解析几何公式大全

  • 格式:doc
  • 大小:310.00 KB
  • 文档页数:7

下载文档原格式

  / 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何中的基本公式

平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++

则:2

2

21B

A C C d +-=

注意点:x ,y 对应项系数应相等。

则P 到消y :若l 若A (x 则⎪⎪⎩

⎪⎪⎨⎧==y x 22若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2

11

21tan k k k k +-=

α

若l 1与l 2的夹角为θ,则=

θtan 2

1211k k k k +-,]2,0(π

∈θ

注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2π

(3)当l 1与l 2

(1)倾斜角α,α(2),θ→

→,夹角b a (3)直线l 与平面(4)l 1与l 2(5)二面角,θ∈α(6)l 1到l 2的角θ直线的倾斜角α若直线存在斜率k 直线l 1与直线l 2(1)若l 1,l 2②l 1⊥l 2⇔ k 1k 2=- (2)若0:,0:22221111=++=++C y B x A l C y B x A l

若A 1、A 2、B 1、B 2都不为零 l 1//l 2⇔

2

1

2121C C B B A A ≠

=; l 1⊥l 2⇔ A 1A 2+B 1B 2=0;

l 1与l 2相交⇔

2

121B B A A ≠ l 1与l 2重合⇔

2

1

2121C C B B A A =

=; 注意:若A 2或B 2中含有字母,应注意讨论字母=0与≠0的情况。

名称 l 在坐标轴上,截 11若d =

0=∆⇔⇔=相切r d 0>∆⇔⇔<相交r d

13、圆锥曲线定义、标准方程及性质 (一)椭圆

定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。 定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0

标准方程:122

22=+b

y a x )0(>>b a

定义域:}{a x a x ≤≤-值域:}{b y b x ≤≤- 长轴长=a 2,短轴长=2b

焦距:2c

准线方程:c

a x 2

±=

焦半径:

)

(2

1c

a x e PF +=,

)

(2

2x c

a e PF -=,

2

12PF a PF -=,c a PF c a +≤≤-1等(注意涉及焦半径①用点P 坐标表示,②第一定义。)

注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A +==等等。顶点与准线距离、焦点与准线距

离分别与c b a ,,有关。

(2)21F PF ∆中经常利用余弦定理....、三角形面积公式.......将有关线段1PF 、2PF 、2c ,有关角21PF F ∠结合起来,

建立1

PF +2PF 、1

PF •

2PF 等关系

(3)椭圆上的点有时常用到三角换元:⎩

⎨⎧θ=θ

=sin cos b y a x ;

(4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相应的性质。

二、双曲线

(一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。 Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。 (二)图形:

(三)性质

122

22=-b

y a x

)0,0(>>b a 122

22=-b

x a y )0,0(>>b a

定义域:}{a x a x x ≤≥或; 值域为R ; 实轴长=a 2,虚轴长=2b

焦距:2c

准线方程:c

a x 2

±=

焦半径:

)(21c a x e PF +=,)(2

2x c

a e PF -=,a PF PF 221=-;

注意:(1)图中线段的几何特征:=1AF a c BF -=2,=2AF c a BF +=1

顶点到准线的距离:c a a c a a 22+-或;焦点到准线的距离:c a c c a c 22+-或;两准线间的距离=c a 2

2 (2)若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x a

b

y ±=

若渐近线方程为x a

b

y ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x

若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22

22b

y a x

(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上) (3)特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,

可设为λ=-2

2

y x ;

(4)注意21F PF ∆中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、2

1F F 和角结合起来。

二、抛物线

(一)定义:到定点F 与定直线的距离相等的点的轨迹是抛物线。 即:到定点F 的距离与到定直线l 的距离之比是常数e (e=1)。 (二)图形: