07第四章(1)聚合物基复合材料
- 格式:ppt
- 大小:1.28 MB
- 文档页数:100
第二章增强材料1.增强材料的品种:1)无机纤维:(1)玻璃纤维(2)碳纤维:①聚丙烯腈碳纤维②沥青基碳纤维(3)硼纤维,(4)碳化硅纤维,(5)氧化铝纤维2)有机纤维:(1)刚性分子链——液晶(干喷湿纺):①对位芳酰胺②聚苯并噁唑③聚芳酯(2)柔性分子链:①聚乙烯②聚乙烯醇2.玻璃纤维的分类:1)按化学组成份:有碱玻璃纤维,碱金属含量>12%;中碱玻璃纤维,碱金属含量6%~12%;低碱玻璃纤维,碱金属含量2%~6%;微碱玻璃纤维,碱金属含量<2%2)按纤维使用特性分:普通玻纤(A-GF);电工玻纤(E玻纤);高强玻纤(S玻纤或R玻纤);高模玻纤(M-GF);耐化学药品玻纤(C玻纤)……3)按产品特点分:长度(定长玻纤<6-50mm>,连续玻纤);直径(粗纤维30μm,初级纤维20μm,中级纤维10-20μm,高级纤维3-9μm);外观(连续纤维,短切纤维,空心玻纤,磨细纤维和玻璃粉)3.玻璃纤维的制备:目前生产玻璃纤维最多的方法有坩埚拉丝法(玻璃球法)和池窑拉丝法(直接熔融法)4.玻璃纤维的力学特性:1)玻璃纤维的拉伸应力--应变关系:玻璃纤维直到拉断前其应力-应变关系为一条直线,无明显的屈服、塑性阶段,呈脆性材料特征2)玻璃纤维的拉伸强度较高,但模量较低;解释:(1)Griffith微裂纹理论:玻璃在制造过程中引入许多微裂纹,受力后裂纹尖端应力集中。
当应力达到一定值时,裂纹扩展,材料破坏。
所以,缺陷尺寸越大,越多,应力集中越严重,导致强度越低(2)分子取向理论:玻纤在制备过程中,受到定向牵引力作用,分子排列更规整,所以玻纤强度更大。
3)玻璃纤维强度特点:单丝直径越小,拉伸强度σb越高;试样测试段长度L越大,拉伸强度σb越低。
这两点结果被称为玻璃纤维强度的尺寸效应和体积效应,即体积或尺寸越大,测试的强度越低4)缺点:①强度分散性大,生产工艺影响②强度受湿度影响,吸水后,湿态强度下降③拉伸模量较低(70GPa),断裂伸长率约为2.6%5.玻璃纤维纱的常用术语、参数:(填空)1)原纱:指玻璃纤维制造过程中的单丝经集束后的单股纱2)表示纤维粗细的指标:①支数β:指1g原纱的长度(m),支数越大表示原纱越细②特(tex):指1000m长原纱的质量(g),tex数越大,纱越粗③旦、袋(den):指9000m长原纱的质量(g),den 数越大纱越粗3)捻度:表示纱的加捻程度,指每米长原纱的加捻数,即捻/m。
复合材料复习资料1复合材料的定义?复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
复合后的产物为固体时才称为复合材料,若为气体或液体,就不能成为复合材料。
2复合材料的分类:1)按基体材料类型分为:聚合物基复合材料;金属基复合材料;无机非金属基复合材料。
(始终有基字)2)按增强材料分为:玻璃纤维复合材料;碳纤维复合材料;有机纤维复合材料;金属纤维复合材料;陶瓷纤维复合材料(始终有纤维二字)3)按用途分为:功能复合材料和结构复合材料。
(两种的区别)结构复合材料主要用做承载力和此承载力结构,要求它质量轻、强度和刚度高,且能承受一定温度。
功能复合材料指具有除力学性能以外其他物理性能的复合材料,即具有各种电学性能、磁学性能、光学性能、声学性能、摩擦性能、阻尼性能以及化学分离性能等的复合材料。
3复合材料的基体:金属基---对于航天与航空领域的飞机、卫星、火箭等壳体和内部结构,要求材料的质量小、比强度和比模量高、尺寸稳定性好,选用镁、铝合金等轻金属合金做基体。
