5刚体力学基础习题思考题
- 格式:doc
- 大小:763.18 KB
- 文档页数:11
第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。
那么碰撞后A 端的速度大小:(A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。
[ B ]难度:中L5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
⼤学物理学第⼆章刚体⼒学基础⾃学练习题第⼆章刚体⼒学基础⾃学练习题⼀、选择题4-1.有两个⼒作⽤在有固定转轴的刚体上:(1)这两个⼒都平⾏于轴作⽤时,它们对轴的合⼒矩⼀定是零;(2)这两个⼒都垂直于轴作⽤时,它们对轴的合⼒矩可能是零;(3)当这两个⼒的合⼒为零时,它们对轴的合⼒矩也⼀定是零;(4)当这两个⼒对轴的合⼒矩为零时,它们的合⼒也⼀定是零;对上述说法,下述判断正确的是:()(A )只有(1)是正确的;(B )(1)、(2)正确,(3)、(4)错误;(C )(1)、(2)、(3)都正确,(4)错误;(D )(1)、(2)、(3)、(4)都正确。
【提⽰:(1)如门的重⼒不能使门转动,平⾏于轴的⼒不能提供⼒矩;(2)垂直于轴的⼒提供⼒矩,当两个⼒提供的⼒矩⼤⼩相等,⽅向相反时,合⼒矩就为零】4-2.关于⼒矩有以下⼏种说法:(1)对某个定轴转动刚体⽽⾔,内⼒矩不会改变刚体的⾓加速度;(2)⼀对作⽤⼒和反作⽤⼒对同⼀轴的⼒矩之和必为零;(3)质量相等,形状和⼤⼩不同的两个刚体,在相同⼒矩的作⽤下,它们的运动状态⼀定相同。
对上述说法,下述判断正确的是:()(A )只有(2)是正确的;(B )(1)、(2)是正确的;(C )(2)、(3)是正确的;(D )(1)、(2)、(3)都是正确的。
【提⽰:(1)刚体中相邻质元间的⼀对内⼒属于作⽤⼒和反作⽤⼒,作⽤点相同,则对同⼀轴的⼒矩和为零,因⽽不影响刚体的⾓加速度和⾓动量;(2)见上提⽰;(3)刚体的转动惯量与刚体的质量和⼤⼩形状有关,因⽽在相同⼒矩的作⽤下,它们的运动状态可能不同】3.⼀个⼒(35)F i j N =+v v v 作⽤于某点上,其作⽤点的⽮径为m j i r )34(-=,则该⼒对坐标原点的⼒矩为()(A )3kN m -?v ;(B )29kN m ?v ;(C )29kN m -?v ;(D )3kN m ?v。
【提⽰:(43)(35)4302092935i j kM r F i j i j k k k =?=-?+=-=+=v v v v v v v v v v v v v 】4-3.均匀细棒OA 可绕通过其⼀端O ⽽与棒垂直的⽔平固定光滑轴转动,如图所⽰。
第三章习题解答3.13 某发动机飞轮在时间间隔t内的角位移为。
求 t时刻的角速度和角加速度。
解:3.14桑塔纳汽车时速为 166km/h,车轮滚动半径为 0.26m,发动机转速与驱动轮转速比为 0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m,发动机转速为 n1, 驱动轮转速为 n2, 汽车速度为 v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,,所以:3.15 如题 3-15图所示,质量为 m的空心圆柱体,质量均匀分布,其内外半径为 r1和r2,求对通过其中心轴的转动惯量。
解:设圆柱体长为 h ,密度为,则半径为 r,厚为 dr的薄圆筒的质量 dm 为:对其轴线的转动惯量为3.17 如题 3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过 O轴且垂直于圆形细杆所在平面的轴的转动惯量为 mR2,根据垂直轴定理和问题的对称性知:圆形细杆对过轴的转动惯量为 mR2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:3.18 在质量为 M ,半径为 R的匀质圆盘上挖出半径为 r的两个圆孔,圆孔中心在半径R的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
解:大圆盘对过圆盘中心 o且与盘面垂直的轴线(以下简称 o轴)的转动惯量为.由于对称放置,两个小圆盘对 o轴的转动惯量相等,设为 I ’,圆盘质量的面密度σ=M/πR2,根据平行轴定理,设挖去两个小圆盘后,剩余部分对o轴的转动惯量为 I ”3.19一转动系统的转动惯量为I=8.0kgm 2,转速为ω=41.9rad/s,两制动闸瓦对轮的压力都为 392N,闸瓦与轮缘间的摩擦系数为μ=0.4,轮半径为 r=0.4m,问从开始制动到静止需多长时间?解:由转动定理:制动过程可视为匀减速转动,3.20一轻绳绕于 r=0.2m的飞轮边缘,以恒力F=98N 拉绳,如题 3-20图(a)所示。
第二章 刚体力学基础 自学练习题一、选择题4-1.有两个力作用在有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( )(A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。
【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】4-2.关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。
对上述说法,下述判断正确的是:( )(A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。
