电材料的研究在材料科学、物理学、光学、电子学等方面都有涉及。
随着人们对可持续发展的需求日益增加,光电材料的应用越来越广泛。
以下是光电材料的一些研究进展:1. 有机太阳能电池有机太阳能电池是一种新型太阳能电池,其光电转换效率高、成本低、可制备性强等特点,已成为太阳能电池领域的热点研究方向。
有机太阳能电池的关键在于它的材料性能,有机材料合成和工艺对太阳能电池的性能具有至关重要的影响。
2. 光电触发材料光电触发材料是指在光的作用下电性能发生变化的材料,这种材料可用于电器自动化控制、传感器、体积微小的电子设备等领域。
近年来,光电触发材料研究不断深入,取得了一系列的进展。
3. 纳米光电材料纳米光电材料是指材料直径在1~100纳米的材料。
由于其表面积大,表面能高,它们的化学、物理、光学性质都与宏观材料有很大不同。
因此,纳米光电材料不仅有着独特的光电性能,而且还具有超导、催化、传感等许多应用潜力。
近年来,随着纳米技术的发展,纳米光电材料相关的研究也逐渐成为光电材料的热点研究领域。
三、光电器件的基础知识光电器件是指利用光电材料的物理和化学性质发出或接受光信号的电子器件。
与传统电子器件相比,光电器件具有更高的速度、更小的尺度、更低的功耗、更低的噪声等优势。
以下是一些常见的光电器件:1. 光电二极管光电二极管是最常见的光电器件,也是一种光电转换器。
它利用PN结的内置电场将光子能量转换为电子能量。
关于太阳能电池减反射膜的研究报告作者:杨嘉贺(江西南昌理工学院南昌 330044)【摘要】在太阳电池表面形成一层减反射薄膜是提高太阳电池的光电转换效率比较可行且降低成本的方法。
应用PECVD(等离子体增强化学气相沉积)系统,采用SiH4和NH3气源以制备氮化硅薄膜。
研究探索了PECVD生长氮化硅薄膜的基本物化性质以及在沉积过程中反应压强、反应温度、硅烷氨气流量比和微波功率对薄膜性质的影响。
通过大量实验,分析了氮化硅薄膜的相对最佳沉积参数,并得出制作战反射膜的优化工艺。
【关键词】太阳电池;PECVD减反射;氮化硅薄膜一、引言太阳能光伏技术是将太阳能转化为电力的技术,其核心是半导体物质的光电效应。
最常用的半导体材料是硅。
光伏电池由P型和N型半导体构成,一个为正极,一个为负极。
阳光照射在半导体上时,两极交界处产生电流,阳光强度越大,电流就越强。
太阳能光伏系统不仅只在强烈阳光下运作,在阴天也能发电。
晶体硅是当前太阳能光伏电池的主流。
目前晶体硅电池光电转换效率可以达到20%,并已实现大规模生产。
除效率外,光伏电池的厚度也很重要。
薄的硅片(wafer)意味着较少的硅材料消耗,从而可降低成本。
在查阅了大量国内外相关文献,并结合我国对晶体硅太阳电池技术开发的迫切需要,在制备太阳电池减反射膜(氮化硅薄膜)的工艺中,对气体流量比、微波功率、沉积压强和温度对减反射膜性质的影响进行了研究,通过大量有效的工作及一系列工艺数据,得出了制作减反射膜,分析了氮化硅薄膜的相对最佳沉积参数和优化工艺。
二、减反射膜(增透膜)工作原理2.1基本概念:在了解减反射薄膜原理之前,要先了解几个简单的概念:第一,光在两种媒质界面上的振幅反射系数为(1-ρ)/(1+ρ),其中ρ为界面处两折射率之比。
第二,若反射光存在于折射率比相邻媒质更低的媒质内,则相移为180°;若该媒质的折射率高于相邻媒质的折射率,则相移为零。
第三,光因受薄膜上下两个表面的反射而分成2个分量,这2个分量将按如下方式重新合并,即当它们的相对相移为180°时,合振幅便是2个分量振幅之差;称为两光束发生相消干涉。
2024年CIGS薄膜太阳能电池市场分析现状简介随着全球对可再生能源的需求不断增加,太阳能电池的市场规模也呈现出稳步增长的趋势。
薄膜太阳能电池由于其柔性、高效率和适应性强等优势,在太阳能电池市场中逐渐占据一席之地。
CIGS(铜铟镓硫)薄膜太阳能电池作为一种新兴的太阳能电池技术,具有较高的光电转换效率和较低的生产成本,受到了市场的广泛关注。
本文将对CIGS薄膜太阳能电池市场的现状进行分析。
