分子生物学英文文献
- 格式:pdf
- 大小:862.07 KB
- 文档页数:5
中文名: 植物生物化学与分子生物学(中文版)原名: Plant Biochemistry and Molecular Biology资源格式: PDF发行时间: 2004年地区: 大陆语言: 简体中文简介:作者:(美)B.B.布坎南(BobB.Buchanan)出版社:科学出版社出版日期:2004年2月版次:ISBN:703012013 页数:1090开本:大16开包装:价格:¥260.0本书简介本书英文版由国际杰出植物生物学家编写,美国植物生物学家学会出版,是植物生物学领域的重要著作。
在整合前沿知识的基础上,本书围绕细胞区室结构、细胞的繁衍、能量流、代谢与发育的整合、植物的环境与农业5个主题精心组织内容,反映了各个领域的研究历史和最新进展。
本书编排有序,图文并茂,适用于植物生物学以及分子生物学、生物技术、生物化学、细胞生物学、生理学、生态学等相关领域的研究和教学参考。
制药学、农业经济等领域的研究人员也可从中得到有价值的信息。
目录:第1篇区室结构1 膜结构和被膜细胞器导言1.1 细胞膜的共性和遗传性1.2 膜的流动镶嵌模型1.3 质膜1.4 内质网1.5 高尔基体1.6 胞吐和内吞1.7 液泡1.8 细胞核1.9 过氧化物酶体1.10 质体1.11 线粒体小结相关文献2 细胞壁导言2.1 糖:组成细胞壁的基本单位2.2 组成细胞壁的大分子2.3 细胞壁构架2.4 细胞壁的生物合成和装配2.5 生长与细胞壁2.6 细胞分化2.7 可用作食物、饲料和纤维的细胞壁小结相关文献3 膜转运导言3.1 膜运输概述3.2 植物膜上运输的组织构成3.3 泵3.4 载体蛋白3.5 离子通道的一般特性3.6 运转中的离子通道3.7 通过水通道蛋白运输水小结相关文献4 蛋白质分选和囊泡运输导言4.1 蛋白质分选的机制4.2 将蛋白质定位到质体中4.3 转运进入线粒体和过氧化物酶体4.4 细胞核的内向和外向转运4.5 内质网在蛋白质分选和组装中的作用4.6 液泡定位和分泌4.7 高尔基体中的蛋白质修饰4.8 内吞作用小结相关文献5 细胞骨架导言5.1 细胞骨架概述5.2 中间纤维5.3 肌动蛋白与微管蛋白家族5.4 肌动蛋白与微管蛋白的聚合5.5 肌动蛋白与微管蛋白的特性5.6 细胞骨架结合蛋白5.7 肌动蛋白纤维在胞内定向运动中的作用5.8 皮层微管与细胞扩展5.9 观察细胞骨架的动力学5.10 细胞骨架与信号转导5.11 细胞骨架与有丝分裂5.12 细胞骨架与胞质分裂小结相关文献第2篇细胞的繁衍6 核酸导言6.1 核酸的组成与核苷酸的合成6.2 细胞核DNA的复制6.3 DNA修复6.4 DNA重组6.5 细胞器DNA6.6 DNA转录6.7 RNA的特征和功能6.8 RNA加工小结相关文献7 基因组的组织结构与表达导言7.1 基因与染色体7.2 核基因组的组织结构7.3 转座因子7.4 基因表达7.5 染色质在染色体组织和基因表达中的作用7.6 基因调控的后生遗传机制小结相关文献8 氨基酸导言8.1 植物体内氨基酸的生物合成:研究现状与前景8.2 无机氮同化进N-转运氨基酸8.3 芳香族氨基酸的合成8.4 天冬氨酸衍生氨基酸的生物合成8.5 支链氨基酸8.6 脯氨酸代谢:耐胁迫代谢工程的靶标小结相关文献9 蛋白质的合成、装配和降解导言9.1 从RNA到蛋白质9.2 真核生物细胞质蛋白质生物合成的调控9.3 叶绿体中蛋白质的合成9.4 蛋白质的翻译后修饰9.5 蛋白质降解相关文献10 脂类导言10.1 脂类的结构与功能10.2 脂肪酸的生物合成10.3 乙酰辅酶A羧化酶10.4 脂肪酸合酶10.5 C16 和C18 脂肪酸的去饱和及其延长10.6 特殊脂肪酸的合成10.7 膜脂的合成10.8 膜脂的功能10.9 结构脂类的合成与功能10.10 贮藏性脂类的合成与分解代谢10.11 脂类的基因工程小结相关文献11 细胞分裂的调控导言11.1 动植物细胞及其细胞周期11.2 细胞周期研究的历史回顾11.3 DNA复制11.4 有丝分裂11.5 细胞周期的调控机制11.6 细胞周期的调控逻辑11.7 多细胞生物的细胞周期调控11.8 植物生长发育中的细胞周期调控小结相关文献第3篇能量流12 光合作用导言12.1 光合作用总论12.2 光吸收与能量转换12.3 反应中心复合体12.4 光系统12.5 类囊体膜的组成12.6 叶绿体膜的电子转移途径12.7 叶绿体中的A TP合成12.8 C3植物中的碳反应12.9 CO2固定机制的差异小结相关文献13 糖代谢13.1 磷酸己糖库13.2 利用磷酸己糖的生物合成途径:蔗糖和淀粉的合成13.3 产生磷酸己糖的分解代谢途径:蔗糖和淀粉的降解13.4 磷酸丙糖/磷酸戊糖代谢产物库13.5 磷酸己糖和磷酸戊糖/磷酸丙糖代谢产物库之间的相互作用13.6 淀粉与蔗糖合成:细胞对代谢总调控的范例13.7 糖类对基因表达的调控13.8 糖酵解中的贮能反应13.9 为生物合成反应提供能量和还原力小结相关文献14 呼吸与光呼吸导言14.1 呼吸概论14.2 柠檬酸(三羧酸)循环14.3 植物线粒体的电子传递14.4 植物线粒体的ATP合成14.5 线粒体呼吸作用的调节14.6 线粒体与细胞其他区域的相互关系14.7 光呼吸的生化基础14.8 光呼吸途径14.9 植物中光呼吸的规律小结相关文献第4篇代谢与发育的整合15 长距离运输导言15.1 植物体内物质的扩散与径流15.2 通道大小在确定质外体和共质体运输特征中有重要作用15.3 木质部和韧皮部物质运输的比较15.4 木质部中水分的蒸腾运动15.5 胞间连丝介导的共质体运输15.6 韧皮部运输15.7 植物内源大分子的细胞间运输小结相关文献16 氮和硫导言16.1 生物圈和植物中氮素概况16.2 固氮概论16.3 氮固定中的酶学16.4 共生固氮16.5 氨的吸收和运输16.6 硝酸盐的吸收和还原概述16.7 硝酸盐的还原16.8 亚硝酸盐的还原16.9 硝酸盐同化和碳代谢间的相互作用16.10 硫酸盐同化概述16.11 硫的化学性质及功能16.12 硫的吸收及运输16.13 还原硫的同化途径16.14 谷胱甘肽及其衍生物的合成及功能小结相关文献17 植物激素与诱激物分子的生物合成导言17.1 赤霉素17.2 脱落酸17.3 细胞分裂素17.4 吲哚-3-乙酸17.5 