【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩为 ( )(A )3kN m -⋅; (B )29kN m ⋅; (C )29kN m -⋅; (D )3kN m ⋅。
【提示:(43)(35)4302092935i j kM r F i j i j k k k =⨯=-⨯+=-=+=】4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。
习题5-1. 如图,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为2/2mr ,将由两个定滑轮以及质量为m 2和m 的重物组成的系统从静止释放,求重物的加速度和两滑轮之间绳内的张力。
解:受力分析如图 ma T mg 222=- (1)ma mg T =-1 (2)βJ r T T =-)(12 (3)βJ r T T =-)(1 (4)βr a = (5)联立 g a 41=, mg T 811=5-2. 如图所示,一均匀细杆长为l ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过中心O 且垂直与桌面的轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。
(1) 设杆的线lm =λ,在杆上取一小质元dx dm λ=gdx dmg df μλμ==gxdx dM μλ= 考虑对称mgl gxdx M l μμλ⎰==20412 (2) 根据转动定律d M J Jdt ωβ== ⎰⎰=-tw Jd Mdt 000ω 0212141ωμml mglt -=- 所以 gl t μω30=5-3. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子的质量可以忽略,它与定滑轮之间无滑动。
假设定滑轮质量为M 、半径为R ,其转动惯量为2/2MR ,试求该物体由静止开始下落的过程中,下落速度与时间的关系。
dtdv mma T mg ==- βJ TR = βR dtdv = 整理 mg dtdv M m =+)21( gdt M m m dv t v ⎰⎰+=0021 2M m mgt v +=5-4. 轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为4/M ,均匀分布在其边缘上,绳子A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为4/M 的重物,如图。
已知滑轮对O 轴的转动惯量4/2MR J =,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?解:选人、滑轮与重物为系统,设u 为人相对绳的速度,v 为重物上升的速度,系统对轴的角动量 MuR MvR R M R v u M vR M L -=+--=23)4()(42ω 根据角动量定理 dtdL M = )23(43MuR MvR dt d MgR -= 0=dt du MRa dt dv MR MgR 232343== 所以 2g a =5-5. 计算质量为m 半径为R 的均质球体绕其轴线的转动惯量。
证明:设球的半径为R ,总重量为m ,体密度343Rm πρ=, 将球体划分为许多厚度为dZ 的圆盘,则盘的体积为 dZ Z R 222)(-π22252182()2155R R J R Z dZ R mR ππρρ-=-==⎰5-6. 一轻弹簧与一均匀细棒连接,装置如图所示,已知弹簧的劲度系数N/m 40=k ,当0θ=时弹簧无形变,细棒的质量kg 0.5=m ,求在0θ=的位置上细棒至少应具有多大的角速度ω,才能转动到水平位置?解:机械能守恒22212121kx J mg =+ω 根据几何关系 22215.1)5.0(+=+x 128.3-⋅=s rad ω5-7. 如图所示,一质量为m 、半径为R 的圆盘,可绕O 轴在铅直面内转动。
若盘自静止下落,略去轴承的摩擦,求:(1)盘到虚线所示的铅直位置时,质心C 和盘缘A 点的速率;(2)在虚线位置轴对圆盘的作用力。
解:在虚线位置的C 点设为重力势能的零点,下降过程机械能守恒221ωJ mgR = 2221mR mR J += R g 34=ω 34Rg R v c ==ω 1623A Rg v R ω== 273y F mg mR mg ω=+= 方向向上 5-8. 如图所示,长为l 的轻杆,两端各固定质量分别为m 和m 2的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为l 31和l 32.轻杆原来静止在竖直位置。
今有一质量为m 的小球,以水平速度0v 与杆下端小球m 作对心碰撞,碰后以021v 的速度返回,试求碰撞后轻杆所获得的角速度。
解:根据角动量守衡 有022021322)3()32(32v ml m l m l l mv ⋅-⋅+=ωω lv 230=ω 5-9. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动。
开始时,圆盘静止,一质量为m 的子弹以水平速度v 垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求:(1)子弹击中圆盘后,盘所获得的角速度;(2)经过多少时间后,圆盘停止转动。
(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩。