技术概述CIGS薄膜太阳能电池是一种基于化合物半导体的薄膜太阳能电池技术。
其主要成分包括铜(Copper)、铟(Indium)、镓(Gallium)和硫(Sulfur)。
相较于其他薄膜太阳能电池技术,CIGS薄膜太阳能电池具有较高的光电转换效率,可以达到约20%以上。
此外,CIGS薄膜太阳能电池还具备适应性强、较好的环境适应性、快速响应和较低的成本等优势。
市场规模根据市场研究机构的数据显示,CIGS薄膜太阳能电池市场正在逐渐扩大。
预计未来几年内,CIGS薄膜太阳能电池的市场规模将以较快的速度增长。
这主要得益于CIGS薄膜太阳能电池的高效率和低成本特性,使其能够满足日益增长的太阳能电池需求。
主要应用CIGS薄膜太阳能电池在多个领域具有潜在的应用价值。
目前,主要应用领域包括:1.光伏发电:CIGS薄膜太阳能电池可以用于建筑物屋顶、太阳能电站等地方发电,减少对传统能源的依赖,降低碳排放。
2.便携设备:由于CIGS薄膜太阳能电池具有柔性特点,可制作成柔性太阳能板,用于充电手机、笔记本电脑等便携设备。
3.交通工具:CIGS薄膜太阳能电池可应用于汽车、飞机等交通工具,为其提供电力支持,降低燃料消耗。
发展趋势随着科技的不断进步和市场需求的不断增加,CIGS薄膜太阳能电池市场将呈现出以下几个发展趋势:1.提高效率:未来,科研人员将继续努力提高CIGS薄膜太阳能电池的光电转换效率,以提供更高的发电效果。
2.降低成本:目前,CIGS薄膜太阳能电池的生产成本较高,限制了其市场规模的进一步扩大。
纳米结构有机半导体薄膜材料及其在光电器件中的应用研究随着半导体技术的快速发展,纳米结构有机半导体薄膜材料在光电器件中的应用逐渐升温。
作为一种新型的半导体材料,纳米结构有机半导体薄膜材料具有许多独特的性质,如可塑性、可溶性、低成本等优点,这使得其在柔性电子学、有机太阳能电池、有机场效应晶体管以及光电探测器等领域有着广泛的应用价值。
一、纳米结构有机半导体薄膜材料的制备方法纳米结构有机半导体薄膜材料通常采用溶液法制备,其制备流程主要包括材料的选择、溶液的制备、薄膜的沉积以及后处理等步骤。
目前,可用的制备方法主要有旋涂法、喷涂法、印刷法、场致生长法、自组装法等。
其中,旋涂法是最常用的一种方法,其制备流程简单,成本低,适用于大面积的薄膜制备。
二、纳米结构有机半导体薄膜材料在光电器件中的应用1. 有机太阳能电池有机太阳能电池是一种新型的光伏器件,通过光伏效应将光能转化为电能。
目前,用于太阳能电池的纳米结构有机半导体薄膜材料主要包括聚合物、配合物和低分子有机化合物等。
其中,聚合物太阳能电池具有高效率、低成本等优点,已经成为研究的热点。
2. 有机场效应晶体管有机场效应晶体管是一种新型的电子器件,其主要应用于液晶显示屏、RFID 等领域。
纳米结构有机半导体薄膜材料通过旋涂等制备方法可以制备出高质量的薄膜,为有机场效应晶体管的制备提供了可靠的材料基础。
3. 光电探测器光电探测器是一种常见的光电器件,其主要用于光通信、光电传感等领域。
纳米结构有机半导体薄膜材料由于其好的光电性能,在光电探测器中也有着广泛的应用。
三、结语纳米结构有机半导体薄膜材料是一种新型的材料,由于其可塑性、可溶性等优势,在光电器件中有着广泛的应用前景。
未来,随着制备方法的不断改进以及技术的不断创新,纳米结构有机半导体薄膜材料必将得到更广泛的应用。
深圳技术大学新材料与新能源学院副教授唐泽国持续聚焦薄膜太阳能电池研究专注实现钙钛矿叠层电池量产
萧磊
【期刊名称】《中国高新科技》
【年(卷),期】2021()23
【摘要】近日,国际能源署(IEA)发布了2020年全球光伏报告,表示截至2020年底,全球累计光伏装机760.4GW,我国以48.2GW居于全球首位。
同时,我国硅料、硅片、电池片和组件的产量均占到全球市场的70%以上。
我国光伏产业优势主要体现在大规模量产制造方面,而引领硅电池技术发展的原创性前沿技术仍由欧、美、日等国的研究机构和公司主导。