对于高性能发动机,要求材料具有高比强度、高比模量、优良的耐高温性能,同时能在高温、氧化环境中正常工作,可以选择钛基镍基合金以及金属间化合物作为基体材料;对于汽车发动机,选用铝合金基体材料;对于电子集成电路,选用银铜铝等金属为基体。
轻金属基体—铝基、镁基,使用温度在450℃左右或以下使用,用于航天及汽车零部件。
连续纤维增强金属基采用纯铝或单相铝合金,颗粒、晶须增强…采用高强度铝合金。
钛基,使用温度在650℃(450-700),用作高性能航天发动机镍基、铁基钴基及金属间化合物,使用温度在1200℃(1000℃以上),耐高温4聚合物基体一)简答题(各自优缺点)聚合物基复合材料的聚合物基主要有:不饱和聚酯树脂、环氧树脂、酚醛树脂等热固性树脂。
各自优缺点:二)聚合物基体的作用选择题:a . 将纤维黏在一起;b.分配纤维间的载荷;c .保护纤维不受环境的影响5陶瓷基特点:比金属更高的熔点和硬度,化学性质非常稳定,耐热性、抗老化性好,但脆性大,韧性差。
聚合物基复合材料实例一、引言聚合物基复合材料是一种具有优异性能的材料,其广泛应用于汽车、航空航天、建筑等领域。
本文将介绍几个聚合物基复合材料的实例,以展示其在不同领域的应用。
二、汽车领域1.碳纤维增强聚酰亚胺树脂复合材料碳纤维增强聚酰亚胺树脂复合材料是一种轻质高强度的材料,其在汽车制造中得到了广泛应用。
这种复合材料可以用于制造轻量化零部件,如车身、底盘等。
与传统的金属车身相比,这种复合材料可以降低汽车的重量,并提高其燃油效率和行驶性能。
2.热塑性聚氨酯/玻璃纤维布层板热塑性聚氨酯/玻璃纤维布层板是一种具有优异耐久性和抗冲击性能的材料,其在汽车制造中得到了广泛应用。
这种复合材料可以用于制造汽车内饰件,如仪表板、门板等。
与传统的塑料内饰相比,这种复合材料可以提高汽车内部的美观性和舒适性,并提高其耐用性和抗冲击性能。
三、航空航天领域1.碳纤维增强环氧树脂复合材料碳纤维增强环氧树脂复合材料是一种轻质高强度的材料,其在航空航天领域得到了广泛应用。
这种复合材料可以用于制造飞机结构件,如机翼、尾翼等。
与传统的金属结构相比,这种复合材料可以降低飞机的重量,并提高其飞行速度和燃油效率。
2.热塑性聚酰胺/玻璃纤维布层板热塑性聚酰胺/玻璃纤维布层板是一种具有优异耐久性和抗冲击性能的材料,其在航空航天领域得到了广泛应用。
这种复合材料可以用于制造飞机内部结构件,如座椅、壁板等。
与传统的塑料结构相比,这种复合材料可以提高飞机内部的美观性和舒适性,并提高其耐用性和抗冲击性能。
四、建筑领域1.玻璃纤维增强聚酯树脂复合材料玻璃纤维增强聚酯树脂复合材料是一种具有优异耐久性和抗紫外线性能的材料,其在建筑领域得到了广泛应用。
这种复合材料可以用于制造建筑外墙板、屋顶板等。
与传统的混凝土、砖墙相比,这种复合材料可以降低建筑物的重量,并提高其耐久性和抗紫外线能力。
2.聚氨酯/玻璃纤维布层板聚氨酯/玻璃纤维布层板是一种具有优异隔音性和保温性能的材料,其在建筑领域得到了广泛应用。
1聚合物基复合材料的定义、特征、结构模式。
聚合物基复合材料:是以有机聚合物为基体,以颗粒、纤维等为增强材料组成的复合材料特征:1比强度和比模量高,比强度(抗拉强度与密度之比)和比模量(弹性模量与密度之比)高,说明材料轻而且刚性大。
2 良好的抗疲劳性能疲劳是材料在循环应力作用下的性质。
复合材料能有效地阻止疲劳裂纹的扩展。
3、减振性能好在工作过程中振动问题十分突出,复合材料为多相系统,大量的界面对振动有反射吸收作用。
且自振动频率高,不易产生共振4、高温性能好复合材料在高温下强度和模量基本不变5、各项异性和可设计性。
6、成型加工性好复合材料可成型任意型面的零件7、其它优点与其它类材料相比,聚合物基复合材料耐化学腐蚀、导电、导热率低等特点。
