南京航空航天大学Matrix-Theory双语矩阵论期末考试2015

  • 格式:doc
  • 大小:335.24 KB
  • 文档页数:6

下载文档原格式

  / 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NUAA

Let 3P (the vector space of real polynomials of degree less than 3) defined by

(())'()''()p x xp x p x σ=+.

(1) Find the matrix A representing σ with respect to the ordered basis [21,,x x ] for 3P .

(2) Find a basis for 3P such that with respect to this basis, the matrix B representing σ is diagonal.

(3) Find the kernel (核) and range (值域)of this transformation. Solution: (1)

221022x x x x σσσ===+()()() 002010002A ⎛⎫

= ⎪ ⎪

⎝⎭

----------------------------------------------------------------------------------------------------------------- (2)

101010001T ⎛⎫ ⎪

= ⎪ ⎪⎝⎭

(The column vectors of T are the eigenvectors of A)

The corresponding eigenvectors in 3P are 1000010002T AT -⎛⎫

= ⎪ ⎪⎝⎭

(T diagonalizes A ) 22[1,,1][1,,]x x x x T += . With respect to this new basis 2

[1,,1]x x +, the representing

matrix of σis diagonal.

------------------------------------------------------------------------------------------------------------------- (3) The kernel is the subspace consisting of all constant polynomials.

The range is the subspace spanned by the vectors 2,1x x +

-----------------------------------------------------------------------------------------------------------------------

Let 020012A ⎛⎫

= ⎪ ⎪-⎝⎭

.

(1) Find all determinant divisors and elementary divisors of A .

(2) Find a Jordan canonical form of A .

(3) Compute At e . (Give the details of your computations.) Solution: (1)

1

100

20012I A λλλλ-⎛⎫ ⎪

-=- ⎪ ⎪-⎝⎭,(特征多项式 2()(1)(2)p λλλ=--. Eigenvalues are 1, 2, 2.)

Determinant divisor of order 1()1D λ=, 2()1D λ=, 23()()(1)(2)D p λλλλ==-- Elementary divisors are 2(1) and (2)λλ-- .

---------------------------------------------------------------------------------------------------------------------- (2) The Jordan canonical form is

100021002J ⎛⎫ ⎪

= ⎪ ⎪⎝⎭

--------------------------------------------------------------------------------------------------------------------------

(3) For eigenvalue 1, 0

100

1001

1I A ⎛⎫

-=- ⎪ ⎪-⎝⎭ , An eigenvector is 1(1,0,0)T p = For eigenvalue 2, 11020

0001

0I A ⎛⎫

-= ⎪ ⎪⎝

, An eigenvector is 2(0,0,1)T p =

Solve 32(2)A I p p -=, 331100(2)00000101A I p p --⎛⎫⎛⎫

⎪ ⎪

-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭

we obtain that

3(1,1,0)T p =-

101001010P ⎛⎫ ⎪

=- ⎪ ⎪⎝⎭, 111000

1010P -⎛⎫

= ⎪ ⎪-⎝

⎭ 1At J e Pe P -=222101001100010

00101000010t

t t t e e te e ⎛⎫⎛⎫⎛⎫

⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝

⎭222200

00t t t t t t e e e e te

e ⎛⎫

-

⎪= ⎪ ⎪-⎝⎭ --------------------------------------------------------------------------------------------------------------------

Suppose that ∈R A and O I A A =--65.

(1) What are the possible minimal polynomials of A ? Explain.

(2) In each case of part (1), what are the possible characteristic polynomials of A ? Explain.

Solution:

(1) An annihilating polynomial of A is 2

56x x --.

The minimal polynomial of A divides any annihilating polynomial of A. The possible minimal polynomials are

6x -, 1x +, and 256x x --.

---------------------------------------------------------------------------------------------------------------

(2) The minimal polynomial of A divides the characteristic polynomial of A. Since A is a matrix of order 3, the characteristic polynomial of A is of degree 3. The minimal polynomial of A and the characteristic polynomial of A have the same linear factors. Case 6x -, the characteristic polynomial is 3(6)x - Case 1x +, the characteristic polynomial is 3(1)x + Case 256x x --, the characteristic polynomial is 2(1)(6)x x +- or 2(6)(1)x x -+

------------------------------------------------------------------------------------

-------------------------------

Let 120000A ⎛⎫=

⎪⎝⎭

. Find the Moore-Penrose inverse A +

of A .