放大镜的放大率
- 格式:ppt
- 大小:2.09 MB
- 文档页数:63
望远镜和显微镜组装和放大率的测定何柱修(222010315210190)西南大学物理科学与技术学院重庆400715摘要:本论文主要从望远镜和显微镜的组装,以及其放大率的测量方向。
本实验开始讲了显微镜,开普勒望远镜以及伽利略望远镜的原理,随后陈述了实验的过程,分析了实验理论中的缺陷,并提出了一定的改进方案。
关键词:望远镜,显微镜,凸透镜,凹透镜。
引言:显微镜和望远镜是最常用的助视仪器常被组合在其他的仪器中使用。
因此,了解并掌握它们的结构原理和调节方法,了解并掌握其放大率的概念和测量方法,不仅有助于加深理解透镜成像规律,也有助于正确使用其他光学仪器。
毋庸置疑,前人已经对这些仪器研究得十分出色了,他们创造了一系列的测量仪器放大率的方法,并对其不断改进。
但是,现在测量望远镜和显微镜的放大率仍然是个十分棘手的问题。
于是,我们做了这个实验并做出了一定的改进。
实验原理人眼分辨本领和光学仪器的视觉放大率:显微镜观测微小物体以及放大镜用于观测远处的目标,他们的作用主要是把人体的眼睛的张角(即视角)加以放大。
人眼分辨率主要是描述人眼刚能区分非常靠近的两个物体你能力的物理量。
人眼瞳孔半径为1mm,人眼一般能分辨明视距离(D)处0.05-0.07mm的两点,此时人眼的张角为1’,为最小分辨率,而微小物体的对人眼的张角小于这个角时,人眼只能借助于显微镜才可以看清楚。
光学仪器的放大能力为视觉放大率Г=显微镜原理:简单的显微镜主要是由两个凸透镜组成,其中焦距(f0)较小的作为物镜(L0,焦点为F0,F0’),焦距较大的作为目镜,将长度为y的物体放在物镜焦距外且接近焦点其焦点处,则物体在目镜焦点以内成一实像,最后该像经目镜放大,在D上得到一放大的倒立的虚像,长度为y3。
其中F0到F e(目镜焦点)之间的距离为δ(光学间隔)。
当看到清晰图像时,物镜前端面到被测物体的距离称作工作距离,则:目镜放大率为:物镜放大率为:Г为显微镜的视觉放大率。
放大镜的成像原理
表面为曲面的玻璃或其他透明材料制成的光学透镜可
以使物体放大成像,光路图如图1所示。
位于物方焦放大镜的成像原理点F以内的物AB,其大小为y,它被放大镜成一大小为y'的虚像A'B'。
放大镜的放大率 Γ=250/f' 式中250--明视距离,单位为mm f'--放大镜焦距,单位为mm 该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察
到的物体视角的比值。
1.画定一直尺
2.在直尺上画出点O,为光心,在O点画一凸透镜。
在凸透镜两侧标出一倍焦距点f、二倍焦距点2f。
3.分区,(如图),在凸透镜的左右两侧分成三区O──f 为一区,f──2f为二区,2f以外为三区。
4.规律:
物在无穷远时,聚焦点。
物三(区)像二(区)小实倒
物二(区)像三(区)倒大实
物一(区)像同侧正大虚
2F点是成放大缩小像的分界点
F点是成实像虚像的分界点。
在应用和记忆时我们采用标尺:。
望远镜和显微镜组装和放大率的测定摘要:本论文主要从望远镜和显微镜的组装,以及其放大率的测量方向作探究。
本实验开始讲了显微镜,开普勒望远镜以及伽利略望远镜的原理,随后陈述了实验的过程,分析了实验理论中的缺陷,并提出了一定的改进方案。
关键词: 望远镜,显微镜,凸透镜,凹透镜,放大倍数。
引言:显微镜和望远镜是最常用的助视仪器常被组合在其他的仪器中使用。
因此,了解并掌握它们的结构原理和调节方法,了解并掌握其放大率的概念和测量方法,不仅有助于加深理解透镜成像规律,也有助于正确使用其他光学仪器。
毋庸置疑,前人已经对这些仪器研究得十分出色了,他们创造了一系列的测量仪器放大率的方法,并对其不断改进。
但是,现在测量望远镜和显微镜的放大率仍然是个十分棘手的问题。
于是,我们做了这个实验并做出了一定的改进。
【实验原理】1、望远镜构造及其放大原理望远镜通常是由两个共轴光学系统组成,我们把它简化为两个凸透镜,其中长焦距的凸透镜作为物镜,短焦距的凸透镜作为目镜。
图1所示为开普勒望远镜的光路示意图,图中L 0为物镜,Le 为目镜。
远处物体经物镜后在物镜的像方焦距上成一倒立的实像,像的大小决定于物镜焦距及物体与物镜间的距离,此像一般是缩小的,近乎位于目镜的物方焦平面上,经目镜放大后成一虚像于观察者眼睛的明视距离与无穷远之间。
物镜的作用是将远处物体发出的光经会聚后在目镜物方焦平面上生成一倒立的实像,而目镜起一放大镜作用,把其物方焦平面上的倒立实像再放大成一虚像,供人眼观察。
用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”。