由于第一代晶体硅太阳电池的实验室最高转换效率已逼近其理论极限效率29.4%,所以开发30%以上转换效率的新一代高效低成本光伏技术已成为国内外科研人员关注的焦点,也是我国学界专业人士必须面对的竞争与挑战。
深圳技术大学新材料与新能源学院副教授唐泽国作为青年领军学者,自本科起便探究这一领域,已经以优异的科研成绩引起了国内外的广泛关注。
【总页数】2页(P27-28)
【作者】萧磊
【作者单位】不详
【正文语种】中文
【中图分类】F42
【相关文献】
1.英国研究发现高效可循环光粒子的钙钛矿太阳能电池新材料
2.利用PNA添加剂来调控钙钛矿薄膜结晶和覆盖率实现高效太阳能电池
3.提升基于钙钛矿的叠层太阳能电池稳定性的策略
4.一种钙钛矿/背接触晶硅叠层太阳能电池
5.KF界面修饰层对二维钙钛矿F-PEA_(2)MA_(4)Pb_(5)I_(16)的薄膜调控及其太阳能电池性能研究
因版权原因,仅展示原文概要,查看原文内容请购买。
光伏镀膜光伏镀膜是指在光伏电池表面上采用一种薄膜材料进行覆盖的过程,目的是提高光伏电池的光吸收能力和光电转化效率。
光伏镀膜是提高太阳能发电效率的关键技术之一。
本文将对光伏镀膜的原理、常见技术和未来发展进行介绍。
1. 光伏镀膜的原理:光伏镀膜的原理是通过在光伏电池的表面涂覆一层特殊的薄膜材料,改变电池表面的反射和透射特性,增强太阳能光的吸收和电池内光电材料的电子激发。
2. 光伏镀膜的常见技术:(1)抗反射镀膜技术:在光电池表面形成一层具有相应折射率的薄膜,减小太阳光在光电池表面的反射,提高光吸收能力。
(2)光学增透镀膜技术:在光电池表面形成一层具有增透性能的薄膜,提高太阳能光的透过率,增加光电池吸收光能的效率。
(3)防污镀膜技术:在光电池表面涂覆一层防污薄膜,减少灰尘、油脂和杂质的附着,保持光电池的光吸收效率和发电效率。
(4)光学分布镀膜技术:采用光学薄膜在光电池表面形成特定的分布结构,增加太阳能入射光在光电池中的光程,提高光电转换效率。
3. 光伏镀膜的应用和前景:光伏镀膜技术已经在太阳能光伏发电领域得到广泛应用,它可以提高光电池的光吸收能力和电池效率,降低成本,提高太阳能发电的经济性和可行性。
随着太阳能产业的快速发展,光伏镀膜技术也在不断创新和改进,未来的发展前景非常广阔。
4. 光伏镀膜的最新研究进展:目前,光伏镀膜技术的研究主要集中在提高镀膜材料的光学性能和稳定性,减小镀膜过程的能耗和环境污染,以及开发新型的光伏镀膜技术和设备。
例如,一些研究者正在探索纳米材料和多层膜技术在光伏镀膜中的应用,这些新材料和技术有望进一步提高光伏电池的光电转换效率和长期稳定性。
总之,光伏镀膜是一种重要的太阳能发电技术,可以显著提高光伏电池的光吸收能力和电池效率。
随着技术的不断发展和突破,光伏镀膜技术将进一步推动太阳能发电产业的发展和普及,为可持续能源的利用做出更大贡献。
碲化镉薄膜太阳能电池的研究现状及进展范文涛;朱刘【摘要】Cadmium telluride thin film solar cells has become a hot spot in the global photovoltaic research field. This paper gives a brief of the characteristics of CdTe thin film solar cells, introduces the CdTe at home and abroad research status and industrial progress in the field of thin film solar cells.%碲化镉薄膜太阳能电池已成为全球光伏领域研究热点之一.本文阐述了碲化镉薄膜太阳能电池的特性,介绍并探讨了国内外碲化镉薄膜太阳能电池领域的研究现状及产业化进展.