检测技术电机转速实验平台设计方案
- 格式:doc
- 大小:192.00 KB
- 文档页数:23
摘要在当今工业生产过程中,越来越多的场合需要测量电机的转速,转速已成为电机最重要的工作参数之一。
测量转速的方法有许多,最常用的两种方法为:光电式传感器测转速,霍尔式传感器测转速。
本文将着重介绍基于单片机的霍尔式传感器测量转速。
关键词:霍尔传感器,单片机,转速。
目录1引言 (2)2设计要求 (2)3方案论证 (2)3.1测量方法的选型 (3)3.2核心处理模块的方案 (3)3.2.1控制芯片的选型 (3)3.2.2采用51单片机测量的方案论证 (4)3.2.3软件系统设计方案 (4)3.3电机转速测量模块的方案 (5)3.4电机转速控制方案 (5)3.5显示模块方案 (6)4系统设计 (6)4.1单片机模块 (6)4.1.1 51单片机介绍 (6)4.1.2系统的复位电路 (8)4.1.3系统时钟电路设计 (8)4.1.4 IO口管脚分配 (9)4.2电机转速控制 (9)4.3显示模块 (10)4.3.1 LCD1602介绍和指令 (10)4.3.2LCD1602的工作时序 (13)4.4霍尔传感器模块 (13)5.软件系统设计 (14)5.2程序模块 (15)5.2.1数据采集处理部分和PWM输出部分 (15)5.2.2 LCD1602显示部分 (16)参考文献 (17)原理图 (18)1.引言转速是电动机极为重要的一个状态参数,在很多运动系统的测控中,都需要对电机的转速进行测量,速度测量的精度直接影响系统的控制情况,它是关系测控效果的一个重要因素。
不论是直流调速系统还是交流调速系统,只有转速的高精度检测才能得到高精度的控制系统。
本系统以AT89C51单片机为控制核心,用霍尔传感器作为测量小型直流电机转速的检测元件,经过单片机实时数据处理,用LCD1602显示小型直流电机的转速。
本系统可对转速0—3000r/min 进行高精度测量。
且还可扩展更宽的测量范围。
2.设计要求基于霍尔传感器的电机转速测量系统设计,测量范围:0-3000转/分,测量精度:±3转/分,实时显示。
电机转速测量课程设计一、课程目标知识目标:1. 学生能理解电机转速测量的基本原理,掌握相关概念,如转速、频率、周期等。
2. 学生能够掌握至少两种不同的电机转速测量方法,并了解其优缺点及适用场景。
3. 学生能运用所学知识,解释实际电机转速测量过程中可能出现的误差及其原因。
技能目标:1. 学生能够正确使用转速表、示波器等实验器材进行电机转速的测量,并准确读取数据。
2. 学生能够运用数据处理软件(如Excel、Origin等)对测量数据进行分析和处理,绘制图表,得出结论。
3. 学生能够通过小组合作,设计并实施简单的电机转速测量实验,提高实际操作能力。
情感态度价值观目标:1. 学生通过学习电机转速测量,培养对物理实验的兴趣,提高探索精神和实践能力。
2. 学生在小组合作中,学会沟通、协作,培养团队精神和责任感。
3. 学生能够认识到电机转速测量在工程实际中的应用,增强理论联系实际的能力,提高解决实际问题的信心。
本课程针对高年级学生,旨在通过电机转速测量这一具体实例,使学生将所学理论知识与实际操作相结合,提高学生的实践能力和创新能力。
课程要求学生在掌握基本原理的基础上,注重实验操作和数据处理能力的培养,同时关注学生情感态度价值观的塑造,使学生在知识、技能和情感等多方面得到全面发展。
二、教学内容本章节教学内容主要包括以下三个方面:1. 理论知识:- 电机转速测量原理:介绍转速与频率、周期的关系,阐述测速传感器的工作原理。
- 测速方法:详细讲解电磁式测速、光电式测速、霍尔效应测速等常见方法及其优缺点。
2. 实践操作:- 实验设备使用:指导学生正确使用转速表、示波器等实验器材,掌握实验操作步骤。
- 数据采集与处理:教授学生如何采集数据、处理数据,使用数据处理软件绘制图表,分析结果。
3. 教学案例与讨论:- 分析实际电机转速测量案例,让学生了解工程实际中的应用,提高解决实际问题的能力。
- 小组讨论:针对案例,分组讨论测量方案的优化,培养学生团队协作和沟通能力。
电机课程设计题目:电机转速测量系统院(系):专业:学生姓名:学号:指导教师:职称:目录:1、摘要------------------------------------------------------------------------------------------------------32、系统结构----------------------------------------------------------------------------------------------33、获取脉冲信号的方法----------------------------------------------------------------------------4 3、1霍尔传感器-------------------------------------------------------------4 3、2 光电传感器-------------------------------------------------------------5 3.3光电编码器-------------------------------------------------------------64、硬件连接图及原理------------------------------------------------------------------------------65、实验程序及分析-----------------------------------------------------------------------------------8 6.仿真-----------------------------------------------------------------157、PROTEL DXP原理图-------------------------------------------------------------------168、PCB图-------------------------------------------------------------------------------------------------169、硬件调试结果与分析-------------------------------------------------------------------------1710、谢词---------------------------------------------------------------------------------------------------1711、参考文献--------------------------------------------------------------------------------------------181.摘要测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。
