基于MATLAB的换热器温度控制仿真研究
- 格式:doc
- 大小:2.20 MB
- 文档页数:61
基于matlab的u形管式换热器优化设计1. 简介U形管式换热器是一种常见的热交换设备,广泛应用于工业生产和能源系统中。
通过合理优化设计U形管式换热器,可以提高热能的利用效率,降低能源消耗。
本文基于matlab对U形管式换热器进行优化设计进行探讨。
2. U形管式换热器的工作原理U形管式换热器由两个管束组成,形状类似于字母“U”。
热量通过一个管束传递给另一个管束,实现热量交换。
主要包括两种工质:热源流体和冷却流体。
热源流体通过一个管束,将热量传递给冷却流体,在冷却流体管束中完成冷却,并将热量带走。
U形管式换热器具有结构简单、热效率高、传热面积大等优点。
3. U形管式换热器的优化设计方法3.1 初步设计首先进行初步设计,在给定的工作条件下,根据经验公式计算出换热器的初步设计参数,如流体流速、管壁材料等。
3.2 热力计算利用热力学原理,对热源流体和冷却流体在换热器内的热力学参数进行计算,包括温度、压力等。
3.3 管内传热计算通过求解传热方程,计算流体在管内的传热情况。
利用matlab编写传热方程的数值求解程序,求解出传热区域内的温度分布。
3.4 管外传热计算根据管壁材料的传热特性,计算出管内传热过程中的热量传递到管外的情况。
通过计算管外温度分布,确定换热器的整体传热情况。
3.5 优化设计根据初步设计和传热计算的结果,通过matlab的优化算法,优化换热器的设计参数,如管径、管长、管数等,以提高换热效率。
4. U形管式换热器优化设计案例4.1 案例背景某化工企业需要设计一台U形管式换热器,将高温热源流体中的热量传递给低温冷却流体,要求换热效率最大化。
4.2 初步设计根据给定的工作条件,进行初步设计:热源流体温度为100℃,流量为10 kg/s;冷却流体温度为30℃,流量为5 kg/s。
4.3 热力计算利用热力学原理,计算热源流体和冷却流体在换热器内的热力学参数。
热源流体的温度降为70℃,冷却流体的温度升至50℃。
基于Matlab的PID温控系统的设计与仿真
刘晋宏
【期刊名称】《科技与生活》
【年(卷),期】2010(000)018
【摘要】在Matlab6.5环境下,通过Matlab/Simulink提供的模块,对温度控制系统的PlD控制器进行设计和仿真.结果表明,基于Matlab的仿真研究,能够直观、简便、快捷地设计出性能优良的交流电弧炉温度系统控制器.
【总页数】2页(P20-21)
【作者】刘晋宏
【作者单位】柳州铁道职业技术学院电子工程系,广西柳州545007
【正文语种】中文
【中图分类】TP
【相关文献】
1.基于MATLAB的模糊PID控制系统的设计与仿真
2.基于积分分离PID的炉温控制系统设计与仿真
3.基于MATLAB的模糊PID控制系统设计与仿真分析
4.基于PID算法的LabVIEW温控系统设计与仿真
5.基于Matlab的模糊PID运动控制系统的设计与仿真
因版权原因,仅展示原文概要,查看原文内容请购买。
基于Matlab的板式换热器动态特性建模与仿真
王书中;由世俊;董玉平
【期刊名称】《计算机仿真》
【年(卷),期】2004(21)10
【摘要】为了正确预测板式换热器的动态特性,在合理假设的基础上,根据流道和换热平板的质量、能量守恒方程,建立了无量纲动态仿真数学模型.考虑了流体沿流动方向的导热扩散特性、换热平板的金属蓄热以及沿径向的导热对出口温度瞬态响应的影响.基于Matlab的数值计算基础,对无量纲动态仿真数学模型的空间维变量的一阶导数项采用向后差分,二阶导数项采用中心差分,然后采用Matlab的ODE求解器进行求解,得到了阶跃扰动和频率扰动下的出口温度的响应曲线.
【总页数】4页(P44-47)
【作者】王书中;由世俊;董玉平
【作者单位】天津大学环境学院,天津,300072;天津大学环境学院,天津,300072;天津大学环境学院,天津,300072
【正文语种】中文
【中图分类】TP391.9
【相关文献】
1.基于Matlab/Simulink的无刷双馈电动机的动态特性仿真研究 [J], 樊贝;薛冰
2.基于MATLAB Simulink的气液缓冲器动态特性仿真与分析 [J], 张笑慰;毛从强;李辛;马飞
3.基于MATLAB的破碎机液压伺服系统动态特性仿真 [J], 尹跃峰;王亚安;康新亚;闫栋
4.基于Matlab/Simulink的下垂控制微电网动态特性的仿真与分析 [J], 杨俊虎;韩肖清;姚岳;刘杏林;郭凯;韩雄
5.基于RTDS与MATLAB的双馈感应风电机组动态特性仿真比较 [J], 王多;常康;薛峰;靳丹;方勇杰;于跃海
因版权原因,仅展示原文概要,查看原文内容请购买。
MATLAB控制系统与仿真课程设计报告院(系):电气与控制工程学院专业班级:测控技术与仪器1301班**:**学号:**********指导教师:杨洁昝宏洋基于MATLAB的PID恒温控制器本论文以温度控制系统为研究对象设计一个PID控制器。
PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。
PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。
在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。
本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。
关键词:PID参数整定;PID控制器;MATLAB仿真。
Design of PID Controller based on MATLABAbstractThis paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pidcontroller design method, design a pid controller of temperature control system and observe the output waveform while input step signal through virtual oscilloscope after system completed.Keywords: PID parameter setting ;PID controller;MATLAB simulation。
目 录摘要 (I)Abstract (II)第一章绪论 (1)1.1 课题的背景和意义 (1)1.2 空调温度控制系统在国内外研究现状及发展趋势 (1)1.3 本文的研究内容和主要方法 (2)第二章 Matlab/Simulink (3)2.1 Matlab/Simulink简介 (3)2.2 MATLAB模糊工具箱 (3)2.3 MATLAB神经网络工具箱 (4)第三章 PID控制及模糊PID控制 (7)3.1 PID控制概述 (7)3.2 数字PID控制 (8)3.3 模糊控制概述 (9)3.4 模糊控制系统的基本理论 (9)3.5 模糊PID开关切换控制 (10)3.6 调房间温度控制的建立及仿真 (11)第四章神经网络PID控制系统 (19)4.1 神经网络概述 (19)4.2 基于单神经元网络PID控制 (19)4.3 系统仿真 (21)结论 (27)参考文献(References) (28)致谢 (29)附录 (30)基于MATLAB的空调房间温度控制仿真摘要:利用空调系统控制房间温度时,由于空调温度控制系统具有大延迟,参数时变,大惯性及强非线性等特性,建立精确的数学模型较为困难,使得传统PID控制方法显得较为乏力。
而智能控制方法中的神经网络、模糊系统等工具对于存在的这些问题有更好地控制,能够达到较好地控制效果。
对于空调房间温度控制存在的这些问题,本文使用常规PID控制、模糊控制、神经网络PID控制、模糊PID开关切换控制等控制方法进行控制仿真,利用MATLAB软件工具,在Simulink和M文件环境下,建立仿真模型并进行仿真对比。
结果表明,相对传统PI D控制而言,模糊PID控制及神经网络PID控制具有更优良的控制效果。
关键字:MATLAB,PID控制,模糊控制,神经网络,空调房间仿真Based on MATLAB simulation of air-conditioned roomtemperature controlAbstract:When the use of air conditioning systems control the room temperature, due to the air-conditioning temperature control system has a large delay, when the parameters change, big inertia and strong nonlinear properties, to establish a precise mathematical model more difficult, the traditional PID control method seems to be rather weak. The intelligent control method in neural networks, fuzzy systems and other tools for the existence of these problems have better control, can achieve better control effect. For air-conditioned room temperature control existence of these problems, we use the conventional PID control, fuzzy control, neural network PID control, fuzzy PID control switch control method for controlling the simulation using MATLAB software tools, and the M-file in the Simulink environment, the establishment The simulation model and simulation comparison. The results show that relative to traditional PID control, the fuzzy neural network PID control and PID control has better control effect.Keyword:MATLAB,PID control,fuzzy control,neural network,simulation conditioned room 绪论1.1 课题的背景和意义在生活生产中大量利用工具的今天,工具给我们提供了很多的便利,同时对于工具的要求也越来越高。
基于MATLAB的炉温控制系统的仿真摘要: 本文以加热炉控制系统为例提出了一种模糊控制方案, 介绍了模糊控制器的设计过程并很方便地利用SIMULINK 进行了仿真研究, 结果证明, 这种模糊控制系统具有良好的动态性能。
关键词: 模糊控制; 模糊推理系统; 计算机仿真;MATLAB; SIMULINK控制系统计算机仿真是应用现代科学手段对控制系统进行科学研究的十分重要的手段之一。
进入80年代以来, 几乎所有控制系统的高品质控制均离不开系统仿真研究。
通过仿真研究可以对照比较各种控制策略与方案, 优化并确定相关参数, 特别是对于新控制决策与算法的研究, 进行系统仿真更是必不可少的。
一般而言, 对控制系统进行计算机仿真首先应建立系统模型, 然后依据模型编制仿真程序, 充分利用计算机作为工具对其进行数值求解并将结果加以显示。
显然, 通常在仿真过程中, 十分耗费时间与精力的是编制和修改仿真程序。
近年来国外在控制领域中推出了一些功能强大的仿真语言, 如SABER、MATLAB( SIMULINK)等。
这些语言的出现为系统仿真提供了强有力的支持, 极大地推动了仿真研究的发展。
一、MATLAB(SIMULINK) 仿真语文和模糊工具箱由于种种原因, 目前国内接触的大多是MATLAB( SIMULINK) 仿真语言, 它于1993 年推出的41X 版本比以前的31X 版本在功能上有了质的飞跃。
特别是SIMULINK 的出现得以使仿真工作可以以结构图的形式进行, 并且能够方便地选择各种数值算法、仿真步长等重要参数, 同时可以借助模拟示波器将仿真结果加以显示, 因而仿真过程十分直观。
特别是当系统采用常规控制律时更显得简单方便, 然而若系统采用较复杂的控制律( 不能直接以传递函数描述) 时, 常使人们感到困难的是简单地利用SIMULINK 无法进行仿真。
如模糊控制是一种对系统控制的宏观方法, 其核心是语言描述的控制规则, 通常用/ 如果) 则) ( if- - then) 0的方式来表述实际控制中专家的知识和经验, 因此特别适用于模拟专家对数学模型未知、复杂的、非线性系统的控制中。
基于MATLAB仿真的室内温度控制算法作者:徐琴琴凌峻来源:《电子技术与软件工程》2018年第04期摘要本文主要研究了各类模糊PID算法,介绍了各类模糊PID算法的原理,并将各种迷糊PID算法应用到系统中,观察系统阶跃响应曲线,分析算法的性能。
算法参数调整好后,加入干扰观察系统的抗干扰能力,改变算法的控制对象,考察算法的鲁棒性。
【关键词】模糊PID 阶跃响应曲线鲁棒性1 模糊PID的由来由研究可知模糊控制系统存在静差,为了改善模糊控制的性能,提出模糊PID的思想。
要提高模糊控制的精度和跟踪性能,就要对语言变量取更多的语言值,分档越细,性能越好,但规则数和计算量也随之增加,从而使调试更加困难,控制器的实时性难以满足要求。
因此想到将模糊控制器和常规的PID并联,达到两种控制器性能的互补。
2 各类模糊PID的简介模糊PD和精确积分即模糊控制中模糊控制器的输入为E和DE,相当于PID控制中的比例微分项。
因此将模糊控制视为模糊PD控制。
该系统只是增加了积分项,模糊控制规则并没有改变。
但能做到系统阶跃响应时稳态无静差。
这就是模糊控制结合PID控制的优点。
模糊PD和模糊PI即将模糊PD和模糊PI并联。
其输入为误差E。
模糊PID是一个二输入三输出控制器,输入为误差E和误差的变化DE,输出为PID的参数。
但此时还需将这三个参数精确化,即乘上一个精确化因子。
此时的,,。
较模糊控制,模糊PID控制器的输入变量没有变化但输出变量增加到三个。
3 各类模糊PID算法在室内温度控制系统中仿真应用各类模糊PID控制系统阶跃响应曲线:如图1所示。
由阶跃响应曲线可以看出,模糊PD和精确积分对于二阶被控对象阶跃响应存在稳态误差。
将被控对象变为,其余参数不变换,再次观察系统的阶跃响应曲线。
此时的阶跃响应曲线稳态时无静差,说明该控制器对于被控对象为一阶惯性系统时能满足控制要求。
考察该系统的抗扰能力,在30ms时向系统加入一脉冲信号,观察原系统的响应去曲线和被控对象降阶后的响应曲线。
基于matlab的基于二阶反馈控制方法的恒温水槽温度控制系统
基于二阶反馈控制方法的恒温水槽温度控制系统可以使用MATLAB进行设计和模拟,具体步骤如下:
1. 搭建仿真模型
根据恒温水槽的物理特性和控制系统的需求,搭建模型,包括建立控制系统的输入和输出,包括水槽温度传感器的输入、加热器的输出等。
2. 设计控制器
基于二阶反馈控制方法,设计PID控制算法。
其中,比例系数(P)用于调整系统响应的速度,积分系数(I)用于消除系统的稳态误差,微分系数(D)用于抑制系统的超调量。
PID控制器的输出为加热器的功率信号,该信号经过放大电路变为实际输出。
3. 仿真及分析
模拟控制系统的响应过程,并观察稳态误差、超调量、振荡等参数,根据这些参数对控制器进行修正。
不断地优化,达到预期控制效果。
总之,使用MATLAB可以轻松搭建出基于二阶反馈控制方法的恒温水槽温度控制系统,通过不断地仿真和分析,可以对控制器参数进行微调,达到最佳控制效果。
基于MATLAB的温度模糊控制系统的设计MATLAB是一种强大的数学计算软件,用于科学与工程领域的数据处理、分析和可视化等应用。
在温度控制系统设计中,模糊控制是一种常用的控制方法。
本文将介绍基于MATLAB的温度模糊控制系统的设计。
温度模糊控制系统的设计包括四个主要步骤:建立模糊控制器,设计模糊推理规则,模糊化与去模糊化以及系统仿真。
首先,建立模糊控制器。
在MATLAB中,可以使用Fuzzy Logic Toolbox工具箱来创建和管理模糊逻辑系统。
可以使用命令fuzzy,创建一个模糊逻辑系统对象。
在创建模糊控制器对象后,需要定义输入和输出变量。
输入变量可以是温度偏差,输出变量可以是控制信号。
然后,可以使用addInput和addOutput命令来添加输入和输出变量。
接下来,设计模糊推理规则。
在模糊推理中,需要定义一组规则来描述输入变量和输出变量之间的关系。
可以使用addRule命令来添加规则。
规则的数量和形式可以根据实际需求进行调整。
然后,进行模糊化与去模糊化。
模糊化是将模糊输入变量转换为模糊集,而去模糊化是将模糊输出变量转换为具体的控制信号。
可以使用evalfis命令进行模糊化和去模糊化。
模糊化使用模糊逻辑系统对象对输入变量进行处理,而去模糊化使用模糊逻辑系统对象对输出变量进行处理。
最后,进行系统仿真。
可以使用Simulink工具箱来进行系统仿真。
在仿真过程中,将温度控制系统与模糊控制器进行连接,然后通过给定的输入条件观察系统的响应。
可以利用Simulink中的Scope来显示温度的变化,并且可以通过模糊控制器来调整温度。
在设计温度模糊控制系统时,还需要考虑参数调节和性能评估等问题。
可以使用MATLAB中的优化工具箱对模糊控制器的参数进行调节,以获得更好的控制性能。
还可以使用MATLAB中的性能评估工具来评估系统的性能,例如稳定性、精度和鲁棒性等。
综上所述,基于MATLAB的温度模糊控制系统的设计包括建立模糊控制器、设计模糊推理规则、模糊化与去模糊化以及系统仿真等步骤。
第11期2020年6月No.11June,2020电阻炉是热处理工艺过程中应用最广、数量最多的电加热设备。
随着控制技术日新月异的发展,对电阻炉温度控制的要求也就越来越高。
电阻炉是利用电流通过电热体元件将电能转化为热能来加热或熔化工件和物料的热加工设备,其温度控制具有单向性、大惯性、大滞后等复杂特点,主要分为升温、保温和降温3个部分,其中,升温、保温依赖电阻丝加热完成,而降温则主要依靠自然环境进行冷却。
1 系统框架电阻炉温度控制系统多采用闭环控制,首先,将电阻炉实际温度值通过温度传感器测量出来;其次,通过负反馈与设定温度进行比较得到偏差信号,送入控制器中得到控制信号,控制可控硅,以此改变电阻丝的加热电流或电压,从而实现电阻炉的温度控制[1]。
系统框架如图1所示。
图1 电阻炉温度控制系统框架本文主要是采用传统PID控制、Smith控制和模糊控制3种算法实现对电阻炉温度的控制,并进行仿真及对仿真结果的比较分析。
2 控制算法比较理论分析和实验结果表明,均将电阻炉当作具有自平衡能力且存有滞后的被控对象,因此其数学模型可用一阶惯性和纯滞后两个环节进行描述,系统总的传递函数为:10070()1001sG s es−=+2.1 不加控制器仿真不外加控制器的仿真模型控制如图2所示,其仿真结果如图3所示,可以看出,此系统具有100 ms的延迟,并且在仿真时间内仅上升到了70°左右(设定值为100°),且调节时间较长。
图2 不加控制器的系统仿真模型图3 不加控制器的仿真结果2.2 PID控制器仿真PID控制器所采用的控制规律为比例、积分、微分控制,控制规律如图4所示。
图4 PID控制原理其PID控制器的输入与输出之间的关系为:1()()()()tp dide tu t K e t e d TT dtττ=++∫对于此系统,在笔者有限的经验范围内,未找到使系统基金项目:安徽三联学院校级平台重点项目;项目编号:PTZD2019025。
温度控制 matlab温度控制在许多领域中都是一个重要的问题,特别是在工业生产和环境控制中。
温度控制的目标是保持系统内的温度在设定的范围内稳定,并且能够及时响应外部环境的变化。
在这篇文章中,我们将探讨如何使用MATLAB进行温度控制。
我们需要了解温度控制的基本原理。
温度是一个物体内部分子的平均热运动程度的度量。
温度控制的目标是通过调节能量输入或输出来维持所需的温度。
常见的温度控制方法包括开关控制和调节控制。
开关控制是最简单和最常见的温度控制方法之一。
它基于一个简单的原理:当温度超过设定值时,控制系统将打开或关闭一个设备来增加或减少能量输入。
例如,当室内温度超过设定温度时,空调系统将启动并开始制冷,直到温度降至设定值以下。
调节控制是一种更复杂的温度控制方法,它基于比例、积分和微分(PID)控制原理。
PID控制器根据当前温度与设定温度之间的误差来调整能量输入,以使温度稳定在设定值附近。
PID控制器根据比例、积分和微分三个参数的权重来计算控制器的输出。
比例项用于根据误差的大小调整控制器的输出,积分项用于修正长期误差,微分项用于预测温度变化的趋势并相应地调整控制器的输出。
在MATLAB中,我们可以使用控制系统工具箱来设计和模拟温度控制系统。
控制系统工具箱提供了许多函数和工具,用于分析和设计各种类型的控制系统。
我们可以使用这些函数和工具来创建一个温度控制系统的模型,并进行模拟和优化。
我们需要定义一个温度控制系统的模型。
我们可以使用传递函数来表示系统的动态特性。
传递函数是一个比例多项式除以一个比例多项式的形式,用于描述输入和输出之间的关系。
在温度控制系统中,输入是控制器的输出,输出是温度的变化。
然后,我们可以使用控制系统工具箱中的函数来分析和设计温度控制系统的性能。
例如,我们可以使用阶跃响应函数来评估系统的稳定性和响应速度。
阶跃响应函数是系统对一个单位阶跃输入的响应。
通过分析阶跃响应可以得到系统的稳态误差、超调量和调整时间等性能指标。
基于 MATLAB/GUI 的过程控制仿真实验系统设计王红梅;张厚升;邢雪宁【摘要】为使学生更好地理解控制系统的结构及其特点,设计了基于MATLAB/GUI的过程控制仿真实验系统。
