水泵变频调速节能技术
- 格式:doc
- 大小:532.50 KB
- 文档页数:48
循环水泵节能改造方案技术措施范文下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!循环水泵节能改造方案的技术措施探讨随着社会对能源效率和环保的日益关注,循环水泵的节能改造已成为工业生产中的重要议题。
给水泵变频技术改造水泵变频技术改造是目前市场上应用较为广泛的一种水泵控制方式,通过改变电机的供电频率来调节水泵的运行速度,从而达到节能、降噪、提高水泵系统的运行效率等目的。
本文将详细介绍水泵变频技术的原理、改造方案以及改造效果。
一、水泵变频技术原理水泵变频技术是利用变频器对电机的供电频率进行调节,从而改变电机的运行速度。
变频器通过控制电源中的电压和频率,使得水泵可以根据实际需要进行无级调速,达到节能的目的。
具体原理如下:1.变频控制电路:变频器的主要组成部分是变频控制电路,其基本原理是将交流电源的电压通过整流、滤波等电路转换成直流电压,然后通过逆变电路将直流电压转换为可调的交流电压。
2.应用在水泵系统中的变频器:变频器通过接收水泵的运行信号,根据设定的运行需求来调节电机的转速和负载,从而实现水泵的变频控制。
通过优化水泵的运行状态,提高系统的运行效率,达到节能的目标。
二、水泵变频技术改造方案水泵变频技术改造主要包括以下几个方面的内容:1.选型与安装:首先需要根据实际情况选取适合的变频器型号,并按照使用说明书进行正确的安装和接线。
变频器的选择需要考虑水泵的功率、额定电流、运行环境等因素,以及变频器的可靠性和稳定性等因素。
2.参数设置:在安装完变频器后,需要根据实际情况进行参数设置,包括电压、频率、转速、负载等参数的设定。
参数设置应根据水泵的特性和使用要求进行调整,以达到最佳的运行效果。
3.控制策略:水泵变频技术改造还包括控制策略的制定,即如何根据实际需求选择合适的变频曲线和调节方式。
常见的控制策略包括定压控制、定流量控制、定时间控制等,可以根据不同的应用场景进行选择。
4.监测与调试:在进行水泵变频技术改造后,需要对系统进行监测和调试,以确保系统的正常运行。
可以通过监测水泵的运行状态、转速、电流、压力等参数来判断系统的工作状态是否正常,通过调试参数来达到最佳的运行效果。
三、水泵变频技术改造效果水泵变频技术改造可以带来以下几个方面的改善效果:1.节能效果:水泵变频技术可以有效降低水泵的运行功率,根据实际需求调节电机的运行速度,减少不必要的能耗。
火电厂中凝结水泵变频技术的节能应用分析摘要:在火力发电厂中,在凝结水泵的日常运行中,利用变频技术来动态地调节水泵的运行功率,在保持凝结水泵高品质运行的前提下,还要保证系统的节能运行。
在变频技术的实际运用过程中,可能会出现凝结水泵选型与容量配置预留过大,以及除氧器水位调节阀设计不合理、逻辑控制效果不佳等问题,这些都会对变频器应用的节能效果产生影响。
所以,应该对凝结水泵展开深入的分析,对设备选型、容量配置进行优化,并对技术参数进行重新调整,从而获得变频技术应用节能的最佳效果。
关键词:火电厂;凝结水泵变频技术;变频技术;变频节能1火电厂中凝结水泵变频技术应用设计1.1 变频设计标准变频调速系统的设计准则是:①采用2x50%的功率配置,“一拖一”的方式,工频旁路开关;②2×100%的容量配置,采用“一拖二”的方式,在没有工频旁路的情况下,可以采用“一拖一”的方式,也可以采用没有工频旁路的方式;③3×50%的功率配置,“一拖一”、“一拖二”两种方式的频率转换,有工频旁路方式的情况下,无工频旁路方式的情况下,采用“一拖一”方式。