电机转速检测课程设计一、课程目标知识目标:1. 让学生理解电机转速的基本概念,掌握转速与频率的关系;2. 使学生掌握电机转速检测的原理和方法,了解不同检测设备的优缺点;3. 引导学生运用所学知识,分析实际电机转速检测案例,提高问题解决能力。
技能目标:1. 培养学生运用传感器进行电机转速检测的实操能力;2. 培养学生使用相关软件进行数据采集、处理和分析的能力;3. 提高学生团队协作、沟通表达及动手实践的能力。
情感态度价值观目标:1. 激发学生对电机转速检测技术的兴趣,培养其探索精神和创新意识;2. 培养学生严谨的科学态度,使其认识到精确测量在工程技术中的重要性;3. 引导学生关注电机转速检测技术在工业生产中的应用,增强其社会责任感。
课程性质分析:本课程为实践性较强的课程,旨在帮助学生将理论知识与实际应用相结合,提高解决实际问题的能力。
学生特点分析:学生具备一定的物理知识和实验技能,但可能对电机转速检测的实际应用了解不足,需通过本课程加强实践操作和案例分析。
教学要求:结合课本内容,注重理论与实践相结合,突出实操环节,强化团队合作,提高学生的实际操作能力和问题解决能力。
通过分解课程目标,为后续教学设计和评估提供明确依据。
二、教学内容1. 理论知识:- 电机转速的基本概念与计算方法;- 转速与频率的关系及其在电机转速检测中的应用;- 常见电机转速检测设备的工作原理及优缺点分析。
2. 实践操作:- 使用传感器进行电机转速检测的实操方法;- 数据采集、处理和分析的操作步骤;- 案例分析:实际电机转速检测项目操作流程及问题解决方法。
3. 教学大纲安排:- 理论知识:第1-2课时,学习电机转速基本概念、计算方法和转速与频率的关系;- 理论知识:第3-4课时,分析不同电机转速检测设备的工作原理及优缺点;- 实践操作:第5-6课时,学习使用传感器进行电机转速检测的实操方法;- 实践操作:第7-8课时,学习数据采集、处理和分析的操作步骤;- 案例分析:第9-10课时,进行实际电机转速检测项目操作流程及问题解决方法的案例分析。
中国计量学院电机转速测量仪设计学生姓名:指导老师:学院: 现代科技学院专业班级:电气1112014 年 03 月06 日1.绪论2.1任务(1)采用霍尔或光电传感器设计一能测量电机转速的测量仪器。
(2)电机转速在100-3000转/分之间。
(3)动态实时显示,显示稳定,显示位数3位。
(4)可采用传感器结合单片机电路实现。
2.2要求(1)绘制系统框图及电路原理图各一份a.标明所有集成电路的型号、引脚序号、功能。
b.标明所有集成电路的电源电压。
c.标明所有元器件的数值或取值范围。
(2)叙述整个系统的工作原理。
(3)详细记录实施中所遇到的问题及问题产生的原因,是如何解决的。
(4)设计转速测试方案,记录测量结果,并进行适当的误差分析。
(5)调试合格后写出综合设计报告。
(6)你对本次课程设计有何体会、建议、和意见。
2.3方案的选择与论证方案一:霍尔元件测速法霍尔元件测速法是利用霍尔开关元件测转速的。
霍尔开关元件内含稳压电路、霍尔电势发生器、放大器、施密特触发器和输出电路。
输出电平与TTL电平兼容,在电机转轴上装一个圆盘,圆盘上装若干对小磁钢,小磁钢越多,分辨率越高,霍尔开关固定在小磁钢附近,当电机转动时,每当一个小磁钢转过霍尔开关,霍尔开关便输出一个脉冲,计算出单位时间的脉冲数,即可确定旋转体的转速,但由于现有材料的限制,放弃此方案。
方案二:采用反射式光电传感器在测速一端放置反射式红外传感器,当带有遮挡物的电转轴经过时,利用其对红外线的反射能力,接收端检测到信号。
但是电机的空间较小,传感器不能稳定的放置,对测量产生较强的干扰,故放弃此方案。
方案三:采用槽式光电开关采用槽式红外对射式光电开关,集成度高,体积小,功能齐全,电线引出式,电源内藏式具备继电器大功率输出,具备交直流通用型,电压范围宽,抗震性能好,速度检测非常稳定,精度较高,成本低,经过实验可发现槽式式红外光电开关能比较灵敏地测出电机转动的圈数。
利用测量一秒内转过的圈数可测得电机的转速。
一种电机转速测量装置的设计摘要本文介绍了一种电机转速测量装置的设计方案。
该装置采用了特定的传感器和微处理器,能够精确测量电机的转速,并通过显示屏和接口提供实时数据输出。
该设计方案具有简单、可靠、高精度等特点,适用于电机转速测量及控制系统中的各种应用。
介绍电机转速是衡量电机性能的重要指标之一。
在许多工业应用中,需要对电机转速进行准确测量,以确保工作效率和设备的正常运行。
本文提出的电机转速测量装置能够满足这一需求,并具有一定的创新性和实用性。
设计原理本设计方案采用非接触式磁性传感器来测量电机转速,具体原理如下:1.将一个小型磁体固定在电机的转轴上,并将磁感应线圈固定在电机壳体上。
2.当电机转动时,磁感应线圈会受到转轴上磁体的磁场变化影响,从而产生感应电动势。
3.通过对感应电动势的采样和处理,可以得到电机转速的准确值。
设计方案硬件设计硬件设计包括磁感应线圈、信号调理电路以及显示和接口部分。
1.磁感应线圈:采用高灵敏度的磁感应线圈,以确保对电机的微小磁场变化进行准确感应。
2.信号调理电路:对磁感应线圈输出的微弱信号进行放大、滤波和调整,以获得稳定、可靠的转速信号。
3.显示和接口:采用高清液晶显示屏显示电机转速,并提供多种接口,如U SB、R S232等,以实现数据的实时输出和远程监控。
软件设计软件设计方面,主要涉及信号处理与转速计算、用户界面显示和数据输出等。
1.信号处理与转速计算:采用微处理器对从信号调理电路获得的转速信号进行采样、滤波和计算,得到准确的电机转速值。