【期刊名称】《材料研究与应用》【年(卷),期】2017(011)001【总页数】3页(P6-8)【关键词】碲化镉;太阳能电池;研究现状【作者】范文涛;朱刘【作者单位】广东先导稀材股份有限公司,先进材料研究院,广东清远 511517;广东先导稀材股份有限公司,先进材料研究院,广东清远 511517【正文语种】中文【中图分类】TK51二十一世纪世界各国加速发展各种可再生能源,希望可以解决日益严重的温室效应、能源枯竭和环境污染等全球性危机.太阳能产业是未来能源的一个主导产业,亦是国家和地方政府大力扶植的战略新兴产业,市场潜力巨大.目前,太阳能电池市场主要产品是硅系太阳能电池,占市场总额的80%以上[1],但晶硅电池的高成本和生产过程的高污染等问题一直困扰着太阳能电池市场,随着薄膜太阳能电池技术的不断发展,未来薄膜太阳能电池将成为太阳能电池领域的主导技术,并被广泛应用.目前有市场前景的薄膜太阳能电池主要有三种,分别是非晶硅、碲化镉(CdTe)和铜铟镓硒(CIGS)薄膜太阳能电池,而碲化镉薄膜太阳能电池是其中的佼佼者,与传统的单晶硅太阳能电池相比,其具有成本低,弱光性更好等优势.除了光伏发电之外,未来薄膜电池还可以应用于汽车、手机等设备上,其发展前景极为可观.CdTe薄膜太阳电池与其他化合物薄膜电池相比具有以下特点:(1)CdTe的禁带宽度(约1.45 eV)与太阳能光谱相匹配,高于硅材料100倍的吸收系数等材料特性,适合制备高效薄膜太阳电池,其理论转换转化率为28%[2];(2)CdTe相比硅材料具有功率温度系数低和弱光效应好等特性,表明碲化镉太阳能电池更适于沙漠、高温等复杂的地理环境,以及在清晨、阴天等弱光环境下也能发电;(3)CdTe属于简单的二元化合物,易生成单相材料,已有多种技术可制备10%以上的CdTe小面积电池,其中CSS(近距离升华)[3]和VTD(气相输运沉积)[4]技术具有沉积速率高、原材料利用率高、生产成本低,以及所制备的膜质好、晶粒大等优点,应用最为广泛,可实现规模化生产.碲化镉薄膜太阳能电池结构简单,其生产时间与硅系太阳能相比大大缩短,只需几小时就可以完成由玻璃到成品的出货.目前组件成本可做到0.5美元/W左右,当组件效率上升,成本还有进一步下降的空间.太阳能电池的发展已经走进了第三代,以碲化镉为代表的化合物薄膜太阳能电池发展迅速.国际上碲化镉薄膜太阳电池的研究和制造十分活跃,在1963年,Cusano[5]研制出了以碲化镉为n型和以碲化亚铜为p型结构的电池,其光电转化效率为7%,这无疑是碲化镉薄膜电池的一个开端.在1982年,Tyan等人[6]用化学沉积方法在CdTe上蒸镀一层CdS,首次制备出异质结构p-CdTe/n-CdS薄膜太阳能电池,其转换效率超过10%,这是现在CdTe薄膜太阳能电池产业化的原型.在1993年,美国佛罗里达大学科研人员采用近空间升华法制备出 CdTe 薄膜太阳能电池,其转换效率为15.8%[7].在2004年,我国学者吴选之[8]制备出碲化镉太阳能电池,其转换效率达到了16.5%.慢慢地碲化镉薄膜材料逐渐被认为是一种高效、廉价的太阳能电池材料,也开始由实验室研究阶段走向规模化工业生产.目前,美国的First Solar公司凭借这方面的技术已经奠定了全球薄膜光伏的龙头地位,该公司受益于研发费用的投入,碲化镉太阳能电池的转换效率逐年增长,在2016年初生产的碲化镉太阳能电池实验室转换效率已经达到22.1%,并还有进一步提升的空间.碲化镉光伏电池中由于存在镉元素,产品在使用过程中人们一直担忧其是否对人体有害,对此学者也进行了深入的研究.根据美国Brookhaven国家实验室(BNL)报告[9],CdTe 薄膜组件中CdTe用量很小,1 MW的CdTe组件仅需约250 kg的CdTe.CdTe被密封在两块玻璃之间,常温下没有Cd的释放,即使在1100 ℃的高温下,99.96%的CdTe都被熔化的两块玻璃封住而没有泄露.比较其他几种太阳电池及其它能源,碲化镉薄膜太阳能电池的镉排放量仅为0.3 g/GWh,而多晶硅的为0.6 g/GWh、单晶硅的为0.7 g/GWh、煤炭的为3.7 g/GWh、石油的为44.3 g/GWh,在CdTe太阳电池组件制备和使用全寿命期内,总的镉释放量最低、最为安全.