乙烯17.6 油菜素类固醇17.7 多胺17.8 茉莉酮酸17.9 水杨酸17.10 展望小结相关文献18 信号感受和转导导言18.1 信号转导概述18.2 受体18.3 植物受体的特殊例子18.4 G蛋白和磷脂信号系统18.5 环状核苷酸18.6 钙18.7 蛋白激酶:信号转导中的基本组分18.8 植物生长调节因子参与特殊的信号转导途径18.9 植物细胞信号转导研究的展望小结相关文献19 生殖发育导言19.1 开花诱导19.2 花的发育19.3 花发育的遗传和分子分析19.4 配子的形成19.5 影响配子体发育的突变19.6 花粉的萌发19.7 自交不亲和19.8 受精作用19.9 种子形成19.10 种子发育过程中贮藏物质的积累19.11 胚胎的成熟和脱水19.12 萌发小结相关文献20 衰老与程序性细胞死亡导言20.1 动物及植物中观察到的细胞死亡的类型20.2 植物生活周期中的PCD20.3 衰老概述20.4 衰老过程中的色素代谢20.5 衰老过程中的蛋白质代谢20.6 衰老对光合作用的影响20.7 衰老对氧化代谢的影响20.8 衰老过程中的核酸降解20.9 衰老细胞中代谢活性的调节20.10 内源植物生长调节因子与衰老20.11 环境对衰老的影响20.12 植物发育性PCD的例子:管状分子的形成和禾本科植物内胚乳的转移20.13 PCD作为植物胁迫应答的例子:通气组织的形成和超敏反应20.14 PCD研究的未来方向以及面临的更多问题小结相关文献第5篇植物的环境与农业21 植物对病原体的反应导言21.1 植物病原体的致病机理21.2 植物防御系统21.3 植物-病原体相互作用的遗传基础21.4 R基因与R基因介导的植物抗病性21.5 植物防御反应的生化原理21.6 系统性植物防御反应21.7 利用基因工程控制植物病原体小结相关文献22 植物对非生物胁迫的反应导言22.1 植物对非生物胁迫的反应22.2 与缺水相关的胁迫22.3 渗透调节及其在耐旱耐盐中的作用22.4 缺水和盐分对跨膜转运的影响22.5 水分胁迫诱导的其他基因22.6 冰冻胁迫22.7 水涝和缺氧22.8 氧化胁迫22.9 热胁迫小结相关文献23 矿质营养吸收、转运及利用的分子生理学导言23.1 必需矿质元素概论23.2 植物K+转运机制与调节23.3 磷的营养与转运23.4 微量营养吸收的分子生理学23.5 植物对矿质毒性的反应小结相关文献24 天然产物(次生代谢物)导言24.1 萜类化合物24.2 IPP的生物合成24.3 异戊烯转移酶与萜类合酶参与的反应24.4 萜类化合物骨架的修饰24.5 转基因萜类产物24.6 生物碱24.7 生物碱的生物合成24.8 生物技术在生物碱生物合成研究中的应用24.9 苯丙烷类化合物和苯丙烷类-乙酸酯途径的代谢产物24.10 苯丙烷类化合物和苯丙烷类-乙酸酯的生物合成24.11 木脂体、木质素的生物合成和栓化作用24.12 黄酮类化合物24.13 香豆素、芪、苯乙烯吡喃酮和芳基吡喃酮类化合物24.14 苯丙烷类产物的代谢工程:改善纤维、色素、药物和调味剂的可能途径小结相关文献索引。
植物科学学报 2023,41(6):809~819Plant Science Journal DOI:10.11913/PSJ. 2095-0837. 23154刘娟,孙恒,邓显豹,杨东,宋贺云,章明华,王雨昕,辛佳,杨辉,杨美. 莲遗传学和分子生物学研究进展[J]. 植物科学学报,2023,41(6):809−819Liu J,Sun H,Deng XB,Yang D,Song HY,Zhang MH,Wang YX,Xin J,Yang H,Yang M. Research progress in lotus (Nelumbo) gene-tics and molecular biology[J]. Plant Science Journal,2023,41(6):809−819莲遗传学和分子生物学研究进展刘娟1, 2,孙恒1, 2,邓显豹1, 2,杨东1, 2,宋贺云1, 3,章明华1, 3,王雨昕1, 3,辛佳1, 3,杨辉1, 3,杨美1, 2 *(1. 中国科学院武汉植物园,水生植物研究中心,武汉 430074; 2. 中国科学院武汉植物园,湿地演化与生态恢复湖北省重点实验室,武汉 430074; 3. 中国科学院大学,北京 100049)摘 要:莲(Nelumbo)是我国特色的水生经济作物,具有很高的观赏、食用、药用等价值。
近年来,在莲基因组学、遗传学和分子生物学等研究领域取得一系列重要进展,绘制了莲属两个种的参考基因组图谱,构建了莲高密度遗传连锁图谱,开展了莲观赏性状(花色、开花时间和花型)、食用品质(莲子和莲藕营养成分)、药用成分(生物碱和类黄酮)和逆境胁迫(水淹、低温、弱光、重金属和盐碱)响应的分子机制研究。
本文从莲基因组测序、遗传图谱构建、重要性状基因挖掘和功能分析等方面进行了系统的综述,并对今后研究的重点和发展方向进行了展望,以期为莲的基础研究和遗传改良提供参考。
关键词:莲;基因组测序;重要性状;基因功能中图分类号:Q75 文献标识码:A 文章编号:2095-0837(2023)06-0809-11Research progress in lotus (Nelumbo) genetics and molecular biology Liu Juan1, 2 ,Sun Heng1, 2 ,Deng Xian-Bao1, 2 ,Yang Dong1, 2 ,Song He-Yun1, 3 ,Zhang Ming-Hua1, 3 ,Wang Yu-Xin1, 3 ,Xin Jia1, 3 ,Yang Hui1, 3 ,Yang Mei1, 2 *(1. Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;2. Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences,Wuhan 430074, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China)Abstract:Lotus (Nelumbo), a significant aquatic crop in China, possesses considerable ornamental, edible, and medicinal value. Over the past decade, significant progress has been achieved in the domains of ge-nomics, genetics, and molecular biology pertaining to lotus. The reference genomes of two Nelumbo species have been constructed, along with high-density genetic linkage maps. Furthermore, various studies have ex-plored the molecular mechanisms of ornamental traits (flower color, flowering time, and flower type), food quality (seed and rhizome nutrients), medicinal components (alkaloids and flavonoids), and stress responses (flooding, low temperature, low light, heavy metals, and salinity) of lotus. In this paper, the genome sequen-cing, genetic mapping, gene mining, and functional analysis of important traits in lotus are systematically re-viewed. Potential goals and future directions are also discussed to provide a reference for research and gene-tic improvement of lotus.Key words:Nelumbo;Genome sequence;Important traits;Gene function收稿日期:2023-05-26,修回日期:2023-06-16。
《Journal of Animal Science and Biotechnology》是一本动物科学与生物技术领域的国际期刊,发表有关动物生物学、生物化学、分子生物学、遗传学、营养学、生理学、生殖生物学、生态学以及与之相关的生物技术和应用的研究文章。
该期刊通常遵循国际学术出版的标准参考文献格式,例如APA、MLA或Chicago等。
这里提供一种通用的参考文献格式,但请注意,具体格式可能会根据期刊的作者指南有所不同:
作者姓氏,初始缩写. (发布年份). 文章标题. 期刊名称,卷号(期号),页码范围. DOI 或URL(如果有)。
例如:
Smith, J. A. (2023). The impact of genetic modification on animal productivity. Journal of Animal Science and Biotechnology, 14(2), 123-132. DOI: 10.1186/s40104-023-00435-z 或者
Smith, J. A., & Johnson, L. C. (2023). Advances in animal nutrition research. Journal of Animal Science and Biotechnology, 15(3), 234-245. URL:
以上信息是虚构的,仅用于说明目的。
在准备参考文献时,应始终查阅并遵循目标期刊的具体指南和要求。
这些指南通常可以在期刊的官方网站上找到,或者在发表文章之前与编辑联系以获取详细信息。
此外,引用文献时还应考虑语言版本、出版地区以及特殊领域的格式要求。
cellular and molecular life sciences 参考文献格式在学术论文中,根据不同的引用风格,参考文献的格式可能会有所不同。
下面是一种常见的引用风格——APA(美国心理学协会)格式,用于《Cellular and Molecular Life Sciences》这一期刊的参考文献格式:期刊文章:作者姓氏, 作者名字的首字母. (发表年份). 文章标题. 期刊名称, 卷号(期号), 页码范围. DOI(若有)。
例子:Smith, J. D., & Johnson, K. L. (2019). The role of mitochondria in cellular metabolism. Cellular and Molecular Life Sciences, 76(23), 4567-4589. DOI: 10.xxxx/xxxxx书籍:作者姓氏, 作者名字的首字母. (出版年份). 书名. 出版地: 出版社。
例子:Brown, R. A. (2017). Cell Signaling: Principles and Mechanisms. New York, NY: Oxford University Press.章节/文章:章节作者的姓氏, 章节作者的名字的首字母. (出版年份). 章节标题. In 编者姓氏, 编者名字的首字母. 书名 (页码范围). 出版地: 出版社。
例子:Smith, J. D. (2018). The role of microRNAs in gene regulation. In K. L. Johnson (Ed.), Molecular Biology: Advances and Perspectives (pp. 89-112). New York, NY: Springer.网页文章:作者姓氏, 作者名字的首字母. (发布年份). 文章标题. 网站名称. 检索日期, 来源链接。