仿真系统借助GUIDE良好的界面管理,分层次设计了液位单回路控制、加热炉温度串级控制、锅炉汽包水位控制等八个子实验。
每个实验界面可进行参数设置、仿真结果显示、重要信息提示。
后台程序采用MALTAB 的m 文件或 Simulink实现。
该系统知识全面、内容设计合理、界面友好、使用简单、可操作性强。
%In order to make students better understand the structure and characteristics of the process control system ,the process control simulation system based on MATLAB/GUI was de‐signed .With the help of a GUIDE good interface management ,the simulation system hierarchical designs eight children experiment .For example ,liquid level single loop control ,furnace tempera‐ture cascade control and boiler drum water level control .Each experiment has the same charac‐ters:parameters can be set ,simulation results can be shown ,important messages are pointed out .Daemons use MALTAB m file or Simulink .This system has the characteristics of compre‐hensive knowledge ,reasonable content design ,friendly interface ,simple use ,and strong maneu‐verability .【期刊名称】《山东理工大学学报(自然科学版)》【年(卷),期】2015(000)006【总页数】3页(P58-60)【关键词】过程控制;MATLAB/GUI;仿真实验【作者】王红梅;张厚升;邢雪宁【作者单位】山东理工大学电气与电子工程学院,山东淄博255049;山东理工大学电气与电子工程学院,山东淄博255049;山东理工大学电气与电子工程学院,山东淄博255049【正文语种】中文【中图分类】TP373过程控制课程是自动化学科的主干专业课程,该课程理论性和实用性都很强.目前课程的体系结构主要是授课加实验的模式.通过对学生实验情况的观察,发现学生不能把课程知识和实验很好的结合,对系统的结构特点理解欠佳,致使做实验时一知半解,影响实验效果.鉴于此,本文开发的基于MATLAB/GUI的仿真实验系统重点弥补以上缺憾.一方面,借助MALTAB友好的界面显示特点使学生对理论知识有更直观的理解,另一方面,通过对仿真系统的构造加强对系统结构的认知,为今后在过程控制实验装置上进行实验打下基础.与传统实验装置相比,该仿真实验系统不需要传感器、变送器、执行器等实验装置,仅需有安装MATLAB软件的计算机就可进行实验,不受场地和时间的限制,实验投入少,实验成本低,而且可开放性强.过程控制课程主要包含三个核心内容:1)各种形式的系统结构,比如,单回路、串级系统、前馈-反馈系统等,应该重点掌握各结构的组成、特点及应用场合.2)理论分析,通过理论分析进一步验证系统的结构特点.3)参数整定,可按照一定的整定步骤,实现参数的最优化[1-2].为了使学生对以上内容有更好的掌握,仿真系统设计的总体思路是借助MATLAB/GUI仿真工具,直观、简洁的展示抽象的理论知识,借助MATLAB/Simulink,系统、全面的反映过程控制系统的结构特点和参数整定.本仿真系统考虑教学内容和学生的认知规律,由简入难,逐层的设计各实验.实验系统总体分为:简单系统、高性能系统、特殊系统、复杂系统四部分,每个系统下面又有相应的子实验.同时,子实验的实例选取特别注意和实际应用相结合.系统的整体结构如图1所示.MATLAB的GUI为用户提供了设计良好的人机交互界面的工具,通过它可以更好的管理程序,使操作变的更为简单、便捷.GUIDE界面中提供了按钮、列表框、复选框、文本框、滑块、坐标系、菜单等控件.界面生成过程主要包括界面设计和程序实现,具体步骤如下:1) 明确系统功能后,通过合理布置控件,制作友好的静态界面.2) 按一致性原则对各控件的属性进行设置.3) 根据功能要求,编写各控件的回调函数.4) 系统测试运行.2.1 统主界面设计的仿真系统的主界面主要实现两个功能:1)展示实验的整体内容;2)通过相应的控件进入到子实验.为此,设计了如图2所示的主界面.四个Panel控件用于区分四个不同种类的子实验,每个Panel里放有两个控件用于进入不同的子实验.每个Pushbutton的回调函数均完成执行关闭主界面并打开相应子实验界面功能.整个主界面力求做到设计简洁,层次清晰,使用方便.2.2 子实验界面当在主界面选择了子实验后,系统进入相应的实验.本系统共包括8个子实验,界面设计主要分为三个区域:1)参数设置区,该部分主要实现操作人员对系统参数的设置;2)显示区,将仿真结果以图形化的方式进行显示;3)子实验的仿真结构图及其它信息显示区,该区便于操作人员了解子实验系统的构成.本文以PID参数作用分析子实验及前馈—反馈子实验分别进行说明.PID参数作用分析子实验是通过分析系统的阶跃响应随某一参数的变化趋势,来更好的理解各参数的作用[3].这样界面操作中就需要能输入不同数值的比例系数、积分系数、微分系数,并将阶跃仿真结果进行显示.设计的PID参数作用分析子实验界面如图3所示.PID参数作用分析子实验GUI界面右边区域可以根据需要利用Edit控件设定比例、积分、微分系数,每个参数的意义及可变化的维数利用Text控件说明.参数设置完毕后点击相应的“开始仿真”按钮,则后台仿真程序运行,完毕后在左边的显示区域显示系统随参数变化的阶跃响应曲线.图3显示的是比例系数Kp从0.5变化到1.5时的系统阶跃响应曲线.界面中还提供了仿真中的重要信息——被控对象数学模型.当实验结束后可通过“返回”按钮回到图2系统主界面,继续进行其它子实验.