图1 图2望远镜可分为两类:若物镜和目镜的像方焦距均为正(既两个都为会聚透镜),则为开普勒望远镜,此系统成倒立的像;若物镜的像方焦距为正(会聚透镜),目镜的像方焦距为负(发散透镜),则为伽利略望远镜,此系统成正立的像。
望远镜主要是帮助人们观察远处的目标,它的作用在于增大被观测物体对人眼的张角,起着视角放大的作用。
凸透镜成像规律物体到透镜的距离u 像的大小像的正倒像的虚实像的位置像到透镜的距离v 应用实例u>2f 缩小倒立实像与物异侧2f>v>f 照相机u=2f 等大倒立实像与物异侧v=2f2f>u>f 放大倒立实像与物异侧v>2f 幻灯机u=f ————————————u<f 放大正立虚像与物同侧——放大镜凹透镜对光线起发散作用,成一个正立、缩小的虚像,像物同侧,v<u物近像近像变大,物远像远像变小凹凸区别结构凸透镜是由两面磨成球面的透明镜体组成凹透镜是由两面都是磨成凹球面透明镜体组成对光线作用凸透镜主要对光线起会聚作用(面镜则相反)凹透镜主要对光线起发散作用(面镜则相反)生活应用在物理上凹镜和凸镜都是利用光的折射的原理成像光学显微镜和望远镜(包括一部分天文望远镜)都是利用光的折射和光的直线传播原理制成的放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。
(一)放大镜的成像原理表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。
位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y'的虚像A'B'。
放大镜的放大率Γ=250/f' 式中250--明视距离,单位为mm f'--放大镜焦距,单位为mm 该放大率是指在250mm 的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。
(二)显微镜的成像原理显微镜和放大镜起着同样的作用,就是把近处的微小物体成一放大的像,以供人眼观察。
只是显微镜比放大镜可以具有更高的放大率而已。
图2是物体被显微镜成像的原理图。
图中为方便计,把物镜L1和目镜L2均以单块透镜表示。
物体AB位于物镜前方,离开物镜的距离大于物镜的焦距,但小于两倍物镜焦距。
所以,它经物镜以后,必然形成一个倒立的放大的实像A'B'。
A'B'位于目镜的物方焦点F2上,或者在很靠近F2的位置上。
实像与虚像在光学中,由实际光线汇聚成的像,称为实像,能用光屏承接;反之,则称为虚像,只能由眼睛感觉。
有经验的物理老师,在讲述实像和虚像的区别时,往往会提到这样一种区分方法:“实像都是倒立的,而虚像都是正立的。
”所谓“正立”和“倒立”,当然是相对于原物体而言。
平面镜、凸面镜和凹透镜所成的三种虚像,都是正立的;而凹面镜和凸透镜所成的实像,以及小孔成像中所成的实像,无一例外都是倒立的。
当然,凹面镜和凸透镜也可以成虚像,而它们所成的两种虚像,同样是正立的状态。
那么人类的眼睛所成的像,是实像还是虚像呢?我们知道,人眼的结构相当于一个凸透镜,那么外界物体在视网膜上所成的像,一定是实像。
根据上面的经验规律,视网膜上的物像似乎应该是倒立的。
可是我们平常看见的任何物体,明明是正立的啊?这个与“经验规律”发生冲突的问题,实际上涉及到大脑皮层的调整作用以及生活经验的影响。
当物体与凸透镜的距离大于透镜的焦距时,物体成倒立的像,当物体从较远处向透镜靠近时,像逐渐变大,像到透镜的距离也逐渐变大;当物体与透镜的距离小于焦距时,物体成放大的像,这个像不是实际折射光线的会聚点,而是它们的反向延长线的交点,用光屏接收不到,是虚像。
可与平面镜所成的虚像对比(不能用光屏接收到,只能用眼睛看到)。
当物体与的距离大于焦距时,物体成倒立的像,这个像是蜡烛射向凸透镜的光经过凸透镜会聚而成的,是实际光线的会聚点,能用光屏承接,是实像。
当物体与透镜的距离小于焦距时,物体成正立的虚像。
编辑本段凸透镜凸透镜成像规律(1)二倍焦距以外,倒立缩小实像;一倍焦距到二倍焦距,倒立放大实像;一倍焦距以内,正立放大虚像;成实像物和像在凸透镜异侧,成虚像在凸透镜同侧。
(2)一倍焦距分虚实两倍焦距分大小物近像远像变大物远像近像变小物体到透镜的距离u 像的大小像的正倒像的虚实像的位置像到透镜的距离v应用实例u>2f 缩小倒立实像与物异侧2f>v>f 照相机u=2f 等大倒立实像与物异侧v=2f2f>u>f 放大倒立实像与物异侧v>2f 幻灯机u=f ————————————为了研究各种猜想,人们经常用光具座进行试验。
镜头放大倍率公式哎呀,说起镜头放大倍率公式,这可真是个让人又爱又恨的玩意儿。
咱先来说说啥是镜头放大倍率。
简单来讲,就是通过镜头看到的物体大小跟实际物体大小的比例。
这在摄影、显微镜观察、望远镜观测等等好多领域都特别重要。
比如说,你用望远镜看月亮,那镜头放大倍率就决定了你看到的月亮是像个大饼还是能看清上面的坑坑洼洼。