缺点:1耐湿热性差2.材料性能分散性差3.价格过高复合材料的结构①无规分散(弥散)增强结构(含颗粒、晶须、短纤维)②连续长纤单向增强结构(单向板)③层合(板)结构(二维织布或连续纤维铺层,每层不同)④三维编织体增强结构⑤夹层结构(蜂窝夹层等)⑥混杂结构2、复合材料的界面效应有哪些?怎么影响材料的性能。
界面在复合材料中所起到的效应:1、传递效应:界面可将复合材料体系中基体承受的外力传递给增强相,起到基体和增强相之间的桥梁作用。
2、阻断效应:基体和增强相之间结合力适当的界面有阻止裂纹扩展、减缓应力集中的作用。
3、不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现的现象4、散射和吸收效应:光波、声波、热弹性波、冲击波等在界面产生散射和吸收。
5、诱导效应:一种物质(通常是增强物)的表面结构使另一种(通常是聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由此产生一些现象3.试说明玻璃纤维、碳纤维与芳纶纤维表面处理方法的相同点和不同点。
相同点是都需要在高温下处理,改善纤维的微结构,使纤维与界面和基体更加匹配。
包括化学键理论,润湿理论,表面形态理论,可逆水解平衡理论和可变形层理论等。
复合材料概念复合材料概念Company number:【0089WT-8898YT-W8CCB-BUUT-202108】1 总论1)复合材料概念、命名、分类及其基本性能。
概念:复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
命名:将增强材料的名称放在前面,基体材料的名称放在后面,再加上“复合材料”。
基本性能:可综合发挥各种组成材料的优点,使一种材料具有多种性能,具有天然材料所没有的性能。
可按对材料性能的需要进行材料的设计和制备。
可制成所需的任意形状的产品。
性能的可设计性是复合材料的最大特点。
2)聚合物基复合材料的主要性能比强度、比模量大;耐疲劳性能好;减震性好;过载时安全性好;具有多种功能性;有很好的加工工艺性。
3)金属基复合材料的主要性能高比强度、高比模量;导热、导电性能好;热膨胀系数小、尺寸稳定性好;良好的高温性能;耐磨性好;良好的疲劳性能和断裂韧性;不吸潮、不老化、气密性好。
4)陶瓷基复合材料的主要性能强度高、硬度大、耐高温、抗氧化,高温下抗磨损性好、耐化学腐蚀性优良,热膨胀系数和相对密度较小5)复合材料的三个结构层次一次结构:由基体和增强材料复合而成的单层材料,其力学性能决定于组份材料的力学性能、相几何和界面区的性能。
二次结构:单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何。
三次结构:工程结构或产品结构,其力学性能决定于层合体的力学性能和结构几何。
6)复合材料设计的三个层次单层材料设计:包括正确选择增强材料、基体材料及其配比,该层次决定单层板的性能。
铺层设计:包括对铺层材料的铺层方案做出合理安排,该层次决定层合板的性能。
结构设计:确定产品结构的形状和尺寸。
2 基体材料1)金属基体材料选择基体的原则、金属基结构复合材料的基体、金属基功能复合材料的基体原则:金属基复合材料的使用要求;金属基复合材料组成特点;集体金属与增强物的相容性。
结构复合材料的基体可大致分为轻金属基体和耐热合金基体两大类。
聚合物基复合材料的特点
1. 聚合物基复合材料的强度那可是杠杠的!你想想看,就像钢铁侠的战甲一样坚固,能承受巨大的压力和冲击。
比如在航空航天领域,用它来制造零部件,那不就稳如泰山嘛!