本界面很关键的一点就是编写“开始仿真”按钮的回调函数.首先需要获取界面中用户在Edit控件输入的比例、积分或微分参数;然后将参数由字符型转化成数值型用于阶跃响应分析.前馈—反馈控制仿真实验是以工业中常用的换热器出口温度控制为例[4],其中被加热液体的流量变化比较剧烈,采用前馈对该干扰进行补偿.该实验通过比较前馈-反馈控制与反馈控制的阶跃响应曲线的性能区别来体现前馈控制的作用.干扰信号取脉冲干扰和随机干扰两种形式,可通过界面中的按钮来进行选择.设计的前馈—反馈控制子实验界面如图4所示.在进行实验前,需先将前馈—反馈MATLAB/Simulink仿真程序中的手动开关打到相应的位置.Simulink仿真程序中的Manual Swith用于选择是否加入干扰,Manual Swith1用于选择干扰类型,Manual Swith2用于选择是否进行前馈补偿.界面中所有控件的回调函数都可以看到,学生一方面可以学习如何编写代码,另一方面可以根据需要对界面进行改进,更进一步还可以设计新的功能界面,这也是MATLAB的优势所在.子实验的运行都是通过后台的MATLAB的m文件或Simulink程序来实现.MATLAB/Simulink在编程方面尤其简便,通过选取相应的模块并连接,则能构建仿真系统.而且Simulink除了丰富的工具箱,还提供了用户自定义模块,方便用户使用.本文以基于MATLAB/Simulink的串级控制仿真程序为例进行介绍.程序通过串级控制与单回路系统的比较,理解串级结构形式的改变带来的性能变化,再通过对一次干扰和二次干扰的抗干扰能力的仿真分析,学习串级系统的抗干扰特点.仿真实例取自实际应用中的反应釜加热炉温度控制系统[5],其中,加热炉温度为主变量,夹套温度为副变量的串级控制系统.构建的串级控制仿真系统结构如图5所示.程序中通过Manual Swith选择是单回路控制还是串级控制,Manual Swith1选择是否加入一次干扰,Manual Swith2选择是否加入二次干扰.将基于MATLAB/GUI的过程控制仿真实验系统应用于《过程控制》的教学,使学生直观的领会和理解该课程的各系统结构和理论知识,对调动学生的学习积极性以及提高学生的实验兴趣和实验能力都有相当的作用.一方面,学生通过MATLAB这一仿真平台,可以更快捷有效的编写仿真实验,其超强的计算能力和丰富的图形界面显示给知识的学习带来意想不到的效果;另一方面,教师可在授课时使用该软件进行理论知识的直观演示,增强知识的传授.同时,结合过程控制所学知识以及MATLAB软件,学生可自行根据需求将实验装置中没有的一些复杂控制系统通过仿真实验的形式加以实现,从而极大的培养学生学习能力.【相关文献】[1] 黄德先, 王景春, 金以慧. 过程控制系统[M]. 北京: 清华大学出版社, 2011.[2]潘永湘, 杨延西, 赵跃. 过程控制与自动化仪表[M]. 第二版. 北京:机械工业出版社, 2007[3]何佳佳, 候再恩. PID参数优化算法[J]. 化工自动化及仪表. 2010, 37(11): 1-4.[4]孙秀丽, 王培培. 前馈-反馈控制系统的具体分析及其MATLAB/Simulink仿真[J]. 中国集成电路, 2013(9), 54-58.[5]罗及红. 基于PID算法的炉窑温度串级控制系统设计[J]. 计算机测量与控制,2012, 20(12): 3243-3245.。
基于Matlab的电阻炉温度控制系统仿真
李艳
【期刊名称】《工业加热》
【年(卷),期】2024(53)2
【摘要】电阻炉作为重要的工业加热设备对部件进行热处理,是一种利用电流通过电阻材料发生热能的加热炉,电阻炉在机械领域主要用于金属的锻压前加热、粉末冶金烧结、玻璃陶瓷焙烧及退火、熔点低金属熔化等。
电阻炉与火焰炉相比具有结构简单、炉温均匀、加热质量好、便于控制、无噪声等优点。
作为重要的热处理设备,电阻炉的温度控制直接关系到生产产品部件的质量和精度。
但电阻炉的温度变化具有较强的时滞性以及惯性,因此建立有效的温度控制系统提升电阻炉的温度控制水平具有重要的意义。
先分析了模糊PID算法的原理,然后基于SX-10-12型号箱式电阻炉介绍了温度控制系统的整体设计方案、硬件设计以及软件设计,并在Matlab仿真环境下对温度控制系统的运行情况进行论述,旨在提升电阻炉温度控制的自动化水平。
【总页数】4页(P46-49)
【作者】李艳
【作者单位】四川工业科技学院
【正文语种】中文
【中图分类】TF806.4
【相关文献】
1.基于OPC和MATLAB的电阻炉温度控制系统设计
2.基于Matlab的电阻炉温度模糊控制系统设计及仿真
3.基于Matlab的电阻炉温度控制系统设计及仿真比较
4.基于Matlab的电阻炉温度控制系统设计与实现
因版权原因,仅展示原文概要,查看原文内容请购买。
淮海工学院课程设计报告书课程名称:综合课程设计系(院):电子工程学院学期:2011~2012 第一学期专业班级:电气082班姓名:胡韬学号:030861217评语:成绩:签名:日期:对温控系统进行建模及MATLAB仿真1单片机在炉温控制系统中的运用温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。
温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。
温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。
一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。
如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。
实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。
单片机具有集成度高,运算快速快,体积小、运行可靠,价值低廉,因此在过程控制、数据采集、机电一体化、智能化仪表、家用电器以及网络技术等方面得到广泛应用,本文主要介绍单片机在炉温控制中的应用。
本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。