刘向鑫等人[10]结合中国实际国情,对碲化镉产业镉的排放问题进行了研究,结果发现碲化镉光伏发电形式的镉总排放率只有火力发电的1/13,表明CdTe不同于元素镉,其是稳定的化合物,能被安全使用,碲化镉光伏产品是环保友好的.在重视环保的美国和德国等发达国家,碲化镉太阳电池的研究和产业化技术一直得到很好地发展.碲化镉中的碲为稀有金属,碲化镉薄膜电池每年耗碲约120 t,业内部分人士担心Te资源不足给碲化镉薄膜太阳能电池未来的发展造成障碍[11].目前全世界碲储量有40~50 kt,世界碲产量约400~600 t/a[12],人们担心碲的产量满足不了碲化镉薄膜太阳能电池发展的需要.当碲化镉薄膜层厚度约为3 μm,组件转化率在10%的情况下,每1 GW的CdTe组件将要消耗100 t碲,但随着技术的发展,碲化镉薄膜厚度将更薄,组件转化率将进一步提高,接近其理论效率,每1 GW的CdTe组件消耗碲含量将大幅降低;当大规模组件效率达到15%,厚度减少到0.2 μm时,每1 GW的消耗碲含量只需4.4 t[13].碲资源的消耗的问题不应该静态的去看待,毋庸置疑,随着科学技术的提升碲的消耗量将大大降低.同时,碲资源的回收利用将大大缓解资源不足的情况.目前,全球范围内具备能够量产碲化镉薄膜电池组件技术的企业有美国的第一太阳能公司、德国的Calyxo公司以及中国的龙焱能源等.美国第一太阳能公司First Solar是薄膜电池的龙头企业,成立于1998年,2002年生产出第一块光伏电池产品后就以惊人速度扩张,短短几年其产量翻翻,并在2006年底在美国纳斯达克上市,代号FSLR.从First Solar公司2015年的年报中可以看出[13]:该公司实验室制造的碲化镉组件效率首次超越多晶硅组件转换效率,达到创纪录的18.6%,其实验室电池转换效率已经达到21.5%,并在2016年刷新了其原有记录达到22.1%;其量产组件的转换效率也是逐渐增长,从2006年的9.5%到2011年的11.9%,再到2015年的15.6%;该公司2015年的光伏组件产量达到了2.5 GW,销售量达36亿美元,其碲化镉薄膜光伏组件产量约占全球碲化镉薄膜光伏组件总产量的95%以上.德国CalyxoGmbH公司成立于2005年,是一家生产碲化镉薄膜太阳能电池组件制造商和光伏发电系统供应商,在德国拥有25 MW和60 MW 两条碲化镉薄膜太阳能电池组件生产线,2012年Calyxo公司碲化镉薄膜太阳能电池组件的生产成本约为0.8美元/W,中期的目标是将生产成本降低到0.5美元/W,目前该公司碲化镉薄膜太阳能电池组件的转换效率达到13.4%,其实验室电池转换效率已达16.2%,并得到德国SGS测试机构的验证[14].国内碲化镉薄膜太阳能研究及产业化起步较晚,目前处于初期阶段.2001年四川大学太阳能组研制出碲化镉太阳电池,其转换效率达11.6%,并建立了全部由中国生产设备构成的0.3 MW 中试生产线[15].2012年龙焱能源建立了一条具有完全自主知识产权、全国产化、全自动化的30 MW碲化镉薄膜电池组件生产线,生产的组件平均效率达到了11.4%,并具有良好的稳定性;2014年龙焱能源制备的碲化镉组件产品转换效率达到13%,并得到中国计量科学研究院检测认证,其组件产品系列已获得美国、欧洲、澳大利亚等全球各地知名认证机构的产品认证[16].2015年美国第一太阳能碲化镉光伏产品产量产量达到2.5 GW,而国内碲化镉产品占光伏市场的容量很少,因此碲化镉薄膜太阳能电池的市场成长空间很大,有着非常好的市场前景.碲化镉薄膜太阳能电池具有光电转换效率高、功率温度系数低、弱光效应好、易制备、生产成本低等优势,已经在光伏市场上占有一席之地.目前,研究人员和生产厂商研究的焦点仍是降低生产成本和提高光电转换效率,产业化的升级将进一步提高碲化镉薄膜太阳能电池的竞争力.国内的碲化镉薄膜太阳能电池的产业化仍存在很大的发展空间和市场前景.【相关文献】[1] 朱卫东,张阳. 中国薄膜太阳电池技术发展现状与趋势[J]. 