那镜头放大倍率公式到底是啥呢?其实就是像这样:放大倍率 = 像的大小 / 物的大小。
可别小看这个公式,里面的门道多着呢!咱就拿摄影来说吧,我记得有一次出去旅游,看到一只特别漂亮的蝴蝶。
我当时拿着相机,特别想把它拍得大大的、美美的。
我就琢磨着怎么调整镜头,让这蝴蝶在照片里看起来更大更惊艳。
这时候就得靠这个放大倍率公式啦。
我先估摸了一下蝴蝶本身的大小,再看看相机镜头的参数,然后心里默默算着这个公式。
可别以为这很简单,有时候着急啊,脑袋还容易犯糊涂。
我就在那手忙脚乱地算,算错了好几次,急得我脑门都出汗了。
好不容易算对了,调整好镜头,按下快门,“咔嚓”一声,心里那个期待呀!等照片出来一看,嘿,效果还真不错!那只蝴蝶在照片里显得特别大,翅膀上的花纹都清晰可见,那一刻的满足感,真是没法形容。
在显微镜观察细胞的时候,这个公式也很关键。
想象一下,你想要看清楚细胞的细微结构,就得通过调整显微镜的镜头放大倍率。
要是算错了,那可能就看不到关键的细节,影响整个观察结果。
还有在望远镜观测星星的时候,要是能准确算出放大倍率,就能让那些遥远的星星看起来离我们更近,更清晰。
总之啊,镜头放大倍率公式虽然看起来简单,但是要真正用得好,还得多练习,多琢磨。
不管是为了拍出精彩的照片,还是为了在科学研究中取得准确的结果,都得把这个公式掌握得妥妥的。
希望大家以后在碰到需要用到这个公式的时候,都能轻松应对,拍出美美的照片,看到神奇的微观世界,探索遥远的星空!。
几何光学复习大纲模块一几何光学基础一、几何光学的基本定律(考试分值:大约10分)(一)几何光学的基本定律(要求:掌握定律内容并能够用之解释光学现象)1、光的直线传播定律2、光的独立传播定律3、光的折射与反射定律反射定律表述:I’’=-I折射定律表述:n’sinI’=nsinI全反射产生的条件:光线从光密介质进入光疏介质,且入射角大于临界角arcsinn’/n(二)费马原理1、光程概念:s=nl2、原理表述:0=Sδ即光沿光程极值路径传播。
二、共轴球面光学系统(一)符号规则1、规定:以折射球面定点为参考原点,光线方向自左向右2、线量正负沿轴线量:和光线传播方向相同为正,反之为负。
垂轴线量:以光轴为基准,在光轴以上为正,反之为负。
3、角量正负:顺时针为正,逆时针为负,均以锐角来衡量。
光线与光轴的夹角(即孔径角):始边为光轴 光线与法线的夹角:始边为法线 法线与光轴的夹角:始边为光轴 (二)单个折射球面的成像1、实际光线的光路计算(宽光束成像) 成像不完善,存在球差。
2、近轴光线光路的计算r nn l n l n -'=-''表明已知物体位置l ,即可求出像点位置l ’,反之亦然。
即物体在近轴区域能够完善成像。
定义:光焦度fnf n r n n -=''=-'=φ易知,当物象处于同一介质中时,f ’=-f 3、放大率垂轴放大率:l n l n y y ''='=β(三)反射球面的成像(令折射球面公式中n ’=-n )1、 物象位置公式:r l l 211=+'且有: 2rf f =='2、成像放大率(三)平面系统1、单平面镜成像特点完善性、等大、虚实相反、镜像等;自准直法2、折射棱镜的色散色散的概念;最小偏向角测量折射率模块二理想光学系统(考试分值:大约30分)一、理想光学系统的基点和基面1、理想光学系统的基点三对特殊的共轭点:无限远轴上物点——像方焦点;物方焦点——无限远轴上像点;物方节点——像方节点(角放大率等于1的一对共轭点)注意:物方焦点与像方焦点不是一对共轭点!2、理想光学系统的基面三对特殊的共轭面:物方无限远垂直于光轴的平面——像方焦面;物方焦面——像方无限远垂直于光轴的平面;物方主面与像方主面(垂轴放大率等于1的一对共轭面)二、理想光学系统的物像关系1、作图法求像作图常用的典型光线或性质:典型实例:(1)轴外物点或垂轴线段AB作图求像(2)轴上点图解法求像两种方法:3、解析法求像(1)牛顿公式(2)高斯公式注意:计算时所有物理量的正负性!模块三光学系统的光束限制(考试分值:大约2~4分)一、光阑的定义和作用1、定义1)指光学系统中设置的一些带有内孔的金属薄片。
透镜成像规律百科名片凸透镜成像透镜分凸透镜和凹透镜。
凸透镜成像规律就是:物体放在焦点之外,在凸透镜另一侧成倒立的实像,实像有缩小、等大、放大三种。
物距越小,像距越大,实像越大。
物体放在焦点之内,在凸透镜同一侧成正立放大的虚像。
物距越大,像距越大,虚像越大。
凹透镜对光线起发散作用, 它的成像规律则要复杂得多。
目录实像与虚像在光学中,由实际光线汇聚成的像,称为实像,能用光屏承接;反之,则称为虚像,只能由眼睛感觉。
有经验的物理老师,在讲述实像和虚像的区别时,往往会提到这样一种区分方法:“实像都是倒立的,而虚像都是正立的。
”所谓“正立”和“倒立”,当然是相对于原物体而言。