国际生物大分子作者指南英文回答:International Journal of Biomolecules Author's Guide.As an author, it is important to understand the guidelines provided by the International Journal of Biomolecules when submitting a manuscript. In this guide, I will outline the key requirements and provide examples to help clarify the expectations.1. Manuscript Formatting:The manuscript should be prepared in Microsoft Word or LaTeX format. The text should be double-spaced with 12-point font size. The margins should be set to one inch on all sides. The title of the manuscript should be concise and informative, and the author's names and affiliations should be clearly stated.Example: In my recent study on protein folding, the manuscript was formatted according to the guidelines provided by the International Journal of Biomolecules. The text was double-spaced with a 12-point font size, and the margins were set to one inch on all sides. The title of the manuscript, "Unraveling the Mysteries of Protein Folding," clearly conveyed the focus of the research. My name and affiliation as the author were prominently displayed.2. Abstract and Keywords:The abstract should provide a brief summary of the research, highlighting the main objectives, methods, and key findings. It should be concise and informative, not exceeding 250 words. Keywords should be included to facilitate indexing and searching.Example: The abstract of my manuscript on protein folding concisely summarized the research objectives, methods, and key findings. It highlighted the importance of understanding protein folding in the context of disease development. The abstract was within the word limit of 250words and included relevant keywords such as "protein folding," "disease," and "molecular biology."3. Introduction:The introduction should provide a clear background and rationale for the research. It should present the research question or hypothesis and explain its significance. Relevant literature should be cited to support the need for the study.Example: In the introduction of my manuscript, I provided a comprehensive background on protein folding and its relevance to disease development. I highlighted the gaps in current knowledge and explained the research question that drove my study. I cited several key studies to support the significance of investigating proteinfolding in the context of disease.4. Materials and Methods:The materials and methods section should providesufficient detail for the study to be reproducible. It should include information on the experimental design, data collection, and statistical analysis. Any specialized techniques or equipment used should be described.Example: In the materials and methods section of my manuscript, I provided a step-by-step description of the experimental procedures used to investigate protein folding.I included