船舶与海洋工程ANSYS有限元分析——ANSYS分析的基本过程
- 格式:pptx
- 大小:2.35 MB
- 文档页数:67
ANSYS Workbench 在船舶舱段有限元分析中的应用作者:暂无来源:《智能制造》 2014年第1期本文使用ANSYS Workbench对某油船舱段进行了有限元分析,并介绍了变载荷的施加方法,包括使用表格、函数和ExternalData等对复杂变载荷进行计算和施加。
青岛远洋船员职业学院贠亚杰大连海事大学商庆彬船舶舱段有限元分析中牵涉到许多变载荷,比如静水压力、油舱内静压力和波浪力等。
这些载荷大都以压强(Pressure)的方式出现。
对于沿坐标方向线性变化的变载荷,可以直接在静力分析(Static Structural)中采用Tabular和Function两种方式施加,对于牵涉到多个坐标变量的复杂可变载荷,则可以采用External Data这个外部工具导入。
本文以一油船舱段为例介绍变载荷的施加方法。
一、建立模型并划分网格本文按照一10万吨油船的基本结构图,根据《钢制海船入级规范》(以下简称规范)的要求,选择平行中体部分的舱段,采用概念建模(Concept)的方法建立了船舶舱段模型。
船体板和桁材简化为壳体(Surface Body),船体骨架简化为线体(Line Body),x轴正向指向船首,y轴正向指向左舷,z轴正向指向上方,坐标原点位于舱段的一个端面、中纵剖面和船底的交点处,如图1所示。
图中隐藏了端部的一些板,以便看清双层结构中的骨架。
建模详细过程可参考《ANSYS Workbench全船结构有限元分析新流程》。
新版本的ANSYS Workbench支持Surface Body和Line Body的Joint,所以在新版本的ANSYS Workbench中建模不必考虑建模的先后顺序,只要保证添加的Line Body位置准确即可。
图2为划分好的网格,船舶的平行中体部分为较规则的几何体,网格划分并不困难。
舱段为纵骨架式,相邻纵骨之间的网格数量约为3~4个。
二、施加载荷和边界条件船舶结构有限元分析一般可以参考相应的规范建模和计算,本文按照规范和船舶尺寸等,以中拱状态为例计算了船舶载荷,其中变载荷有如下几项。
A N S Y S有限元分析基本流程-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章实体建模第一节基本知识建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。
建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。
一、实体造型简介1.建立实体模型的两种途径①利用ANSYS自带的实体建模功能创建实体建模:②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。
2.实体建模的三种方式(1)自底向上的实体建模由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。
(2)自顶向下的实体建模直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。
(3)混合法自底向上和自顶向下的实体建模可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。
自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。
二、ANSYS的坐标系ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。
①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。
②显示坐标系:定义了列出或显示几何对象的系统。
③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。
④单元坐标系:确定材料特性主轴和单元结果数据的方向。
1.全局坐标系全局坐标系和局部坐标系是用来定位几何体。
在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。
总体坐标系是一个绝对的参考系。
ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。
一、建立有限元模型与ANSYS经典版相比,WORKBENCH的操作界面更加美观,建模、分析的过程更加智能化,更容易上手。
但作为一个专注于有限元分析的软件,其日渐强大的建模模块(Geometry)对建立复杂的船体曲面仍显得力不从心。
因此需要在其他建模软件(笔者使用了SolidWorks)中建立船体实体模型后导入WORKBENCH中,完成随后的建模和分析工作。
鉴于实体单元在计算中消耗过多的内存和计算时间,本文采用概念建模(Concept)的方法将船体板定义为无厚度的壳体(SurfaceBody),将船体骨架定义为线体(Line Body),壳体和线体划分的网格类似于经典版的壳单元(Shell)和梁单元(Beam)。