1、1系统的基本工作原理整个炉温控制系统由两大部分组成。
一部分由计算机和A/D和D/A转换电路组成。
主要完成温度采集,PID运算,产生可控硅的触发脉冲。
另外一部分由传感器信号放大,同步脉冲形成,以及触发脉冲放大等组成。
基于matlab的控制系统仿真及应用控制系统是现代工程领域中一个非常重要的研究方向,它涉及到自动化、机械、电子、信息等多个学科的知识。
而在控制系统的设计和优化过程中,仿真技术起着至关重要的作用。
Matlab作为一种功能强大的工程计算软件,被广泛应用于控制系统仿真和设计中。
在Matlab中,我们可以通过编写代码来建立各种控制系统的模型,并进行仿真分析。
通过Matlab提供的仿真工具,我们可以方便地对控制系统的性能进行评估,优化控制器的参数,甚至设计复杂的控制策略。
控制系统仿真的过程通常包括以下几个步骤:首先,建立控制系统的数学模型,描述系统的动态特性;然后,在Matlab中编写代码,将系统模型转化为仿真模型;接着,设定仿真参数,如控制器的参数、输入信号的形式等;最后,进行仿真运行,并分析仿真结果,评估系统的性能。
控制系统仿真可以帮助工程师快速验证设计方案的可行性,节约成本和时间。
在实际应用中,控制系统仿真可以用于飞行器、汽车、机器人等各种设备的设计和优化,以及工业生产过程的控制和监测。
除了在工程领域中的应用,控制系统仿真还可以帮助学生深入理解控制理论,加深对系统动态特性的认识。
通过在Matlab中搭建控制系统的仿真模型,学生可以直观地感受到控制器参数对系统响应的影响,从而更好地掌握控制系统设计的方法和技巧。
总的来说,基于Matlab的控制系统仿真是一个非常强大和实用的工具,它为控制系统的设计和优化提供了便利,也为学生的学习提供了帮助。
随着科技的不断发展,控制系统仿真技术也将不断完善和拓展,为工程领域的发展带来更多的可能性和机遇。
Matlab作为控制系统仿真的重要工具,将继续发挥着重要作用,推动控制领域的进步和创新。
换热器作为一种标准工艺设备已经被广泛应用于动力工程领域和其他过程工业部门。
以工业上常用的列管式换热器为例,热流体和冷流体通过对流热传导达到换热的目的,从而使换热器物料出口温度满足工业生产的需求。
但是,由于换热系统这种被控对象具有纯滞后、大惯性、参数时变的非线性特点,传统的PID控制往往不能满足其静态、动态特性的要求。
控制方式的单一性及目前制造工艺的限制,使换热器普遍存在控制效果差,换热效率低的现象,造成能源的浪费。
如何提高换热器的控制效果,提高换热效率,对于缓解我国能源紧张的状况,具有长远的意义。
本课题是针对换热器实验设备温度控制的改进提出的。
设计中首先通过对现阶段换热器出口温度控制的特点进行分析,从而发现了制约控制效果进一步提高的瓶颈,为下一步改善换热器的控制效果提供了理论依据。
然后根据换热系统组成、控制流程的特点对换热器温度控制系统建立数学模型。
再根据所建立的数学模型,联系换热器温度控制的特点,给出了相应的控制策略,即带Smith预估补偿的模糊串级控制方案。
主回路采用Smith预估补偿的模糊控制算法,副回路采用模糊PID控制算法,并在理论上验证了其可行性。
最后用MATLAB7.0/SIMULINK工具箱进行换热器出口温度的控制仿真,并对仿真结果进行分析,说明所设计的控制算法及方案的优越性。
关键词:换热器温度控制;PID控制;模糊控制;仿真The heat exchanger based on MATLAB simulation of temperaturecontrolHeat exchanger as a standard process equipment has been widely used in the field of power engineering and other process industries. Commonly used in industrial heat exchanger tube as an example, the hot fluid and cold fluid heat transfer through convection heat transfer to achieve the purpose, so that heat exchanger outlet temperature materials to meet the needs of industrial production. However, as the heat exchange system that has a pure time delay plant, large inertia, the parameters of the nonlinear time-varying characteristics of the traditional PID control often can not meet the static and dynamic characteristics of the request. Control the uniformity and the current manufacturing process of the limit, so that the effect of heat exchanger to control the prevalence of poor, low heat transfer efficiency, resulting in waste of energy. How to improve the control of the effect of heat exchangers to improve heat transfer efficiency and ease the tense situation in our country's energy, with a long-term significance.This issue is heat exchanger for temperature control of laboratory equipment to improve the proposed. first of all , The design stage through the heat