details on the sample preparation, datacollection using spectroscopy techniques, and thestatistical analysis performed. I also described the specialized equipment used, such as the circular dichroism spectrometer.5. Results and Discussion:The results section should present the findings of the study in a clear and organized manner. Figures and tables should be used to enhance the presentation of data. The discussion section should interpret the results and relate them to the research question. It should also compare the findings with previous studies and address any limitations.Example: In the results section of my manuscript, I presented the data on protein folding using clear and informative figures and tables. I discussed theimplications of the findings and how they supported or contradicted the initial hypothesis. I compared my results with those of previous studies and addressed anylimitations, such as sample size or experimental conditions.中文回答:国际生物大分子作者指南。
植物质膜内在水通道蛋白PIPs的分子生物学研究进展何勇清;方佳;余敏芬;方仲相;江波;潘寅辉;郑炳松【摘要】Water is an important component in plant cells with plant aquaporin being the major protein for water transport in and between plant cells. As a subfamily of plant aquaporins, the plasma membrane intrinsic proteins (PIPs) located in the plasma membrane are classic, high water, selective channel proteins. This paper focuses on recent advances in the molecular biology of PIPs concerning structural characteristics, biological function, and a regulation mechanism. PIPs possess two highly conserved domains; GGGANXXXXGY andTGI/TNPARSL/FGAAI/VI/VFWF/YN. PIPs can also be divided into two phylogenetic subgroups named PIP1 and PIP2. PIP1 possesses longer N terminal sequences and shorter C terminal sequences than PIP2 with con served amino acid sequences respectively. Studies of transgenic plants and expression in Xenopus oocytes cells indicate that PIPs not only may facilitate transport of water and small neutral solutes like CO2 and glycerin, but they also possess many physiological functions. The functions of plant aquaporins are regulated by many factors including post-translational modification, heteromerization, pH value, and divalent cations. These results indicated that PIPs act as a pivotal role in water and small neutral solutes transport in plants. [Ch, 1 tab. 51 ref.]%水是植物细胞的重要组成成分,植物水通道蛋白是细胞间和细胞内水分快速运输的主要通道,作为植物水通道蛋白的一个亚类,质膜内在蛋白PIPs定位于原生质膜,为典型的高水分选择性通道蛋白.主要介绍了PIPs的结构特征、生物学功能及其调控机制.高等植物PIPs存在2个高度保守的区域:GGGANXXXXGY和TGI/TNPARSL/FGAAI/VI/VFWF/YN.PIPs 分为PIP1和PIP2亚类,PIP1比PIP2具较长的N-端和较短的C-端,并且具有各自的保守氨基酸.通过转基因和非洲爪蟾卵Xenopus oocytes母细胞异源表达研究表明PIPs不仅是水和二氧化碳、甘油等中性小分子选择性通道蛋白,同时还具有许多生理功能,是一类多功能蛋白.蛋白翻译后修饰、异聚化、pH值、二价阳离子等都能调控PIPs的运输功能.【期刊名称】《浙江农林大学学报》【年(卷),期】2012(029)003【总页数】7页(P446-452)【关键词】植物学;质膜内在蛋白;功能;调控机制;综述【作者】何勇清;方佳;余敏芬;方仲相;江波;潘寅辉;郑炳松【作者单位】浙江农林大学亚热带森林培育国家重点实验室培育基地,浙江临安311300;浙江农林大学亚热带森林培育国家重点实验室培育基地,浙江临安311300;浙江农林大学亚热带森林培育国家重点实验室培育基地,浙江临安311300;浙江农林大学亚热带森林培育国家重点实验室培育基地,浙江临安311300;浙江农林大学亚热带森林培育国家重点实验室培育基地,浙江临安311300;浙江省龙游县林业局,浙江龙游324400;浙江农林大学亚热带森林培育国家重点实验室培育基地,浙江临安311300【正文语种】中文【中图分类】Q74;S718.3水分对于植物的生长、发育和繁殖是非常重要的。