平面镜、凸面镜和凹透镜所成的三种虚像,都是正立的;而凹面镜和凸透镜所成的实像,以及小孔成像中所成的实像,无一例外都是倒立的。
当然,凹面镜和凸透镜也可以成虚像,而它们所成的两种虚像,同样是正立的状态。
那么人类的眼睛所成的像,是实像还是虚像呢?我们知道,人眼的结构相当于一个凸透镜,那么外界物体在视网膜上所成的像,一定是实像。
根据上面的经验规律,视网膜上的物像似乎应该是倒立的。
可是我们平常看见的任何物体,明明是正立的啊?这个与“经验规律”发生冲突的问题,实际上涉及到大脑皮层的调整作用以及生活经验的影响。
当物体与凸透镜的距离大于透镜的焦距时,物体成倒立的像,当物体从较远处向透镜靠近时,像逐渐变大,像到透镜的距离也逐渐变大;当物体与透镜的距离小于焦距时,物体成放大的像,这个像不是实际折射光线的会聚点,而是它们的反向延长线的交点,用光屏接收不到,是虚像。
可与平面镜所成的虚像对比(不能用光屏接收到,只能用眼睛看到)。
当物体与的距离大于焦距时,物体成倒立的像,这个像是蜡烛射向凸透镜的光经过凸透镜会聚而成的,是实际光线的会聚点,能用光屏承接,是实像。
当物体与透镜的距离小于焦距时,物体成正立的虚像。
凸透镜凸透镜成像规律(1)二倍焦距以外,倒立缩小实像;一倍焦距到二倍焦距,倒立放大实像;一倍焦距以内,正立放大虚像;成实像物和像在凸透镜异侧,成虚像在凸透镜同侧。
显微镜与望远镜的组装及放大率的测定.doc显微镜和望远镜的组装及放大率的测定成员:32人,13人,35人,彭发勇17人,3人首先,实验的目的:1.组装简单的望远镜和显微镜,熟悉它们的机理和放大原理;2、学会望远镜、显微镜的放大率测量。
二。
实验仪器和设备凸透镜(四个)、标尺、光学工作台、光源等。
三、实验原理(设计思路)显微镜和望远镜是常用的视觉辅助工具。
显微镜主要用来帮助人眼观察附近的小物体。
望远镜主要用来帮助人眼观察远处的物体。
它们在许多领域都发挥着非常重要的作用,如天文学、电子学、生物学和医学。
它们都增加了观察对象对人眼的角度,并在扩大视角方面发挥作用。
但是他们的基本光学系统由一个物镜和一个目镜组成。
1.显微镜的结构(1):显微镜由两组凸透镜组成,一组是焦距相对较短的凸透镜作为物镜,另一组是稍大一点的凸透镜作为目镜。
(2)显微镜的放大率:显微镜的放大率是放大率:m =-25 cm ×△(f1’ × F2 ‘),其中△是物镜像焦点f1 ‘和目镜物焦点F2之间的距离,即光学间隔。
图a△物镜F’1 F2目镜图a(3)放大率的测量:(1)组装实验装置,如图B所示(2)前后移动目镜,同时保持物镜相对靠近标尺,以便通过显微镜可以清楚地看到短标尺的图像。
(3)一只眼睛通过显微镜观察标尺的图像,一只眼睛直接看标尺上的光标,读出标尺图像上标尺上两个光标之间的距离l0,然后读出两个光标之间的实际距离L。
增益放大倍数M=l1/l0,重复几次,取平均值。
目镜尺物镜游标图b 2,望远镜(1)结构:根据目镜不同,望远镜分为开普勒望远镜和伽利略望远镜。
现在选择两个凸透镜来组装开普勒望远镜。
(2)望远镜的放大率:M=f1’/f2=-(f1’/f2 ‘)为大放大率望远镜选择的物镜的焦距F1’应该更大,目镜的焦距F2’应该更小。
(3)望远镜放大率的测量:(1)如图所示组装实验装置。
标尺物镜目镜光标(2)移动目镜,同时保持目镜和标尺之间的距离相对较大,以便通过望远镜可以清楚地看到标尺的图像。
光学显微镜的原理及其发展历史一、光学显微镜的发展历史早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。
后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。
1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。
1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。
17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。
1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。
这些部件经过不断改进,成为现代显微镜的基本组成部分。
1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。
胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。
19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。
1827年阿米奇第一个采用了浸液物镜。