) 解(1)角动量守恒 ωω2221mR MR mvR += 2(2)mv m M Rω=+ (2)2022π3R M M dM dmgr gr rdr MgR R μμμπ====⎰⎰⎰ 2221()032MgR t MR mR μω⋅∆=+-,()224M m t R Mg ωμ+∴∆= 由(1)已得:()22m M m Rω=+v ,代入即得32m t Mg μ∆=v5-10. 有一质量为1m 、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动。
另有一水平运动的质量为2m 的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短。
已知小滑块在碰撞前后的速度分别为1v 和2v ,如图所示。
求碰撞后从细棒开始转动到停止转动的过程所需的时间。
(已知棒绕O 点的转动惯量2131l m J =) 碰撞时角动量守恒 22112213m v l m l m v l ω=- lm v v m 1212)(3+=ω 细棒运动起来所受到的摩擦力矩gl m gxdx l m M l 10121μμ==⎰ dtd J M ω=- ⎰-=t gl m d l m dt 01212131μω g m v v m g l t 1212)(232μμω+==5-11. 如图所示,滑轮转动惯量为2m kg 01.0⋅,半径为cm 7;物体的质量为kg 5,用一细绳与劲度系数N/m 200=k 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计。
求:(1)当绳拉直、弹簧无伸长时使物体由静止而下落的最大距离。
(2)物体的速度达最大值时的位置及最大速率。
(1)机械能守恒。
设下落最大距离为hmgh kh =221m kmg h 49.02== (2)mgx J mv kx =++222212121ω 12222mgx kx v J m r ⎡⎤-⎢⎥=⎢⎥+⎢⎥⎣⎦若速度达最大值,0=dxdv )(245.0m kmg x ==1122222222259.80.2452000.245 1.31/0.015(710)mgx kx v m s J m r -⎡⎤⎡⎤⎢⎥-⨯⨯⨯-⨯⎢⎥===⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⨯⎣⎦5-12. 设电风扇的功率恒定不变为P ,叶片受到的空气阻力矩与叶片旋转的角速度ω成正比,比例系数的k ,并已知叶片转子的总转动惯量为J 。
(1)原来静止的电扇通电后t 秒时刻的角速度;(2)电扇稳定转动时的转速为多大?(3)电扇以稳定转速旋转时,断开电源后风叶还能继续转多少角度?解:(1)通电时根据转动定律有 dt d JM M r ω=- ωP M = ωk M r =代入两边积分 ωωωωd k P J dt t ⎰⎰-=020 )1(2t J ke k P --=ω(2)电扇稳定转动时的转速 k P m =ω (3) θωωωd d J k =- ⎰⎰=-00m d d Jk ωθωθ kP k J=θ 5-13. 如图所示,物体A 放在粗糙的水平面上,与水平桌面之间的摩擦系数为μ,细绳的一端系住物体A ,另一端缠绕在半径为R 的圆柱形转轮B 上,物体与转轮的质量相同。
开始时,物体与转轮皆静止,细绳松弛,若转轮以0ω绕其转轴转动。
试问:细绳刚绷紧的瞬时,物体A 的速度多大?物体A 运动后,细绳的张力多大?解:细绳刚绷紧时系统机械能守恒2220212121mv J J +=ωω ωR v = 013v R ω= ma mg T =-μβJ TR =-3mg T μ=βR a =5-14. 质量为m 的小孩站在半径为R 、转动惯量为J 的可以自由转动的水平平台边缘上(平台可以无摩擦地绕通过中心的竖直轴转动)。
平台和小孩开始时均静止。
当小孩突然一相对地面为v 的速率沿台边缘逆时针走动时,此平台相对地面旋转的角速度ω为多少?解:此过程角动量守恒 ωJ mrv -=0J mRv =ω 5-15. 以速度0v 作匀速运动的汽车上,有一质量为m (m 较小),边长为l 的立方形货物箱,如图所示。
当汽车遇到前方障碍物急刹车停止时,货物箱绕其底面A 边翻转。
试求:(1)汽车刹车停止瞬时,货物箱翻转的角速度及角加速度;(2)此时,货物箱A 边所受的支反力。
解:(1)角动量守恒 ω20322ml l mv = l v 430=ω 根据转动定律 β2322ml l mg = l g 43=β (2)0ct 0cn cx x 45cos ma 45cos ma ma N -==思考题5-1. 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量1m 和2m 的物体 (1m <2m ),如图所示.绳与轮之间无相对滑动,某时刻滑轮沿逆时针方向转动,则绳的张力多大?a m T g m 111=- (1)a m g m T 222=- (2) 插入图5-29βJ r T T =-)(21 (3)βr a = (4)联立方程可得 1T 、2T 。
12T T5-2. 一圆盘绕过盘心且与盘面垂直的轴O 以角速度ω按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面方向同时作用到盘上,则盘的角速度ω怎样变化?答:增大5-3. 个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的:(A )机械能守恒,角动量守恒;(B )机械能守恒,角动量不守恒,(C )机械能不守恒,角动量守恒;(D )机械能不守恒,角动量不守恒. 答:(C )5-4. 在边长为a 的六边形顶点上,分别固定有质量都是m 的6个质点,如图所示。