exchanger outlet temperature control characteristics of the analysis, which found that the effect of restricting the control to further improve the bottleneck for further improving the control of the effect of heat exchanger provides a theoretical basis. Heat exchange system according to the composition of the characteristics of control flow on the heat exchanger temperature control system mathematical model. Established in accordance with the mathematical model of contact heat exchanger temperature control characteristics of the corresponding control strategy, which Smith estimated compensation with fuzzy cascade control program. Smith estimated the main loop compensation for the use of fuzzy control algorithm, the Vice-loop fuzzy PID control algorithm, and in theory, to verify its feasibility. Toolbox MATLAB7.0/SIMULINK Finally, heat exchanger outlet temperature of the control simulation, and analysis of simulation results to illustrate the design of control algorithms and the advantages of the program.Key words: heat exchanger temperature control; PID control; fuzzy control; simulation目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 引言 (1)1.2 选题的背景及意义 (1)1.3换热器的温度控制概述 (2)1.3.1 换热器简介 (2)1.3.2换热器运行控制的现状 (4)1.4课题的主要任务及意义 (5)第二章换热系统的数学模型 (6)2.1 换热器过程控制系统分析 (6)2.2 信号的检测及参数关系 (7)2.2.1 流量信号的检测 (7)2.2.2 温度信号的检测 (8)2.2.3 执行机构的输入输出关系 (8)2.3 换热器特性分析 (9)2.3.1换热器的静态特性分析 (9)2.3.2换热器的动态特性 (13)2.4离心泵控制模型 (16)2.4.1 系统组成概述 (16)2.4.2离心泵的动态特性 (17)第三章换热器温度控制系统分析及方案设计 (19)3.1 换热器温度控制系统分析 (19)3.2 控制模型的选择 (22)3.2.1 副回路控制模型的选择 (22)3.2.2主回路控制模型的选择 (23)第四章换热器控制系统控制算法 (24)4.1 模糊控制理论 (24)4.1.1 模糊控制概述 (24)4.1.2 模糊控制的原理 (25)4.2基本模糊控制器的设计 (26)4.2.1 模糊化过程 (27)4.2.2 模糊化方法 (28)4.2.3 建立模糊控制器的控制规则 (30)4.2.4 模糊推理与模糊判决 (31)4.3 模糊PID控制算法实现 (32)4.3.1 PID控制原理及模糊PID控制原理图 (32)4.3.2模糊参数自整定原则 (34)4.3.3 各变量隶属度函数的确定 (34)4.3.4建立模糊规则表 (35)4.3.5 模糊PID控制器的MATLAB实现 (37)4.4 Smith—Fuzzy串级控制算法的实现 (41)4.4.1 Smith预估补偿的原理 (41)4.4.2 Smith预估补偿的实现 (43)4.4.3换热器出口温度Smith—Fuzzy控制实现 (43)第五章换热器温度控制系统仿真及结果分析 (46)5.1仿真软件简介 (46)5.2基于换热器出口水温控制系统的仿真 (48)5.3换热器温度控制系统仿真分析 (52)第六章结束语 (54)参考文献 (55)致谢 (57)第一章绪论1.1 引言换热器是一种用来进行热量交换的工艺设备,在工业生产中应用极为广泛。
它的作用是通过热流体来加热冷流体,使工作介质达到生产工艺所规定的温度要求,以利于生产过程的顺利进行,同时避免生产过程中能量的浪费,以节约能源。
在实现传热过程的各种设备中,换热器应用最多,本文研究的对象就是换热器出口温度的温度控制。
换热系统中,生产过程需要对换热系统的一些参数进行控制,其中,换热器出口介质的温度是最为主要、最为常见的控制对象,也是关系工艺产品质量的重要因素之一。
目前,对温度的控制大都采用传统的PID调节器。
但是,由于换热系统这种被控对象具有纯滞后、大惯性的特点,而且整个控制过程与环境条件及换热系统本身等因素密切相关,是一个典型的参数时变的非线性系统,传统的PID控制往往不能满足其静态、动态特性的要求,因此,很有必要寻求一种先进的控制方法。
1.2 选题的背景及意义换热器不但是大多数工业生产过程中不可缺少的传热设备,而且是重要的节能设备。
它在动力、冶金、炼油、化工、电力、制冷、建筑、重型机械制造、航空、原子能、食品和医药等工业部门应用极为广泛,并占有十分重要的地位。
随着工业的不断发展,它将具有更广泛的应用前景。
例如在石油化工厂中,它的投资要占到建厂总投资的30%—50%左右,它的数量占工艺总数量的40%左右;在年产30万吨乙烯装置中,它的投资约占总投资的25%。