2.用户界面显示:通过设计直观友好的用户界面,将电机转速实时显示在液晶屏上,方便用户实时观察和检测。
3.数据输出:提供多种数据输出接口,如U SB、R S232等,以满足用户对转速数据的实时输出和记录需求。
特点和优势1.精确度高:通过采用高灵敏度的磁感应线圈和精确的信号处理算法,能够实现对电机转速的准确测量,误差小于1%。
2.稳定可靠:采用小型磁体和固定式磁感应线圈,避免了传统触点式测速器件的接触磨损和故障问题,提高了稳定性和可靠性。
转速测量设计实验报告1. 实验目的本实验旨在设计并实现一种测量转速的方法,并验证其准确性和稳定性。
2. 实验原理2.1 传感器原理转速测量一般需要通过传感器来实现。
常见的转速传感器有光电传感器、霍尔传感器和接触式触发器等。
本实验采用光电传感器作为转速测量的感知器件。
光电传感器通过发射红外光束,并根据反射光的变化来测量目标物体的运动速度。
2.2 转速计算方法根据光电传感器感知到的目标物体的运动情况,我们可以计算出目标物体的转速。
转速的计算方法如下:速度= \frac {2\pi r}{T}其中,速度为目标物体的线速度,r为目标物体的半径,T为目标物体绕轴旋转一周所需的时间。
3. 实验设计本实验的设计思路是在目标物体上固定一块白色圆片,并将光电传感器放在圆片的旁边。
光电传感器产生的红外光束会照射到圆片上,并由圆片反射回光电传感器。
当目标物体旋转时,圆片运动会导致光电传感器感受到反射光的变化。
我们通过记录光电传感器输出的电信号的变化来计算目标物体的转速。
实验所需材料如下:- 光电传感器- 白色圆片- 电路连接线- 示波器(或数字多用表)实验步骤如下:1. 将光电传感器固定在实验平台上,使其能够与目标物体保持一定的距离。
2. 将白色圆片固定在目标物体上,并使其与光电传感器处于同一平面。
3. 连接光电传感器的输出端和示波器(或数字多用表)。
4. 打开示波器(或数字多用表)并设置合适的测量范围。
5. 启动目标物体的旋转,记录光电传感器输出的电信号的变化。
6. 根据记录到的数据,计算目标物体的转速。
4. 实验结果与分析在实验中,我们通过示波器记录了光电传感器输出的电信号的变化,并根据这些数据计算了目标物体的转速。
实验结果显示,我们所设计的转速测量方法具有较高的准确性和稳定性。
在实际使用中,我们可以根据实验结果进行进一步优化和改进。
例如,可以根据目标物体的特性选择合适的感知器件,调整光电传感器和目标物体之间的距离,以及对于输出信号的处理等等。
电动机转速测量系统设计[摘要] 采用基于VC++的上位机软件作为转速测量平台,下位机采用ATmega8单片机作为控制核心,用直流电动机作为受控对象。
转速由增量式编码器测得,用PWM的方法控制电动机,电动机转速数据通过RS232接口实时传送到上位机。
上位机软件可将转速数据绘成曲线图,通过曲线图可测量电动机在不同时刻的转速。
[关键词] 电动机转速测量VC++电动机转速测量系统设计,采用ATmega8单片机作为控制核心,用自带增量式编码器测速的直流电动机作为受控对象,转速信号反馈到单片机,并充分利用单片机内部的PWM调制器控制直流电动机的转速,同时将电动机转速实时传送到上位机,基于VC++的电动机转速测量系统分析平台以曲线图形式将电动机转速变化情况直观地呈现在上位机软件平台上。
通过软件平台上的刻度尺,可直接读取电动机的实时转速并可储存测量的转速数据。
1.转速测量系统方案电动机转速测量系统的方案组成框图如图1所示。
ATmega8单片机为控制核心,通过其片内PWM调制器产生控制电动机的PWM信号,经过功率放大电路放大后驱动直流电动机,增量式编码器用于采集直流电动机的转速信号,转换为TTL电平后反馈到单片机,单片机对反馈的数据进行处理后,通过RS232接口将采集到的电动机转速数据实时发送到上位机,基于VC++编程开发的“电动机转速测量分析平台”不断接收来自单片机发来的转速数据,并将之绘成曲线图,使电动机的转速变化一目了然。
系统中的直流电动机选用的是Sankyo生产的直流电动机,该电动机额定电压为12 V、额定电流为0.05 A,、额定转速为1 500 rpm,该电动机还自带增量式编码器,输出频率为60 ppr,其频率与电动机的转速成比例关系,编码器输出为TTL电平方波信号,可直接作为单片机计数器的触发信号,测量编码器输出信号的频率即可获得电动机的转速数据。
电动机的转速数据通过RS232接口传输到上位机,电动机转速测量分析平台接收到单片机传送的电动机转速数据后,将之绘成曲线,从界面上的坐标刻度可测量出某一时刻的电动机转速值。
摘要在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。
直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速范围、良好的起动性以及简单的控制电路等优点,因此在社会的各个领域中都得到了十分广泛的应用。
系统主要功能是:AT89C51单片机接受霍尔传感器传来的脉冲信号,单片机根据外部中断,以及内部定时器进行计数计算出电机转速送到LED并显示,外部装有蜂鸣器电路,在超速或低俗过低都会停止电动机,蜂鸣器发音,显示器不显示,从实用角度看,评价一个系统实用价值的重要标准,就是这个系统对社会生活和科技观念有多大的贡献。
本设计以单片机为核心设计一个电动机转速测定及数据显示控制系统,要求对转速范围在0-3000r/min的直流调速电动机进行测量并显示,转速数据显示精度要达到转速个位数,有转速高、低限报警提示。
本设计使用6V直流电机。
将霍尔传感器产生的脉冲信号输入到单片机外部中断0口,单片机工作在内部定时器工作方式0,对周期信号进行计数,调用计算公式计算出转速,调用显示程序在LED上,其主要内容是单片机部分主要完成电机转速的测量,LED显示部分主要是把转速显示出来,显示范围在0-3000r/min之间。
本设计主要研究直流电机的控制和测量方法,效率高,电路简单,使用也比较广泛,测速系统采用集成霍尔传感器敏感速率信号,具有频率响应快、抗干扰能力强等特点。
从而对电机的控制精度、响应速度以及节约能源等都具有重要意义。