作物分子育种文献解读英文回答:Crop molecular breeding is a research field that combines molecular biology and traditional breeding techniques to improve crop traits. It involves the identification and manipulation of genes that control important traits, such as yield, disease resistance, and nutritional content, in order to develop new crop varieties with improved characteristics.One example of crop molecular breeding is the development of genetically modified (GM) crops. GM crops are created by introducing genes from other organisms into the plant's genome, allowing them to express desirable traits. For instance, scientists have inserted genes into certain crops to make them resistant to pests, herbicides, or environmental stress. This enables farmers to achieve higher yields and reduce the use of pesticides and herbicides.Another approach in crop molecular breeding is marker-assisted selection (MAS). MAS involves the use of molecular markers, which are specific regions of DNA associated with a particular trait, to select plants with desired traits more efficiently. For example, if a molecular marker is found to be strongly associated with disease resistance, breeders can use this marker to screen a large number of plants and select those that carry the desired resistance gene. This saves time and resources compared to traditional breeding methods, which rely on phenotypic selection.Furthermore, crop molecular breeding also involves the use of advanced techniques such as genome editing. Genome editing allows precise modification of specific genes in the plant's genome, offering great potential for crop improvement. One popular genome editing technique is CRISPR-Cas9, which allows scientists to edit genes by introducing targeted changes in the DNA sequence. This technique has been used to enhance traits such as disease resistance, drought tolerance, and nutritional content in various crops.In conclusion, crop molecular breeding is a powerfultool for improving crop traits and developing new varieties with enhanced characteristics. It combines molecularbiology techniques with traditional breeding methods to accelerate the breeding process and achieve desired outcomes. Whether through genetic modification, marker-assisted selection, or genome editing, crop molecular breeding offers great potential for addressing global food security challenges and improving agricultural sustainability.中文回答:作物分子育种是将分子生物学和传统育种技术相结合的研究领域,旨在改良作物性状。