2. 它的轻质特性可太牛啦!这就好比一只轻盈的小鸟,灵活又方便。
在汽车制造中,用了它车子跑起来都更轻快啦,不是吗?
3. 聚合物基复合材料的耐腐蚀性也超强啊!就好像穿上了一层坚固的铠甲,面对各种恶劣环境都毫不畏惧。
在化工行业里,它就能长时间稳定工作呢!
4. 它的可设计性多厉害呀!简直就是一个魔法盒子,你想要什么样子就能变成什么样子。
做个独特造型的产品,不是小意思嘛。
5. 聚合物基复合材料的电绝缘性好得很呢!就如同给设备穿上了一层绝缘的保护衣。
在电子电器领域,这可是非常重要的优点呀。
6. 它的耐热性也不容小觑呀!仿若在火中依然能坚强的勇士。
在高温环境下工作,它也能撑住,厉害吧?
7. 还有它的耐磨性能哟!就像一位不知疲倦的勇士,不断战斗却毫发无损。
用在一些磨损大的地方,那可太合适啦。
8. 聚合物基复合材料的减震性能也很棒啊!仿佛是给物体装上了一个减震弹簧。
在一些需要减少震动的地方,它就能发挥大作用呢。
9. 聚合物基复合材料具有这么多让人惊喜的特点,难道不是一种非常了不起的材料吗?在很多领域都能大显身手,真的是超级厉害呀!。
3.聚合物基复合材料的工艺(重要)(1)预浸料的制备工艺1.热固性预浸料的制备1)溶液浸渍法。
将树脂基体个组分按规定的比例溶解于低沸点的溶剂中,使之成为一定浓度的溶液,然后将纤维束或织物以规定的速度通过基体溶液,使其浸渍上定量的基体溶液,并通过加热除去溶剂,使树脂得到合适的黏性。
2)热熔法。
分为直接熔融法和胶膜压延法。
2.热塑性预浸料制备。
可分为预浸渍技术与后浸渍技术两类。
(2)手糊成型工艺。
先在磨具上涂刷一层脱膜剂,后加入含固化剂树脂混合物,再在其上铺贴一层按要求剪裁好的纤维织物,用刷子、压辊或刮刀压挤织物,使其均匀浸胶并排除气泡,再涂刷树脂混合物和铺贴第二层纤维织物,反复上述过程直至达到所需厚度为止。
然后再固化、脱膜、修边,得到复合材料制品。
(3)模压成型工艺。
是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化成型的方法。
是广泛使用的对热固性树脂和热塑性树脂都适用的纤维复合材料成型方法。
(4)喷射成型工艺。
将分别混有促进剂和引发剂的不饱和聚酯树脂从喷枪两侧测(或在喷枪内混合)喷出,同时将玻璃纤维无捻粗纱用切割机切断并由喷枪中心喷出,与树脂一起均匀沉积到模具上。
持沉积到一定厚度,用手辊滚压,使纤维浸透树脂、压实并除去气泡,最后固化成制品。
(5)连续缠绕工艺。
一种将浸渍了树脂的纱或丝束缠绕在回转芯模上。
常压下在室温或较高温度下固化成型的一种复合材料制造工艺。
是一种生产各种尺寸回转体的简单有效的方法。
(6)注射成型。
将颗粒状树脂、短纤维送入注射腔内,加热熔化、混合均匀,并以一定的挤出压力,注射到温度较低的密闭模具中,经过冷却定型后,开模便得到复合材料制品。
6.陶瓷基复合材料的制备工艺(成型工艺)(1)等静压成型。
一般等静压指的是湿袋式等静压(也叫湿法等静压),就是将粉料装入橡胶或塑料等可变形的容器中,密封后放入液压油或水等流体介质中,加压获得所需的坯体。
(2)热压铸成型。
热压铸成型是将粉料和蜡(或其他有机高分子黏结剂)混合后,加热使蜡(或其他有机高分子黏结剂)熔化,使混合料具有一定流动性,然后将混合料加压注入模具,冷却后即可得到致密的较硬实的坯体。