关键词:单片机霍尔IC传感器 , DAC0832 直流电动机转速流程图A/D 和D/A转换器目录摘要 (2)第一章:引言 (5)第二章:系统功能分析 (7)2.1 系统功能概述 (7)2.2 系统要求及主要内容 (7)2.3 系统技术指标 (7)第三章:系统总体设计 (8)3.1 硬件电路设计思路 (8)3.2 软件设计思路 (9)第四章:硬件电路设计 (8)4.1 单片机描述 (12)4.1.1 AT89C51引脚及作用 (12)4.1.2 ULN2003引脚图及功能 (13)4.2 外围电路设计 (14)4.2.1时钟电路 (14)4.2.2复位电路 (14)4.2.3测速电路 (15)4.2.4报警电路 (16)4.2.5显示电路 (16)4.2.6 74HC573引脚图及功能 (18)第五章:软件电路设计 (20)第六章:系统调试 (23)6.1 硬件调试 (23)6.2 软件调试 (24)6.3 综合调试 (24)6.4 故障分析与解决方案 (24)6.4.1 故障出现情况 (24)6.4.2 解决方案 (25)第七章:结论 (30)参考文献 (31)致谢 (28)附录 (29)第一章引言电子技术的高速发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术进入到一个新的阶段。
转速测量系统设计与总结报告摘要:转速作为电动机正常运行时的一个重要状态参数,在很多情况下都需要对转速进行测量,因此,制作一个转速测量系统很具有现实意义。
本系统采用光电红外传感器对转速进行采样,由555构成的施密特触发器对采样信号进行调整使其形成规范的时钟脉冲,再由FPGA构成的加法计数器进行计数,最后由单片机构成测量系统的控制核心部分对整个系统进行控制并最终输出测量转速。
由于系统的信号采集部分和控制部分可由导线相连,这样就可灵活采集到不同情况下的转速提高了本系统的实用性。
关键字:转速测量系统、光电红外传感器、555、FPGA、单片机、数码管Abstract:As a motor speed during normal operation, one of the important state parameter, in many cases all need to speed measuring, therefore, make a speed measurement system is very realistic. The system adopts photoelectric infrared sensor to speed sampling by 555, composed of sampling signal Schmitt toggle to adjust to the forming of the regulation of the clock pulse, again by a counter FPGA addition to count, and finally the single-chip computer constitute the core of control measurement system to control the whole system and finally output measurement speed. Because the system the signal acquisition part and control part can be connected by wire, so that it can be flexible acquisition to different conditions in the speed of the system improves the practicability.Key word:speed measurement system、photoelectric infrared sensor、555、FPGA 、single-chip microcomputer、digital tube引言:随着科学技术的飞速发展,用于转速测量的途径越来越多,因此在工业生产中转速的测量变得越来越简单同时测量系统也越来越精确和简捷。
电机检测系统简要方案电机检测系统是现代化生产中的一个基础性工具,其准确度直接关系到制造工业产品的质量和效率。
因此,设计一种高效、精确、便捷的电机检测系统就成为了工业发展中的重要课题之一。
本文将简要介绍电机检测系统的方案,从其设计、实现、其重要性及系统的优缺点等方面进行阐述。
一、设计电机检测系统是通过对电动机的一系列检测,来获取电机工作状态的一种设备。
一般包含功率、转速、振动、温度、电流、电压等几大要素的监测。
因此,在设计电机检测系统时,需考虑到电机的工作准确度、监测精度、故障诊断等多种问题。
首先,需明确电机检测的基本指标。
其次,根据不同类型的电机、参数指标的不同,设计合适的技术手段来检测电机性能。
最后,根据设备的特性以及价格等因素,综合考虑选择合适的电机检测系统。
二、实现在实现电机检测系统时,需要结合相关技术手段和测试设备。
其中,主要分为两个步骤:采集电机数据、分析电机数据。
采集电机数据一般采用直接测量法、瞬态分析法、频谱分析法、阻抗分析法等方法进行;分析电机数据则主要通过数据处理软件、人工智能算法等方式进行。
三、重要性电机检测系统的应用具有高度的实用价值和广泛的应用领域。
电机作为工业生产机械的重要动力源,其质量直接影响到产品质量和效率。
通过电机检测系统,可以对电机进行准确监测,获取电机运行情况的数据,及时发现降低电机效率的因素,避免不必要的生产损失和安全事故。
同时,电机检测系统也可为电机机械维护提供有效的技术手段和管理工具,对维护人员提供准确的故障诊断和维修方案,提高机器设备的效率和利用率。
四、优缺点电机检测系统具有如下的一些优点:1.高精度:电机检测系统具备高精度的测试技术和数据处理能力,准确度高;2.便捷性:电机检测系统具备运输装载灵活,操作简便的特点,达到使用的方便;3.提高产量:电机检测系统能够准确监测电机性能,及时发现电机降效问题,从而有助于提高产量和效率。
当然,电机检测系统也存在一些缺点,比如成本较高、设备占用空间大等问题。
基于霍尔传感器的电机转速测量系统目录1.3设计任务与要求 01.3.1 设计任务 01.3.2 设计要求 01.4小结.................................................. 错误!未定义书签。