分子生物学实验文献综述分子生物学实验是研究生物分子结构、功能和相互作用的一种重要手段。
本文将综述分子生物学实验的相关研究文献,介绍其在生物科学领域的应用和进展。
一、PCR技术在分子生物学实验中的应用PCR(聚合酶链反应)是一种常用的分子生物学技术,用于扩增DNA 序列。
该技术具有高度灵敏性和特异性,被广泛应用于基因克隆、突变检测、基因表达研究等领域。
研究表明,PCR技术的应用可以提高实验效率,减少实验成本,加快研究进展。
二、蛋白质表达与纯化技术的研究进展蛋白质表达与纯化是分子生物学实验中的重要环节,用于获取大量纯化的特定蛋白质。
研究人员通过优化表达载体、宿主菌株和培养条件等方面的因素,提高蛋白质表达的效率和纯化的质量。
此外,一些新兴的蛋白质表达系统如细胞外表达系统和细胞质表达系统也为蛋白质的高效表达提供了新的途径。
三、基因敲除技术在分子生物学实验中的应用基因敲除技术是研究基因功能的重要手段,通过特定的方法将目标基因进行敲除,从而观察敲除后生物体的表型变化。
利用基因敲除技术,研究人员可以揭示基因在发育、生理和疾病等方面的作用机制。
近年来,CRISPR-Cas9技术的出现使基因敲除技术更加简便高效,加速了分子生物学实验的进展。
四、荧光染料在分子生物学实验中的应用荧光染料广泛应用于分子生物学实验中的多个环节,如蛋白质和核酸的检测、细胞成像等。
研究人员通过选择合适的荧光染料,可以实现对生物分子的高灵敏度、高选择性的检测和成像。
此外,一些新型的荧光探针的出现,如荧光蛋白、量子点等,进一步拓展了荧光染料在分子生物学实验中的应用领域。
五、RNA干扰技术在基因功能研究中的应用RNA干扰技术是通过引入双链RNA分子,选择性地抑制特定基因的表达,从而研究基因功能。
该技术广泛应用于基因沉默、基因功能验证和药物研发等领域。
近年来,CRISPR-Cas9技术的引入为RNA 干扰技术提供了新的可能性,使得基因功能研究更加灵活和高效。
www.landesbioscience.com Mobile Genetic Elements 267Mobile Genetic Elements 2:6, 267-271; November/December, 2012; © 2012 Landes Bioscience LETTER TO THE EDITORLETTER TO THE EDITORGAA repeats were shown to be the most unstable trinucleotide repeats in the pri-mates genome evolution by comparison of orthologous human and chimp loci.2 The instability of the GAA repeat in the first intron of the frataxin gene X25 is particu-larly well studied since it causes an inher-ited disorder, Friedreich ataxia (FRDA).3-6 In Friedreich ataxia, once the length of the GAA repeat inside the frataxin gene (FXN GAA) reaches a certain threshold, the combined probability of its expan-sions and deletions in progeny of affected parents is about 85%.7 Deletions and con-tractions of the repeat in intergenerational transmissions can reach hundreds of base pairs.7 However, the FXN GAA repeat is much more stable in somatic cells.8 It is relatively stable in blood, but shows some instability in dorsal root ganglia,9 which is responsible for some of the neurodegen-erative symptoms of Friedreich ataxia.5 GAA repeats were shown to be stable in FRDA fibroblasts cell lines and neuronal stem cells.10The question why the FXN GAA repeat is so much more stable in somatic cells than in intergenerational transmis-sions remains open. Recent studies in FRDA iPSCs that are closer to embryonic cells than somatic cells models, showed expansions of the GAA repeat with 100% probability.10,11 It is intriguing that all cells Complexes between two GAA repeats within DNA introduced into Cos-1 cellsMaria M. KrasilnikovaPennsylvania State University; University Park, PA USAKeywords: replication, GAA repeat, Friedreich ataxia, genome instability, chromatinCorrespondence