中国基础科学,2013,15(2):7-10.[2] KAZMERSKI L L.Solar photovoltaics R&D at the tipping point:A 2005 technology overview[J].Journal of Electron Spectroscopy & Related Phenomena,2006,150 (2-3):105-135.[3] WU X,DHERE R G,ALBIN D S,et al.High-efficiency CTO/ZTO/CdS/CdTe polycrystalline thin-film solar cells[C].Colorado:NCPV Program Review Meeting,2001:47-48.[4] BONNET A,NIEMEGEERS D. A model for the effects of the CdC12 treatment on theperformance of CdTe/CdS solar cells[C].Barcelona:Spain,1997:2079-2082.[5] CUSANO D A. CdTe solar cells and photovoltaic hetero junctions in II-VI compounds [J]. Solid-State Electronics,1963,6(3):217-218.[6] TYAN Y S,PEREZALBUERNE E A. Efficient thin-film CdS/CdTe solar cells[C].New York:Electrical and Electronics Engineers, 1982:794-800.[7] FEREKIDES C,BRITT J,MA Y,et al. High efficiency CdTe solar cells by close spaced sublimation[C].Piscataway:IEEE,1993:389-393.[8] WU Xuanzhi.High-efficiency polycrystalline CdTe thin-film solar cells[J].Solar Energy,2004,77(6):803-814.[9] FTHENAKIS V M. Life cycle impact analysis of cadmium in CdTe PV production[J]. Renewable & Sustainable Energy Reviews,2004,8(4):303-334.[10] 刘向鑫,杨兴文. 中国国情环境下 CdTe 光伏的全周期镉排放分析[J]. 科学通报,2013,58:1833-1844.[11] 陈少纯,顾珩,高远,等.稀散金属产业的观察与思考[J].材料研究与应用,2009,3(4):216-222.[12] 王晓民,李刚.世界碲、镉及碲化镉经济现状和前景[J]. 世界有色金属,2010(9):28-31.[13] ZWEIBEL K.Engineering the impact of tellurium supply on cadmium telluride photovoltaics[J].Science,2010,328:699-701.[14] BAUER M,FRENCK J,FRITSCHE J,et al. Calyxo's advanced CdTe module designed for hot climates[C]. Piscataway:IEEE,2013:1935-1937.[15] 吴选之.碲化镉薄膜太阳电池的产业化[J].太阳能,2012(19):9-14.[16] 冯良桓,蔡伟,郑家贵,等.碲化锌复合背接触层对碲化镉太阳电池性能的影响[J].太阳能学报,2001, 22(4):401-408.。