2 课题方案设计 (1)2.1系统总体设计要求 (1)2.2系统模块结构论证 (1)2.2.1 霍尔测速模块论证与选择 (1)2.2.2 计数器模块论证与选择 (1)2.2.3 显示模块论证与选择 (2)2.2.4 报警模块论证与选择 (2)2.2.5 电源模块论证与选择 (2)2.2.6 单片机模块论证与选择 (3)2.3转速测量方案论证 (3)2.3.1 方案一电机轴一侧贴磁片 (3)2.3.2 方案二电机转轴加测速转盘 (4)2.3.3 方案对比 (4)2.4小结 (4)3 系统总体设计 (5)3.1总体硬件设计 (5)3.1.1 硬件原理图 (5)3.1.2 硬件电路设计总图 (6)3.2系统子模块简介 (6)3.2.1 传感器部分 (7)3.2.2 计数器 (7)3.2.3 处理器 (7)3.2.4 LCD显示部分 (8)3.2.5 外接报警部分 (8)4 软件设计 (9)4.1程序设计步骤 (9)4.2程序流程图 (9)4.2.1 主程序流程图 (10)4.2.2 中断服务流程图 (11)4.3软件程序设计 (13)4.3.1 主程序设计 (13)4.3.2 中断服务程序设计 (15)4.3.3 显示程序设计 (17)4.3.4 报警程序设计 (18)4.3.5 转速程序的设计 (19)4.3.6 软件程序基础知识准备 (20)5 软件调试 (21)5.1P ROTEUS及KEIL软件简介 (21)5.1.1 Proteus软件 (21)5.1.2 KEIL软件 (22)5.2应用KEIL软件进行程序调试 (23)5.3P ROTEUS软件仿真 (23)5.3.1 仿真步骤 (23)5.3.2 仿真实例 (24)5.4硬件软件联合调试 (27)5.4.1 联调步骤 (27)5.4.2 搭接检查步骤 (28)6 结论 (29)附录 (30)参考文献 (40)致 (42)1.3 设计任务与要求1.3.1 设计任务根据学校毕业设计的要求,设计一个功能满足设计要求、工作稳定、以单片机为核心的基于霍尔传感器的电机转速测量系统,能够实现在电机工作时转速的测量,并在发生故障时能及时的发出报警信号。
实验3 电机转速测量实验一、实验目的:了解开关式霍尔传感器、磁电传感器和光电传感器测量电机转速的原理。
二、基本原理:开关式霍尔传感器是线性霍尔元件的输出信号经放大器放大,再经施密特电路整形成矩形波(开关信号)输出的传感器。
开关式霍尔传感器测转速的原理框图3—1所示。
当被测圆盘上装上6只磁性体时,圆盘每转一周磁场就变化6次,开关式霍尔传感器就同频率f相应变化输出,再经转速表显示转速n。
图3-1 开关式霍尔传感器测转速原理框图磁电传感器是一种将被测物理量转换成为感应电势的有源传感器,也称为电动式传感器或感应式传感器。
根据电磁感应定律,一个匝数为N的线圈在磁场中切割磁力线时,穿过线圈的磁通量发生变化,线圈两端就会产生出感应电势,线圈中感应电势:Φ=-de Ndt。
线圈感应电势的大小在线圈匝数一定的情况下与穿过该线圈的磁通变化率成正比。
当传感器的线圈匝数和永久磁钢选定(即磁场强度已定)后,使穿过线圈的磁通发生变化的方法通常有两种:一种是让线圈和磁力线作相对运动,即利用线圈切割磁力线而使线圈产生感应电势;另一种则是把线圈和磁钢部固定,靠衔铁运动来改变磁路中的磁阻,从而改变通过线圈的磁通。
因此,磁电式传感器可分成两大类型:动磁式及可动衔铁式(即可变磁阻式)。
本实验应用动磁式磁电传感器,实验原理框图如图3-2所示。
当转动盘上嵌入6个磁钢时,转动盘每转一周磁电传感器感应电势e产生6次的变化,感应电势e通过放大、整形由频率表显示f,转速n=10f。
图3-2磁电传感器测转速实验原理框图光电式转速传感器有反射型和透射型二种,本实验装置是透射型的(光电断续器也称光耦),传感器端部二内侧分别装有发光管和光电管,发光管发出的光源透过转盘上通孔后由光电管接收转换成电信号,由于转盘上有均匀间隔的6个孔,转动时将获得与转速有关的脉冲数,脉冲经处理由频率表显示f,即可得到转速n=10f。
实验原理框图如图3-3所示。
图3-3 光耦测转速实验原理框图三、需用器件与单元:主机箱中的转速调节0~24V直流稳压电源、+5V直流稳压电源、电压表、频率\转速表;转动源、霍尔转速传感器、磁电传感器、光电转速传感器—光电断续器(已装在转动源上)。
毕业设计(论文)题目:电机转速测量系统设计院(系)光电工程学院专业测控技术与仪器班级100106班姓名叶亚锋学号100106117导师李党娟2014 年 5 月20 日电机转速测量系统设计西安工业大学光电工程学院叶亚锋摘要:电机是电力系统的主要设备,而电机转速是衡量动力系统正常工作的重要的性能指标,因而需要测量电机转速,使它满足人们的各种需求。
在本设计中多次采用施密特触发器,成为电路的主控芯片,控制着信号的定时和锁純。
用三片CD40110BE级联实现电路的计数、译码、数码管的驱动等功能,通过对光电耦合器产生的脉冲数进行统计,并把所得到的计数脉冲转化为电机的转速值,利用施密特触发器完成数器的清零和锁純,计数器计数译码后将信号输送到数码管,动态的显示脉冲数目,最后根据脉冲数目计算电机的转速。
本设计采用的电子元器件简单普遍,线路连接简单,安装调试容易,测量结果精确,具有较高的实用价值。
关键词:光电耦合器;施密特触发器;计数器;数码显示。
Design of motor speed measurement system Abstract: The motor is the main equipment of power system, and the motor speed is an important performance ind ex to measure the power system normal operation, therefore need to speed measuring motor, make it meet the needs of peopl e. The Schmidt trigger multipl e times in the d esign of main circuit, a control signal timing and l ock the key part of pure. Circuit realization of counting, d ecoding, digital tube driver functions with three slice CD40110BE cascad