1.导入实体模型可采用多种方法导入,如直接将模型文件拖入WORKBENCH的ProjectSchematic(项目概图)窗口,如图1所示。
还可双击启动Geometry模块后,在其File菜单中选择导入命令,导入后的模型如图2所示。
模型已冻结,分为船体和上层建筑两部分,船首指向X轴正向,船体上方指向Z轴正向。
坐标原点位于船体基平面、中站面和中线面的交点处。
图2导入后的模型2.生成舷墙(1)在中纵剖面(ZXPlane)建立草图(NewSketch),进入绘制草图模式。
点击“TreeOutline”→“Sketching”,沿甲板边线位置绘制一条曲线。
返回模型模式,点击“Sketching”→“Modeling”→“Extrude”,生成一个SurfaceBody。
(2)沿甲板将船体分开,点击“Create”→“Slice”,在“DetailView”窗口“SliceType”选项中选择“SlicebySurface”项,“TargetFace”选择上一步生成的SurfaceBody,“Slice Targets”选项中选“SelectedBodies”,点选船体结构→“Apply”→“Generate”,原来的船体分成两部分,上面是舷墙部分,下面是船舱部分,如图3所示。
第2章ANSYS有限元分析基本步骤ANSYS有限元分析是一种常用的工程分析方法,可以用于解决各种结构力学问题。
本文将对ANSYS有限元分析的基本步骤进行详细介绍。
1.确定分析目标:在进行有限元分析之前,首先需要明确分析的目标和要求。
包括确定所要分析的结构或零件的几何形状、材料特性、受力情况等。
2.建立有限元模型:建立有限元模型是有限元分析的关键步骤之一、在ANSYS软件中,可以通过几何建模功能来定义结构的几何形状和尺寸。
然后,根据要分析的问题类型,选择适当的单元类型,并使用网格划分功能将结构分割成适当大小的单元。
3.定义材料特性:在进行有限元分析之前,需要定义结构的材料特性。
包括弹性模量、泊松比、密度等。
可以根据实际情况输入已知的材料特性值,也可以通过实验或理论计算来获得。
4.定义边界条件:边界条件是有限元分析中的重要概念,它用于描述结构在系统中的限制条件。
在ANSYS中,可以通过节点约束和节点载荷来定义边界条件。
常见的边界条件包括固定边界条件、力载荷和位移约束。
5.生成网格:当有限元模型、材料特性和边界条件都定义好之后,可以使用ANSYS软件中的划分工具生成有限元网格。
生成网格的目的是将结构分割成适当大小和形状的单元,以便进行数值计算。
6.设置分析类型:在进行有限元分析之前,需要选择适当的分析类型。
根据具体问题的要求,可以选择其中的静态分析、动态分析、热分析等多种分析类型。
7.执行分析计算:当有限元模型、材料特性、边界条件和网格都设置好之后,可以执行分析计算。
ANSYS软件会根据设置的分析类型和边界条件进行数值计算,并给出相应的结果。
8.结果分析与后处理:分析计算完成后,可以进行结果的分析和后处理。
ANSYS软件提供了丰富的后处理功能,可以对应力、位移、变形、应变等结果进行可视化和分析。
9.结果验证和优化设计:完成有限元分析后,需要对结果进行验证和评估。
与实际情况进行对比,确定结果的可靠性和准确性。
一、建立有限元模型与ANSYS经典版相比,WORKBENCH的操作界面更加美观,建模、分析的过程更加智能化,更容易上手。
但作为一个专注于有限元分析的软件,其日渐强大的建模模块(Geometry)对建立复杂的船体曲面仍显得力不从心。
因此需要在其他建模软件(笔者使用了SolidWorks)中建立船体实体模型后导入WORKBENCH中,完成随后的建模和分析工作。
鉴于实体单元在计算中消耗过多的内存和计算时间,本文采用概念建模(Concept)的方法将船体板定义为无厚度的壳体(SufaceBody),将船体骨架定义为线体(Line Body),壳体和线体划分的网格类似于经典版的壳单元(Shell)和梁单元(Beam)。
1•导入实体模型可采用多种方法导入,如直接将模型文件拖入WORKBENCH的Projectschematic项目概图)窗口,如图1所示。
还可双击启动Geometry模块后,在其File菜单中选择导入命令,导入后的模型如图2所示。
模型已冻结,分为船体和上层建筑两部分,船首指向X轴正向,船体上方指向Z轴正向。
坐标原点位于船体基平面、中站面和中线面的交点处。
Ji芍化懂型偉常图2导入后的模型2•生成舷墙⑴在中纵剖面(ZXPlane)建立草图(NewSketch),进入绘制草图模式。
点击“ TreeOutline ” —“ Sketch fli甲板边线位置绘制一条曲线。
返回模型模式,点击“Sketching ” —“ Modeling ” —“ Ext生成一个SufaceBody。
(2) 沿甲板将船体分开,点击“Create ” —“ ,iCe ^DetailView窗'口“SliceType选项中选择“SlicebySurfac项,” “TargetFac选择上一步生成的SurfaceBody, “Slice Targets 选项中选“SelectedBodies点选船体结构―“Apply ” —“ Gene,t原来的船体分成两部分,上面是舷墙部分,下面是船舱部分,如图3所示。