1.2 凝结水泵配置1.2..1 凝结水泵选型配置针对冷凝水泵的选择偏大的问题,提出了对冷凝水泵的设计扬程和能力进行合理的控制,以减小冷凝水泵的设计预留。
通过对低压加热设备和精化设备的最大工作状态下的工作阻力进行了准确的计算,并根据凝结泵和热电厂的工作状态对其进行了调节。
在进行介质流阻计算时,根据火电机组最大运行负荷,在调节阀完全打开的污水流量的基础上,增加5%的设计预留,在计算凝结水泵出口能力时,在最大凝结水量的基础上,再增加5%的设计预留。
1.2.2 凝结水泵容量配置变频器是变频技术的核心,它可以通过自动调节凝结水泵供电频率,有效地控制电机运转速率,从而达到降低功耗、节约电能的目的,同时还具有良好的负荷适应性。
以某电厂600MW机组为例,介绍了一种采用变频调速技术的凝结泵的设计方法。
风机水泵负载变频调速节能原理相似定律:两台风机或水泵流动相似,在任一对应点上的统计和尺寸成比例,比值成相等,各对应角、叶片数相等,排挤系数、各种效率相等。
流量按照相似定律,由连续运动方程流量公式:φπηη⨯⨯⨯⨯⨯=⨯⨯=d D A vm vm vv v q流速公式: 60π⨯⨯=n D v m 式中:q v——体积流量,s m3;ηv——容积效率,实际容积效率约为0.95;A ——有效断面积(与轴面速度vm垂直的断面积),m²;D ——叶轮直径,m ; n ——叶片转速,r/mi n ; b ——叶片宽度,m ;vm——圆周速度,m/s ;φ——排挤系数,表示叶片厚度使有效面积减少的程度,约为0.75~0.95;按照电机学的基本原理,交流异步电动机转速公式: p f s n ⨯⨯-=60)1( 式中: s ——滑差; P ——电机极对数; f ——电机运行频率。
流量、转速和频率关系式:f n q v∞∞⇒ 可见流量和转速的一次方成正比,和频率的一次方成正比。
扬程按照流体力学定律,扬程公式:²21v m H ⨯⨯=ρ 扬程、转速和频率关系式:可见扬程和转速的二次方成正比,和频率的二次方成正比。
式中:H ——水泵或风机的扬程,m ;功率风机水泵的有效功率:每秒钟流体经风机水泵获得的能量。
水泵:H g q Pve⨯⨯⨯=ρ或 风机:P q P ve⨯=可见有效功率和转速的三次方成正比,和频率的三次方成正比。
式中:Pe——有功功率,w ;ρ——流体质量密度,m Kg3;P ——压力,Pa ;电量风机水泵效率:有效功率和轴功率之比。
ηp轴功率:电动机输出给风机水泵的功率。
轴功率(电动机的输出功率)公式: ηρpvshHg q P⨯⨯⨯=⇒水泵ηpvshPq P⨯=⇒风机电动机和风机水泵的传动效率: ηc电动机效率:ηm电量(电动机的输入功率)公式:ηηmcshgP P ⨯=ηηηρpmcvgHg q P⨯⨯⨯⨯⨯=⇒水泵ηηηρpm c gPP⨯⨯⨯=⇒风机节能工频状态下的耗电量计算Pd :电动机功率 ; ηd :电动机效率 ; U :电动机输入电压 ; I :电动机实际运行电流 ;cos φ:功率因子。
恒压供水变频调速原理一、引言恒压供水变频调速是一种新型的水泵控制技术,它可以根据水流量的变化自动调整电机转速,使得水压保持恒定。
该技术具有节能、稳定、可靠等优点,在市场上得到了广泛应用。
二、恒压供水变频调速原理1. 变频器控制恒压供水变频调速的核心是变频器,它通过改变电机的输入电源频率和电压来实现控制。
当需求水量增加时,变频器会自动提高电机转速以增加流量,从而保证水压不变;当需求水量减少时,变频器会降低电机转速以减少流量,从而避免过度耗能。