e, statistics through the pulse number on the photoelectric coupl er, and count the pulses to the motor speed value, compl ete number is cl ear and pure use l ock Schmidt flip-fl op, counter after d ecoding the signal transmitted to the the digital tube dynamic display, pulse number, pulse number according to the cal culated motor speed. El ectronic components used in this d esign simpl e and common, simpl e circuit, easy installation, accurate measurement result, and has higher practical value.Keywords:photoelectric coupler;Schmidt trigger;timer;counter;digital display.目录第一章绪论 (4)1.1课题研究的目的和意义 (4)1.2 转速测量在国内外的研究 (4)1.3电机转速的测量方法 (5)1.3.1测频法“M法” (5)1.3.2测周期法“T法” (6)1.3.3 测频测周法“M/T法” (7)第二章转速测量系统的总体方案 (9)2.1 设计任务 (9)2.2设计思路 (9)2.3原理框图 (9)2.4设计的意义 (9)第三章系统硬件电路的设计 (10)3.1 主控芯片的选择 (10)3.2 硬件电路的实现 (10)3.2.1电源电路 (10)3.2.2电机转速脉冲产生电路 (11)3.2.3计数电路 (14)3.2.4控制电路 (16)3.2.5显示电路设计 (19)第四章电路的焊接与调试 (21)4.1电路连接过程的注意事项 (21)4.2电路的调试 (22)4.3转速测量系统的误差分析 (24)第五章总结与展望 (25)5.1 总结 (25)5.2 展望 (25)致谢 (26)参考文献 (27)附录:电机转速测量系统原理图 (28)第一章绪论1.1课题研究的目的和意义电机是将电能从最初的能源形式转换过来的重要桥梁,又是再将大部分电能转换为机械能的装置,电机在电力工业、工矿企业、农业、交通运输业、国防、科学文化及日常生活等方面都是十分重要的设备,在电力工业中,将机械能转换为电能的发电机以及将电网电压升高或降低的变压器,都是电力系统中的关键设备。
电信学院毕业设计(论文)任务书题目基于Hall传感器的电机转速检测系统设计学生姓名班级学号题目类型工程设计指导教师何俊学系主任李炜一、毕业设计(论文)的技术背景和设计依据电机转速是一个常见的重要非电量。
转速的测量和控制技术应用十分广泛。
随着微型计算机的广泛应用,单片机技术的日新月异,特别是高性能单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成,使系统能达到更高的性能。
数字式检测系统通常采用光电编码器、圆光栅、霍尔元件等作为检测元件,得到的信号是脉冲信号。
然后通过信号调理电路将有用信号送入单片机进行处理。
单片机已经渗透到各个领域。
单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域。
单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。
本研究将电机转速作为检测对象,采用Hall传感器作为敏感元件对转速进行检测,采用单片机作为控制芯片对检测到的数字信号进行处理。
该检测系统具有广泛的应用价值,系统具有使用方便、成本低、可靠性高等优点;同时便于为后续的相关研究形成基础平台。
二、毕业设计(论文)的任务1、熟悉题目要求,查阅相关科技文献,掌握控制、通讯及转速检测等技术要求;2、基于单片机的转速检测系统的研究平台方案设计,包括方案论证与确定、技术经济分析等内容;3、硬件和软件设计;(其中还包括理论分析、设计计算、实验及数据处理、设备及元器件选择等)4、撰写设计说明书(毕业论文),绘制图纸;5、完成指定内容的外文资料翻译。
6、其它三、毕业设计(论文)的主要内容、功能及技术指标1、毕业设计的主要内容1)设计说明书正文主要内容要求①总体方案论证②基于单片机的转速检测系统的硬件;③基于单片机的转速检测系统的软件;④数据分析;⑤结论。
苏州经贸职业技术学院机电系应用电子技术(电子产品营销)专业毕业设计论文(霍尔传感器电机转速测量系统的设计)学生姓名:指导教师:2013年1月目录摘要 (I)绪论 (II)I 课题研究的目的和意义 (II)II 转速测量在国内外的研究 (II)III 主要研究内容 (II)第一章电机转速测量常用方法 (1)1.1 测频法(“M法”) (1)1.2 测周期法(“T法”) (1)1.3 本设计系统中采用的方法 (2)第二章系统总体方案设计 (3)2.1总体设计方案 (3)第三章硬件电路设计 (4)3.1 单片机最小系统设计 (4)3.1.1 时钟电路 (4)3.1.2 复位电路 (4)3.1.3 电源电路.......................................... 错误!未定义书签。
3.2 霍尔传感器测量电路设计 (5)3.2.1 霍尔传感器原理 (5)3.2.2 开关型霍尔传感器 (5)3.3 信号处理电路设计 (7)3.4 显示电路设计 (8)3.4.1 LCD1602简介 (8)3.4.2 LCD显示电路 (8)3.5 按键电路设计 (9)3.6 蜂鸣器报警电路设计 (10)第四章软件设计 (11)4.1 系统开发环境 (11)4.2 系统开发语言 (11)4.3 软件总体设计 (12)第五章系统调试 (13)5.1 Protues仿真 (13)5.2 系统调试结果 (14)结论 (15)致谢 (16)参考文献 (17)附录 (18)附录1 (18)附录2 ................................................... 错误!未定义书签。