19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。
这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。
在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。
古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。
后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。
现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。
目前全世界最主要的显微镜厂家主要有:奥林巴斯、蔡司、徕卡、尼康。
物体介于物镜的焦距和二倍焦距之间,成倒立放大的实相,据凸透镜成像规律,知实相在异侧二倍焦距之外。
实相位于目镜焦点或者焦点之内,被再次放大,形成放大的虚像。
而人的眼睛是可以看到虚像的(这个原理自然清楚)。
要搞清显微镜的使用原理,就得对物理中的凸透镜成像有所理解。
{ 只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。
在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1'。
为易于观测,一般将该量加大到2',并取此为平均目镜分辨率。
物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。
有公式y=Lε距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。
对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。
这意味着,在没有仪器的条件下,目视分辨率ε=2'的眼睛,能清楚地区分大小为0.15mm的物体细节。
在观测视角小于1'的物体时,必须使用放大仪器。
放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。
(一)放大镜的成像原理表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。
位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y'的虚像A'B'。
放大镜的放大率Γ=250/f'式中250--明视距离,单位为mmf'--放大镜焦距,单位为mm该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。
(二)显微镜的成像原理显微镜和放大镜起着同样的作用,就是把近处的微小物体成一放大的像,以供人眼观察。
只是显微镜比放大镜可以具有更高的放大率而已。
图2是物体被显微镜成像的原理图。
图中为方便计,把物镜L1和目镜L2均以单块透镜表示。
物体AB位于物镜前方,离开物镜的距离大于物镜的焦距,但小于两倍物镜焦距。
光学显微镜基本知识一、光学显微镜的发展历史早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。
后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。
1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。
1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。
17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。
1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。
这些部件经过不断改进,成为现代显微镜的基本组成部分。
1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。
胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。
19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。
1827年阿米奇第一个采用了浸液物镜。
19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。
这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。
在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。