2. PID控制算法为了更精确地控制水泵运行状态,恒压供水系统通常采用PID控制算法。
PID是三个参数的缩写:比例(P)、积分(I)和微分(D)。
P参数表示在当前误差下所需输出信号与误差之间的比例关系;I参数表示在一段时间内累计误差并将其与输出信号相加;D参数表示根据当前误差和先前误差之间的差异来调整输出信号。
PID控制算法可以根据实际情况动态调整这些参数,以实现最佳的水泵控制效果。
3. 传感器检测恒压供水系统还需要一些传感器来监测水流量、水压和电机转速等参数。
这些传感器将采集到的数据反馈给变频器和控制器,以便它们能够做出相应的调整。
例如,当水流量超过设定值时,变频器会自动提高电机转速以增加流量;当水压低于设定值时,变频器会自动降低电机转速以减少流量。
三、恒压供水变频调速系统组成1. 变频器变频器是恒压供水系统的核心部件,它可以将输入电源频率和电压调节到所需的输出频率和电压。
通常情况下,变频器还具有过载保护、短路保护、欠压保护等功能。
2. 控制器控制器是恒压供水系统中另一个重要的部件,它可以根据传感器反馈的数据来控制变频器和其他设备的运行状态。
通常情况下,控制器还具有故障诊断、报警提示等功能。
3. 传感器传感器是恒压供水系统中采集数据的主要部件,它可以检测水流量、水压、电机转速等参数。
通常情况下,传感器还具有高精度、高灵敏度、抗干扰能力强等特点。
4. 电机电机是恒压供水系统中的动力源,它通过变频器控制来实现转速调节。
智盛石油化工(惠州)有限公司循环水泵变频节能改造技术方案书智盛(惠州)石油化工有限公司一、水泵类设备的节能原理由流体传输设备水泵、风机的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比,而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)根据上述原理可知:降低水泵、风机的转速就,水泵、风机的功率可以下降得更多。
例如:将供电频率由50Hz降为45Hz,则P45/P50=(45/50)3=0.729,即P45=0.729P50(P为电机轴功率);将供电频率由50Hz降为40Hz,则P40/P50=(40/50)3=0.512,即P40=0.512P50(P为电机轴功率)。
二、变频调速的基本原理及特性对于普通异步电机的无级调速,必须采用变频变压,同时进行的方法才能够实现,异步电机的调速下述公式,因此利用变频技术,调整电机的供电频率,使电机得到任意转速。
N=60f(1-S)/PN:表示转速f:表示频率S:表示滑差率P:表示电机极对数从电机的设计特性,如单纯改变频率,会造成严重的磁过饱和或转矩变软,根据电机转矩特性以下可知只要在频率F变化时,电压V跟踪变化,保持压频比V/F为常数,即可保证电机在变频调速的同时,保证恒转矩输出。
如图下图所示M=K(V/F)2M:表示转矩V:表示电压F:表示频率K:为系数0F,(N)0NV/F关系转矩关系三、循环水泵工况目前有循环水泵2台,功率各为75KW ,其工作状况为:设备用水量小的时候,开一台循环水泵,一台冷却风机,此时设备用水量少,而水泵出水量远大于设备用水量,因此水泵无需全速运行就可满足设备用水量需求;在设备用水量大的时候,一台循环水泵供水量不够,必须开两台循环水泵和两台冷却风机,两台泵水量供水量远远超过设备用水量需求,因此存在着大量的电能白白的消耗掉了,鉴于以上工况,对现有的设备进行变频技术改造是非常有必要的,通过调节电机的转速达到节能的目的。