to: Maria M. Krasilnikova; Email: muk19@psu.eduSubmitted: 10/08/12; Revised: 12/09/12; Accepted: 12/10/12http://dx.doi.org/10.4161/mge.23194in the iPSC cell lines that were analyzed were synchronously adding about two GAA repeats in each replication.The studies focused on the FXN GAA repeat provided many valuable insights; however, human genome contains many other GAA repeats: the human X chro-mosome, for instance, contains 44 GAA stretches with more than 100 repeats in each. About 30 GAA repeats were detected on the chromosome 4.12 GAA repeats mostly originated from the 3' end of the poly A associated with Alu elements.13It is not known what makes repeats with the GAA motif most unstable com-pared with other trinucleotide repeats. It is possible that GAA repeats instability is caused by their ability to form non-B DNA structures. In vitro, GAA repeats can form triplexes,14,15 and sticky DNA structures.16 At the same time, hairpins17 and paral-lel duplexes18 have also been observed. When transcription is going through a GAA repeat, it can also form an R-loop, a DNA-RNA complex that leaves one of the complementary strands single-stranded.19 However, it is unclear whether these struc-tures indeed form in mammalian cells. If we assume that the instability of the GAA repeat is indeed associated with the struc-ture formation, it is still unclear why the structures would form in early embryo-genesis when the GAA expansion event in Friedriech ataxia is believed to occur,7 and do not form in somatic cells where the GAA repeat was shown to be more stable. In our recent study, we hypothesize that the differences in chromatin structure are at least partially responsible for the differ-ences in the GAA repeats stability.1
The propensity of GAA repeat to form a triplex structure may strongly depend on the structure of chromatin at the repeat and surrounding area.1 Consistent with other studies, we observed that formation of chromatin at an SV40-based plasmid introduced into mammalian cells occurs gradually: 8 h after transfection there are only occasional nucleosomes at the plas-mid, while by 72 h the nucleosome struc-ture is already regular.20 Our analysis of replication stalling at the repeat revealed that the repeat affects replication only in the first replication cycle, when chromatin is still at the formation stage. We believe that replication stalling at GAA is caused by a triplex structure that the GAA repeat adopts during transfection or inside the cell. In the subsequent replication cycles, replication was completely unaffected by the presence of the repeat, which is likely to be due to the inhibition of triplex for-mation by tight chromatin packaging.1