摘要在工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。
模拟式采用测速发电机为检测元件,得到的信号是模拟量。
数字式通常采用光电编码器,霍尔元件等为检测元件,得到的信号是脉冲信号。
电机实验方案1. 引言电机作为电力转换的一种主要设备,广泛应用于各个领域。
在工程实践中,对电机的性能进行准确的测量是非常重要的。
本文将介绍一种基于实验的电机性能测量方案,旨在帮助读者了解电机的基本性能参数及其测量方法。
2. 实验目的本实验的目的是测量和分析电机的基本性能参数,包括转速、电流、扭矩等,并了解电机的负载特性。
3. 实验器材以下是本实验所需的基本器材和设备:•电机:选择一款适用于实验的直流电机或交流电机。
•直流电源或交流电源:用于提供电机的工作电压。
•电流表:用于测量电机的电流。
•转速计:用于测量电机的转速。
•负载装置:用于加载电机,可以是电阻器、发电机或其他负载装置。
4. 实验步骤步骤1:准备工作1.将电机安装在适当的支架上,并连接电源线和负载线。
2.连接电流表和转速计,确保准确的测量。
步骤2:测量电机的空载特性1.打开电源,设置合适的电压供电电机。
2.首先测量电机的空载电流和空载转速,记录数据。
步骤3:测量电机的负载特性1.将负载装置连接到电机,并逐步增加负载。
2.每增加一个负载,测量电机的电流、转速和扭矩,并记录数据。
3.重复步骤2,直到达到电机的额定负载。
步骤4:分析数据1.根据测量数据,绘制电机的转速-负载曲线、电机的电流-负载曲线和电机的扭矩-负载曲线。
2.根据曲线分析,找到电机的额定电流、额定转速、额定扭矩等性能参数。
5. 实验注意事项•在实验过程中,请注意安全操作,避免触电或其他意外情况的发生。
•操作电源和电路时,请确保断开电源,并小心处理各种电线连接。
•在更改负载时,逐步增加负载,以避免电机突然负荷过重。
•在测量电机的转速时,确保转速计正确安装并与电机相连。
•记录和保存实验数据,并根据需要进行进一步的分析。
6. 结论通过以上实验方案,我们可以准确测量和分析电机的基本性能参数,并了解其负载特性。
这些数据对于电机的设计和应用具有重要的参考价值,能够帮助工程师们优化电机的工作效率和性能。
传感器原理与应用课程设计专业:测控技术与仪器设计题目:传感器测量电机转速班级:测控1041学生姓名:彭帅学号: 08指导教师:张立新冯璐分院院长:许建平教研室主任:冯璐摘要在工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。
模拟式采用测速发电机为检测元件,得到的信号是模拟量。
数字式通常采用光电传感器,霍尔元件等为检测元件,得到的信号是脉冲信号。
随着微型计算机的广泛应用。
本设计主要用霍尔传感器作为控制核心,由光电传感器、霍尔传感器、电涡流传感器、LED数码显示器、MAX232CPE电平转换、及RS232构成。
同时,专设数字频率对传感器输出的频率信号进行显示。
充分发挥了霍尔传感器的性能。
关键字:电机转速光电传感器霍尔传感器电涡流传感器目录第一章绪论11.1本设计课题的目的和意义11.2数字式转速测量系统的发展背景1 1.3转速测量方法概述2第二章系统方案提出和论证42.1测量系统的构成42.2转速测量的方法52.3转速测量方案的选择72.3.1霍尔传感器测量方案82.3.2 光电传感器测量方案92.3.3 涡流传感器测量方案102.3.4传感器测转速方案的确定11第三章系统硬件设计133.1光电传感器转速测量133.2霍尔传感器转速测量15总结与体会17参考文献18附录19第一章绪论1.1 本设计课题的目的和意义转速是工程中应用非常广泛的一个参数,其测量方法较多,而模拟测量及模拟处理一直是转速测量的主要方法,这种测量方法已不能适应现代科技发展的要求,在测量范围和测量精度上,已不能满足大多数系统的使用。
随着大规模及超大规模集成电路技术的发展,数字系统测量达到普遍应用,特别是单片机对脉冲数字信号的强大处理能力,使得全数字测量系统越来越普及,其转速测量系统也可以用全数字化处理。
在测量范围和测量精度方面都有极大的提高,因此,本课题的目的:对各种测量转速的基本方法给予分析,针对不同的应用环境,利用80C51设计一种数字化测量系统,从提高测量精度的角度出发,分析讨论产生误差的原因,为今后的实际使用提供借鉴。
本次设计以传感器为中心,设计全数字化的测量转速系统,在工业控制和民用电器中都有较高的使用价值。
如:数控机床的电机转速检测和控制、水泵流量控制、车辆里程表、车速表等。
其次,该转速测量系统由于采用全数字化结构,因而可以很方便的和工业控制计算机进行连接,从而实现远程管理和控制,进一步提高现代化水平。
1.2 数字式转速测量系统的发展背景目前国内外测量电机转速的方法很多,按照不同的理论方法,先后产生过模拟测速法<如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法<如机械式或闪光式频闪测速仪)以及计数测速法。
计数测速法又可分为机械式定时计数法和电子式定时计数法。
传统的电机转速检测多采用测速发电机或光电数字脉冲编码器,也有采用电磁式<利用电磁感应原理或可变磁阻的霍尔元件等)、电容式<对高频振荡进行幅值调制或频率高)分辨率和高精度的优点。
加之激光源、光栅、光学码盘、CCD器件、光导纤维等的相继出现和成功应用,使得光电传感器在检测和控制领域得到了广泛的应用。
而采用光电传感器的电机转速测量系统测量准确度高、采样速度快、测量范围宽和测量精度与被测转速无关等优点。
1.3转速测量方法概述转速测量的方法有很多,根据工作原理可以分为计数式、模拟式、同步式。
计数式方法是用某种方式读出一定时间内的总转数;模拟式方法是测出由瞬时转速引起的某种物理量的变化;同步式是利用已知的频率与旋转体的旋转同步来测量转速,根据不同的转换方式,测试方法如下表1-1。
表1-1一般的转速测试可用机械式转速表、发电机式转速表以及频闪式测速表,但在有些情况下,其测量精度,瞬时稳定度不能满足更高的要求,因此,在测量方法和传感器的选择上显得尤为重要。
常用的传感器种类有光电传感器、电磁式传感器、电容式传感器等,而测量方法上有测量转速期、转速频率等。
就转速测量原理而言,大体可分为三大类,一是用单位时间内测得物体的旋转角度来计算速度,例如在单位时间内,累计转速传感器发出的N个脉冲,即为该单位时间内的速度。