水泵节能改造方案引言如今,节能环保已成为全球范围内的共同关注话题。
而在各行各业中,水泵作为常见的设备,其耗能量也占据很大一部分。
因此,对水泵进行节能改造显得尤为重要。
本文将针对水泵进行节能改造的方案进行探讨。
通过技术手段和管理措施,有效地减少水泵的能耗,以期实现可持续发展和环境保护的目标。
能耗分析在进行水泵节能改造之前,首先需要对水泵的能耗进行分析。
主要包括以下几个方面:1.水泵的运行时间:记录水泵的运行时间,了解水泵的负荷率以及运行状态,为后续的节能改造方案提供数据支持。
2.水泵的功率消耗:通过检测水泵的功率消耗,了解水泵的能效水平,并计算出水泵的具体能耗。
3.水泵的能效等级:根据国家强制执行的能效等级标准,对水泵进行评级,了解当前水泵的能效情况。
4.水泵的运行条件:记录水泵的流量、扬程、温度等运行条件,为后续节能改造方案的设计提供依据。
技术改造方案基于能耗分析的结果,我们可以制定适合的技术改造方案,以提高水泵的能效并降低能耗。
下面是几种常见的水泵节能技术改造方案:1.变频调速技术:将水泵原来的固定转速改为根据流量需求自动调整的变频调速方式。
通过调整泵的转速,达到准确的流量和扬程控制,从而节省能源。
2.高效节流装置:在水泵出口处添加节流装置,通过调整节流装置的开度,实现对水泵出口流量的控制。
同时,优化管道布局和减小系统阻力,减小水泵的水头损失。
3.高效电机驱动技术:替换高效率的电机驱动装置,例如使用高效率变频电机或永磁电机等,以减少能耗。
4.配备智能控制系统:通过智能控制系统对水泵进行远程监控和控制,实现自动化运行和优化调度,降低人工干预带来的能源浪费。
5.采用节能设计的水泵:选择低能耗、高效率的新一代水泵产品,例如采用无轴封技术、磁力驱动技术等,提高水泵的效率和使用寿命。
管理措施除了技术改造方案外,还可以从管理方面采取一系列的措施,以实现水泵节能:1.加强人员培训:提高运维人员的技术水平,使其了解水泵节能的重要性,并掌握正确的操作方法和维护技巧。
高压变频调速节能控制技术在水电厂水泵系统中的应用摘要:在对水泵电机变频调速节能控制原理进行简单阐述后,结合水电厂6.3kV一期高压水泵系统概况,对水电厂高压水泵系统变频节能升级方案、经济效益等进行了详细分析研究。
关键词:水电厂高压变频器 6.3kV电机节能升级改造从大量研究资料和实践工作经验可知,将辅机水泵系统常规的定速节流静态调节方式升级改造为变频节能动态调速控制方式,可以确保水泵拖动系统长期输出与输入间的动态平衡,其节能效果非常明显[1]。
1 变频调速节能控制原理输出转矩是水泵拖动系统调节功能的主要表现,而电机输入电源频率(f)、转差率(s)、以及磁极对数(p)三个特性参数间又具有一定的逻辑关系,即:从式(1)可以看出,要想确保水泵电机拖动系统处于节能经济运行工况,就需要动态调节电机拖动系统的输出转矩,即调节水泵电机的转速。
通过改变电机转差率(s)和磁极对数(p)两种方式来改变水泵电机的输出转速(转矩),将会涉及到对整个水泵电机内部机械结构优化改进,这在实践工程应用中不具备很强的普及应用特性。
因此,改变水泵电机输入电源频率(f),其不仅在理论研究中较为成熟,而且是实践工程应用中也已取得较为良好的节能应用效果[2]。
2 水电厂高压水泵系统概况某水电厂共装有8台600mV A机组,选用2台6kV 1600kW水泵电机作为一期机组排水系统的核心设备。
该排水系统由于其设计过程中估算排水量偏大,导致其功率选型值偏大,其实际所需排水量只有设计值的56%左右,存在严重“大马拉小车”问题,加上水泵电机采用静态阀门调速,能耗非常大,水泵电机拖动系统设备性能老化较为严重。