新型晶硅太阳能电池、薄膜太阳能电池-概述说明以及解释1.引言1.1 概述晶硅太阳能电池和薄膜太阳能电池是目前研究和应用最广泛的两种太阳能电池技术。
随着对可再生能源需求的日益增长,这两种太阳能电池的研究和发展在近年来获得了巨大的关注。
晶硅太阳能电池是一种基于单晶硅或多晶硅材料制造的太阳能电池。
其工作原理是利用太阳光照射在硅材料上时会产生光生电流,进而转化为电能。
晶硅太阳能电池具有高转换效率、较长的寿命和良好的稳定性等特点,适用于各种规模的太阳能发电系统,从小型家庭系统到大型商业系统。
而薄膜太阳能电池是一种利用非晶态硅、铜铟镓硫等材料制造的太阳能电池。
相比于晶硅太阳能电池,薄膜太阳能电池可以实现更低的制作成本和更高的柔韧性。
薄膜太阳能电池通常采用卷曲或可弯折的材料制成,可以应用于建筑物外墙、屋顶和其他曲面。
此外,薄膜太阳能电池还具有吸收弱光、高温环境下的较好表现等优势。
研究新型晶硅太阳能电池和薄膜太阳能电池的目的是为了进一步提高太阳能电池的效率、降低制造成本以及拓展其在各个领域的应用。
本文将从工作原理、特点和优势以及应用前景等方面对新型晶硅太阳能电池和薄膜太阳能电池进行详细介绍,并最后对其重要性进行总结以及展望未来的发展方向。
通过深入了解这两种太阳能电池技术,可以为太阳能行业的发展提供有价值的参考。
1.2 文章结构本文将详细介绍新型晶硅太阳能电池和薄膜太阳能电池两种不同类型的太阳能电池。
首先,引言部分将提供对整篇文章的概述,包括对这两种太阳能电池的介绍以及它们的应用前景。
接下来,本文将分别介绍新型晶硅太阳能电池和薄膜太阳能电池的工作原理、特点和优势。
在工作原理部分,将详细解释这两种太阳能电池的工作机制,包括光电转换和能量输出过程。
特点和优势部分将重点介绍新型晶硅太阳能电池和薄膜太阳能电池相比传统太阳能电池的优势和特点,比如转换效率的提高、制造成本的降低等。
在应用前景部分,将探讨这两种太阳能电池在未来的潜在应用领域,比如建筑一体化、电动汽车等。
薄膜太阳能弯曲 引言 薄膜太阳能是一种利用薄膜材料制成的太阳能电池板。与传统的硅基太阳能电池板相比,薄膜太阳能具有更轻薄、更灵活的特点。因此,薄膜太阳能可以更容易地应用于弯曲的表面,如建筑物外墙、车顶等。本文将探讨薄膜太阳能弯曲的原理、应用以及未来发展方向。
薄膜太阳能弯曲原理 薄膜太阳能弯曲的原理是利用薄膜材料的柔韧性和弯曲性。传统的硅基太阳能电池板由刚性材料制成,无法弯曲。而薄膜太阳能电池板由柔性材料制成,可以在一定程度上弯曲而不影响其性能。
薄膜太阳能电池板通常由多层薄膜组成,包括透明导电膜、光吸收层、电荷分离层等。这些薄膜材料具有较好的柔韧性和可塑性,可以适应不同形状的曲面。通过特殊的制造工艺,薄膜太阳能电池板可以在弯曲的情况下保持电池的正常工作。
薄膜太阳能弯曲的应用 建筑物外墙 薄膜太阳能电池板可以应用于建筑物外墙,将太阳能电池板整合到建筑物的外观中。由于薄膜太阳能电池板的柔韧性,可以根据建筑物的曲面进行弯曲安装,使其更好地融入建筑的整体设计。这种应用方式不仅可以为建筑物提供可再生能源,还可以提高建筑物的能源利用效率。
车顶 薄膜太阳能电池板还可以应用于汽车的车顶。传统的硅基太阳能电池板由于刚性材料的限制,无法应用于车顶等弯曲表面。而薄膜太阳能电池板的柔韧性使得它可以适应车顶的曲面,为车辆提供额外的能源供应。这种应用方式可以为电动车提供充电,延长电池的续航里程。
便携式设备 薄膜太阳能电池板的轻薄柔韧的特点使其非常适合应用于便携式设备,如手机、笔记本电脑等。通过将薄膜太阳能电池板集成到这些设备的外壳中,可以为其提供持续的电源。这种应用方式可以减少对传统电池的依赖,提高设备的使用时间和便携性。 薄膜太阳能弯曲的未来发展 薄膜太阳能弯曲技术目前仍处于发展初期,还存在一些挑战和待解决的问题。其中包括以下几个方面:
效率提升 薄膜太阳能电池板的转换效率相对较低,需要进一步提升。目前已经有一些研究致力于提高薄膜太阳能电池板的光电转换效率,通过改进材料和制造工艺等方式来实现。