这种以测量频率来实现测量转速的方法,称测频法,即“M”法;另一类是在给定的角位移距离内,通过测量这一角位移的时间来进行测速的方法,称测周法,即“T”法,如给定的角位移Δθ,传感器便发出一个电脉冲周期,以晶体震荡频率而产生的标准脉冲来度量这一周期时间,再经换算可得转速。
这两种测速方法各有缺点,“M”法一般用于高速测量,在转速较低时,测量误差较大,而且,检测装置对转速分辨能力也变差;而“T”法一般用于低速测量,速度越低测量精度越高,但在测量高转速时,误差较大;结合这两种测量方法就可以得出第三种测量方法,即“M/T”法结合这两种方法的优点,一方面象“M”法那样在对传感器发出的脉冲计数的同时,也象“T”法那样计取脉冲的时间,通过计算即可得出转速值。
在实际测量中,还须设定定时时间,兼顾高、低转速时的精度影响,适时调节采样时间。
第二章系统方案提出和论证转速是工程中应用非常广泛的一个参数,早期模拟测量及模拟处理一直作为转速测量的主要方法,这种则两方法在测量范围和精度上,已不能适应现代科技发展的要求。
而随着大规模及超大规模集成电路的发展,数字测量系统得到普遍应用,利用单片机对脉冲数字信号的强大处理能力,应用全数字化的结构,使得数字测量系统越来越普及,在测量精度方面有极大的提高,下面将测量系统作进一步探讨。
2.1 测量系统的构成一般转速测量系统有以下几个部分构成,如图2-1。
图2-1 转速测量框图1、转速信号采集:转速信号采集时整个系统的前端通道,目的是将外界的非电参量通过一定方式转换成电量,这一环节可以通过传感器来实现,方法如下:将敏感元件和相应的测量电路、传递机构以适当的形式制成不同类型、不同用处的传感器,根据原理输出电量。
该电量可以是模拟量、数字量、开关量。
2、整形、倍频:前向通道中,从传感器输出的信号必须转换成计算机输入要求的信号,由于信号调节电路与传感器的选择、现场干扰程度等,都会影响信号的质量。
而脉冲信号的上升沿和下降沿对数字电路的触发尤为重要,因此,一般需要对信号进行整形。
而倍频电路主要用于解决低转速时测量精度的问题。
3、驱动和显示:由于LED数码管具有高亮度、可靠性好等优点,工业测控系统中常用LED数码管作为显示输出。
本系统也采用LED进行显示,LED共有两种驱动方式:共阴和共阳驱动。
2.2 转速测量的方法1、测周期法<T法):转速可以用两脉冲产生的间隔宽度Tp来决定,用以采集数据的叶片一般有多扇叶片,若有N扇叶片,则其测量的时间只是每转的1/N,如图2-2所示,是T法脉宽测量。
Tp通过定时器测得,定时器对时基脉冲<频率为fc)进行计数定时,在Tp内计数值若为M2。
P为转轴转一周脉冲发生器发生的脉冲数,fc为硬件产生的时基脉冲频率,单位为:Hz,n为转速,单位:rpm,M2时基脉冲。
由上图2-2可知,T法测量精度的误差主要有两个方面,一:两脉冲的上升沿触发时间不一致产生的;二:计数和定时不一致产生的。
这种方法在测量低转速时精度高,但随着转速增加,精度变差。
2、测频法<M法)在一定测量时间T内,测量脉冲发生器产生的脉冲数m1来测量转速;如下图2-2所示。
图2-2 M法测量转速脉冲在设定的时间T内,转轴转过的弧度数为Xr,则转速为:<2-1)转轴转过的弧度数Xr可用下式表示:<2-2)因此,转速n的表达式为:<2-3)在该方法中,测量精度由于定时时间T和脉冲不能保证严格同步,以及在T内能否正好测量外部脉冲的完整周期,可能产生的一个脉冲的量化变差。
因此,为了提高测量精度,T要有足够长的时间,定时时间可根据测量对象情况预先设置。
3、测频测周期法<M/T法)所谓测频测周期法,即综合了T、M法分别对高、低转速具有的不同精度,利用各自的优点而产生的方法,精度高于两者之间。
如下图2-3所示为M/T法定时/计数测量。
图2-3 M/T法定时/计数测量可通过设置及选用合适的转速传感器加以控制。
M/T法采用三个定时器/计数器,同时对输入脉冲、高频脉冲及预设的定时时间进行定时和计数,m1反映转角,m2反映测速的准确时间,通过计算可得到转速n。
该法在高速,低速时都有相对较高的精度。
其计算方法如下:设高频脉冲的频率为fc,脉冲发生器每转发出p个脉冲,由式可得M/T法转速计算公式为:(2-4>N:转速,单位:rpmfc:晶体振荡频率,单位:Hzm1:输入脉冲数m2:时基脉冲数本次测量采用M法测量转速,这种测量方法所使用的测速范围及测量精度2.3 转速测量方案的选择转速测量的方案选择,一般要考虑传感器的结构、安装以及测速范围与环境条件等方面的适用性;再就是二次仪表的要求,除了显示以外还有控制、通讯和远传方面的要求。
同时,还要求本次设计的转速的测量范围为:0—10000rpm,分辨率为1rpm,精度:1%,根据以上的要求,共确定了三种传感器来对电机转速进行采集。
下面是对三套设计方案的简要说明。
2.3.1霍尔传感器测量方案霍尔传感器是利用霍尔效应进行工作的,其核心元件是根据霍尔效应原理制成的霍尔元件。
由霍尔效应原理知:霍尔片处于磁场中,并在垂直于磁场的方向上通以电流时,霍尔片上与电流和磁场垂直的方向会产生霍尔电势差V=KBI,当通过霍尔片的电流恒定不变时,改变磁场的大小,可以改变霍尔电势差。
在电机外壳附近的漏磁通因电枢转动会引起变化,利用线性霍尔传感器对其进行检测,由于传感器输出电压信号稳定,只要磁场存在,霍尔元件总是产生相同大小的电压,即使在低转速的情况下,仍能获得较高的检测准确度!并且输出电压信号的大小与转速无关,转子转动过程中引起定子磁通发生变化,霍尔元件输出的信号无需经过放大,可以直接整形后送入单片机进行处理,从而得到电机转速。
本文介绍一种泵驱动轴的转速采用霍尔转速传感器测量。
霍尔转速传感器的结构原理图如图2-4所示:图2-4 霍尔转速传感器的结构原理图传感器的定子上有2个互相垂直的绕组A和B,在绕组的中心线上粘有霍尔片HA 和HB ,转子为永久磁钢,霍尔元件HA 和HB 的激励电分别与绕组A和B相连,它们的霍尔电极串联后作为传感器的输出。
1、具体实现的方法:将霍尔器件安放在被测磁场中,因霍尔器件只对垂直于霍尔片表面的磁感应强度敏感,因而必须令磁力线和器件表面垂直,通电后即可由输出电压得到被测磁场的磁感应强度。
若不垂直,则应求出其垂直分量来计算被测磁场的磁感应强度值。
而且,因霍尔元件的尺寸极小,可以进行多点检测,由计算机进行数据处理,可以得到场的分布状态,并可对狭缝,小孔中的磁场进行检测用磁场作为被传感物体的运动和位置信息载体时,一般采用永久磁钢来产生工作磁场。