水电厂发电机组其一期机组排水系统,给水泵额定流量为247m3/h,额定转速为2960r/min;配套电机型号为YKS5004-2,额定功率为1600kW,额定电压为6.3kV,额定电流为188.4A,额定转速为2980r/min,功率因素为0.9,防护等级为F级IP55。
水泵变频调速节能技术目录第一节概论1.1 水泵的主要功能和用途1.2 水泵的性能参数1.3 水泵的性能曲线1.4 水泵拖动系统的主要特点第二节水泵并列运行分析2.1. 水泵并联运行的一般情况2.2 如何作出并联水泵的性能曲线(H-Q)或(P-Q)2.3 当并联泵中的一台进行变速调节时,如何确定并联运行工况点?2.4 静扬程(或静压)对调速范围的影响。
2.5. 变频泵与工频泵的并联运行分析2.6. 高性能离心泵群的变频控制方案第三节水泵变频调速节能效果的计算方法3.1 相似抛物线的求法3.2. 调速范围的确定3.3. 节能效果的计算第四节水泵变频调速和液力偶合器调速节能比较4.1.液力耦合器的工作原理和主要特性参数4.2.液力耦合器在风机水泵调速中的节能效果4.3.风机水泵变频调速和液力耦合器调速对比计算4.4.液力耦合器调速和变频调速的主要优缺点比较4.5.结论第一节 概 论风机与水泵是用于输送流体(气体和液体)的机械设备。
风机与水泵的作用是把原动机的机械能或其它能源的能量传递给流体,以实现流体的输送。
即流体获得机械能后,除用于克服输送过程中的通流阻力外,还可以实现从低压区输送到高压区,或从低位区输送到高位区。
通常用来输送气体的机械设备称为风机(压缩机),而输送液体的机械设备则称为泵。
1.1 水泵的分类水泵通常按工作原理及结构形式的不同进行分类,可以分为叶片式(又称叶轮式或透平式)、容积式(又称定排量式)和其他类型三大类。
叶片式泵又可以分为离心泵、轴流泵、混流泵和漩涡泵;容积式泵又可以分为往复泵和回转泵,往复泵可分为活塞泵、柱塞泵和隔膜泵,而回转泵又可分为齿轮泵、螺杆泵、滑片泵和液环泵。
1.2 水泵的性能参数水泵的基本性能参数表示水泵的基本性能,水泵的基本性能参数有流量、扬程、轴功率、效率、转速、比转速、必须汽蚀余量或允许吸上真空高度等7个。
(1) 流量 以字母Q(q v 、q m )表示,单位为(升)l/s 、m 3/s 、m 3/h 等。
泵的流量是指单位时间内从泵出口排出并进入管路系统的液体体积。
泵的流量除用上述体积流量q v 外,还可用质量流量q m 表示。
q m 定义为单位时间内从泵出口排出并进入管路的液体质量。
显然q v 与q m 间的关系为:v m q q ρ=(2) 扬程 水泵的扬程H 表示液体经泵后所获得的机械能。
泵的扬程H 是指单位重量液体经过泵后所获得的机械能。
水泵扬程的计算式为:m gv v g p p Z Z H 2)(21221212-+-+-=ρ式中: Z2、p2、v2 与 Z1、p1、v1 分别为泵的出口截面2和进口截面1的位置高度、压力和速度值。
泵的扬程即为泵所产生的总水头,其值等于泵的出口总水头和进口总水头的代数差。
(3) 轴功率 由原动机或传动装置传到水泵轴上的功率,称为风机的轴功率,用P 表示,单位为kW 。
br b r H Q gH Q P ηηρηηρ1021000==式中:Q---水泵流量 (m 3/s ); H---水泵扬程 (m, gH p ρ=); r η-传动装置效率; f η-风机效率; d η-电动机效率。
电动机容量选择: df r gHQ P ηηηρ1000=式中:“102”----由kg.m/s 变换为kW 的单位变换系数。