古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。
后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。
现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。
目前全世界最主要的显微镜厂家主要有:奥林巴斯、蔡司、徕卡、尼康。
光学显微镜原理分析光学显微镜原理分析一、光学显微镜的发展历史早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。
后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。
1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。
1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。
17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。
1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。
这些部件经过不断改进,成为现代显微镜的基本组成部分。
1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。
胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。
19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。
1827年阿米奇第一个采用了浸液物镜。
19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。
这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。
在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。
古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。
后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。
现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。
目前全世界最主要的显微镜厂家主要有:奥林巴斯、蔡司、徕卡、尼康。
显微镜与望远镜的组装及放大率的测定成员:章先发(32)张忠健(13)杨柳(35)彭发勇(17)罗明书(3)一、实验目的:1、组装简单的望远镜和显微镜,熟悉其机构及放大原理;2、学会望远镜、显微镜放大率的测量。
二、实验仪器及用具凸透镜(四个)、标尺、光具座、光源等三、实验原理(设计思路)显微镜和望远镜是常用的助视光学仪器,显微镜主要用来帮助人眼观察近处的微小物体,望远镜主要是帮助人眼观察远处的目标。
它们在天文学、电子学、生物学和医学等诸多领域都起着十分重要的作用。
它们都是增大被观察物体对人眼的张角,起着视角放大的作用。
但是它们的基本光学系统都由一个物镜和一个目镜组成。
1、显微镜(1)结构:显微镜由两组凸透镜组成,一组为焦距相对较短的凸透镜作为物镜,另一组为稍微大些凸透镜作为目镜。
(2)显微镜的放大本领:显微镜的放大本领即放大率:M=-25cm×△/(f1'×f2'),其中△是物镜像方焦点F1'到目镜物方焦点F2之间的距离即光学间隔,如图a图a(3)放大率的测量:(1)按图b所示,组装好实验装置。
(2)保持物镜距标尺比较近的前提下前后移动目镜,使通过显微镜能清晰的看到短尺的像。
(3)一只眼睛通过显微镜观察标尺的像,一只眼睛直接看标尺上的游标,读出标尺上两游标之间在标尺像上的距离l0,然后再读出实际两游标之间的距离l。
得放大率M=l1/l0,重复几次,取平均值。
2、望远镜(1)结构:望远镜根据目镜的不同分为开普勒望远镜与伽利略望远镜。
现选择两块凸透镜组装开普勒式望远镜。
目镜物镜标尺图b游标(2)望远镜的放大本领:M=f1'/f2=-(f1'/f2')欲得到一个放大本领大的望远镜所选择的物镜的焦距f1'应较大,目镜的焦距f2'应较小。
(3)望远镜放大率的测定:(1)按图所示,组装实验装置。
(2)保持目镜与标尺之间的距离比较大的前提下移动目镜使通过望远镜能清晰的看到标尺的像。
(3)一只眼睛通过望远镜观察标尺的像,一只眼睛直接观察标尺,读出标尺上两游标在标尺像上之间的距离l0,然后再读出实际两游标之间的距离l。