因为水的密度为1000 kg/m 3 ,所以水泵轴功率的计算公式可以简化为:br gH Q P ηη⨯⨯=电动机容量选择: db r d gH Q P ηηη⨯⨯=( 若流量的单位用“m 3/s ” )(4) 效率 水泵的输出功率(有效功率)Pu 与输入功率(轴功率)P 之比,称为水泵的效率或全效率,以η表示:PgHQP Pu f 1000ρη==(5) 转速 水泵的转速指水泵轴旋转的速度,即单位时间内水泵轴的转数,以n 表示,单位为rpm(r/min)或s -1 (弧度/秒)。
(6) 比转速 水泵的比转速以n y 表示,用下式定义:4/365.3HQ n n y =作为性能参数的比转速是按泵最高效率点对应的基本性能参数计算得出的。
对于几何相似的泵,不论其尺寸大小、转速高低,其比转速均是一定的。
因此,比转速也是泵分类的一种准则。
(7) 泵的必须气蚀余量或泵的允许吸上真空高度泵的必须气蚀余量是指:为了防止泵内气蚀,泵运行时在泵进口附近的管路截面上单位重量液体所必须具有的超过汽化压头的富裕压头值,该值通常有泵制造厂规定。
泵的必须气蚀余量用(NPSH )r 表示,单位为米(m )。
泵的允许吸上真空高度是指:为了防止泵内气蚀,泵运行时在泵进口附近的管路截面上所容许达到的最大真空高度值,该值也通常由泵制造厂规定,在不同的大气压力下及不同的液体温度时需要进行换算。
泵的允许吸上真空高度用【Hs 】表示,单位为米(m )。
1.3 水泵的性能曲线图5所示是典型的锅炉给水泵性能曲线(H-Q )、以及效率和轴功率曲线。
它是一条较为平坦的曲线,与风机的一族梳状曲线不同,其出口压力(扬程)随着流量的增加而单调下降,零流量时的扬程称为关死点扬程。
水泵的静扬程(Hst )一般都不为零,图6所示为静扬程占到关死点扬程60%时的某给水泵的调速性能曲线和阻力曲线,2000250030003500η(%)N (k W )Q(m /h)3H (m )图5 典型的锅炉给水泵性能曲线H 扬程O5001000200025001500400300200100q (M /h )v 3q v aq v m M'MAH -qvH -q1vH M H A相似抛物线图6 某给水泵的调速性能曲线和阻力曲线风机的性能曲线呈梳状,一般通过入口风门调节风量和风压,随着风门(叶片)开大,风机的出口风量和风压都沿阻力曲线增大,其等效率曲线是一组闭合的椭元。
这一点是与水泵的性能曲线不同的:对于水泵,一般通过出口阀门调节流量和压力,当出口阀门开大时,流量增大,而压力却减小;当阀门关小时,流量减小,压力则增大,见图5、图6所示。
对于水泵,阀门开度的变化改变的是阻力曲线(陡度);而对于风机,风门开度(叶片角度)的变化改变的是风机的P-Q 特性曲线,而与阻力曲线无关。
风机水泵所消耗的轴功率,则都与压力和流量的乘积成正比,但风机的轴功率随着风门开大而增大,而水泵则当其流量增大到一定程度后,其轴功率随着流量的增大增加不多甚至反而减小。
1.4 水泵拖动系统的主要特点叶片式风机水泵的负载特性属于平方转矩型,即其轴上需要提供的转矩与转速的二次方成正比。
风机水泵在满足三个相似条件:几何相似、运动相似和动力相似的情况下遵循相似定律;对于同一台风机(或水泵),当输送的流体密度ρ不变仅转速改变时,其性能参数的变化遵循比例定律:流量与转速的一次方成正比;扬程(压力)与转速的二次方成正比;轴功率则与转速的三次方成正比。
即:''n n Q Q = ; 2'')(n n H H = ;3'')(n n P P = 风机与水泵转速变化时,其本身性能曲线的变化可由比例定律作出,如图7所示。
因管路阻力曲线不随转速变化而变化,故当转速由n 变至n / 时,运行工况点将由M 点变至M /点。
q vPOP-q vP-q'vnn'n>n'MM'H 扬程H STOM M'n n'n>n'q v(a) (b)图7 转速变化时风机(水泵)装置运行工况点的变化(a) 风机(当管路静压Pst=0时)(b)水泵(当管路静扬程Hst≠0时)应该注意的是:风机水泵比例定律三大关系式的使用是有条件的,在实际使用中,风机水泵由于受系统参数和运行工况的限制,并不能简单地套用比例定律来计算调速范围和估算节能效果。
当管路阻力曲线的静扬程(或静压)等于零时,即H ST=0(或P ST=0)时,管路阻力曲线是一条通过坐标原点的二次抛物线,它与过M点的变转速时的相拟抛物线重合,因此,M与M'又都是相似工况点,故可用比例定律直接由M 点的参数求出M'点的参数。
对于风机,其管路静压一般为零,故可用相似定律直接求出变速后的参数。
而对于水泵,其管路阻力曲线的静扬程(或静压)不等于零时,即H st≠0(或P st≠0)时,转速变化前后运行工况点M与M'不是相似工况点,故其流量、扬程(或全压)与转速的关系不符合比例定律,不能直接用比例定律求得。
而应将实际工况转化为相似工况后,才能用比例定律进行计算。
特别是对于水泵,其静扬程一般都很大,所以变速前后的流量比不等于转速比,而是流量比恒大于转速比。
管路性能曲线的静扬程越高,水泵性能曲线和管路性能曲线的夹角就越小,则变速调节流量时,改变相同流量时的转速变化就越小,其轴功率的减小值也越小,还有可能引起管路的水击,因此水泵的调速节能效果要比风机差一些。
第二节水泵的并联运行分析2.1. 水泵并联运行的一般情况水泵并联运行的主要目的是增大所输送的流量。
但流量增加的幅度大小与管路性能曲线的特性及并联台数有关。
图8所示为两台及三台性能相同的20Sh-13型离心泵并联时,在不同陡度管路性能曲线下流量增加幅度的情况,从图8可见,当管路性能曲线方程为Hc=20+10Q2时(Q的单位为m3/s),从图中查得:一台泵单独运行时:Q1=730L/s (100%)两台泵关联运行时:Q2=1160L/s (159%)三台泵并联运行时:Q3=1360L/s (186%)但当管路性能曲线方程为Hc=20+100Q 2时(Q 的单位为m 3/s ),从图9可查出:一台泵单独运行时:Q 1=450L/s (100%) 二台泵并联运行时:Q 2=520L/s (116%) 三台泵并联运行时:Q 3=540L/s (120%)104006002001000120014008001600203040506070Hc=20+10Q 2Hc=20+100Q 2Q(L/S)H(m)图8 不同陡度管路性能曲线对泵并联效果的影响比较两组数据可以看出:管路性能曲线越陡,并联的台数越多,流量增加的幅度就越小。
因此,并联运行方式适用于管路性能曲线不十分陡的场合,且并联的台数不宜过多。
若实际并联管路性能曲线很陡时,则应采取措施,如增大管径、减少局部阻力等,使管路性能曲线变得平坦些,以获得好的并联效果。
一般的供水系统都采用多台泵并联运行的方式,并且采用大小泵搭配使用,目的是为了灵活的根据流量决定开泵的台数,降低供水的能耗。
供水高峰时,几台大泵同时运行,以保证供水流量;当供水负荷减小时,采用大小泵搭配使用,合理控制流量,晚上或用水低谷时,开一台小泵维持供水压力。
多台并联运行的水泵,一般采用关死点扬程(或最大扬程)相同,而流量不同的水泵。