2022年湖北省荆州市中考数学真题
- 格式:docx
- 大小:322.23 KB
- 文档页数:7
2022年湖北省荆州市中考数学模拟考试 A 卷 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、如果23n x y +与3213m x y --的差是单项式,那么m 、n 的值是( ) A .1m =,2n =B .0m =,2n =C .2m =,1n =D .1m =,1n =2、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( ) A .18 B .14 C .13 D .12 3、下列说法正确的是( ) A .掷一枚质地均匀的骰子,掷得的点数为3的概率是13. B .若AC 、BD 为菱形ABCD 的对角线,则AC BD ⊥的概率为1. C .概率很小的事件不可能发生.·线○封○密○外D .通过少量重复试验,可以用频率估计概率.4、下列二次根式的运算正确的是( )A 3- BC .D .=5、人类的遗传物质是DNA ,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( )A .3×106B .3×107C .3×108D .0.3×1086、下列说法中错误的是( )A .若a b <,则11+<+a bB .若22a b ->-,则a b <C .若a b <,则ac bc <D .若()()2211a c b c +<+,则a b <7、若()22230a b ++-=,则b a 值为( )A .16B .12-C .-8D .188、工人常用角尺平分一个任意角,做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使CM =CN ,过角尺顶点C 作射线OC ,由此作法便可得△NOC ≌△MOC ,其依据是( )A .SSSB .SASC .ASAD .AAS9、如图,在矩形ABCD 中,点E 在CD 边上,连接AE ,将ADE 沿AE 翻折,使点D 落在BC 边的点F 处,连接AF ,在AF 上取点O ,以O 为圆心,线段OF 的长为半径作⊙O ,⊙O 与AB ,AE 分别相切于点G ,H ,连接FG ,GH .则下列结论错误的是( )A .2BAE DAE ∠=∠B .四边形EFGH 是菱形C .3AD CE =D .GH AO ⊥ 10、下列说法正确的有( )①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④若AC =BC ,则点C 是线段AB 的中点;⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.A .1个B .2个C .3个D .4个 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、在圆内接四边形ABCD 中,40D B ∠-∠=︒,则D ∠的度数为______. 2、若37a -与22a +互为相反数,则代数式223a a -+的值是_________. 3、若机器人在数轴上某点第一步从0A 向左跳1个单位到1A ,第二步从1A 向右跳2个单位到2A ,第三步从2A 向左跳3个单位到3A ,第四步从3A 向右跳4个单位到4A ,按以上规律跳2018步,机器人落在数轴上的点2018A ,且所表示的数恰好是2019,则机器人的初始位置0A 所表示的数是__________. 4、为了响应全民阅读的号召,某校图书馆利用节假日面向社会开放.据统计,第一个月进馆560人·线○封○密·○外次,进馆人次逐月增加,第三个月进馆830人次.设该校图书馆第二个月、第三个月进馆人次的平均增长率为x ,则可列方程为______.5、如果分式(1)x x x+的值为零,那么x 的值是________. 三、解答题(5小题,每小题10分,共计50分)1、在整式的加减练习中,已知2232A a b ab abc =-+,小王同学错将“2A B -”看成“2A B +”算得错误结果为22434a b ab abc -+,请你解决以下问题:(1)求出整式B ;(2)求出正确计算结果.2、在数轴上,点A 表示10-,点B 表示20,动点P 、Q 分别从A 、B 两点同时出发.(1)如图1,若P 、Q 相向而行6秒后相遇,且它们的速度之比是2:3(速度单位:1个单位长度/秒),则点P 的速度为 个单位长度/秒,点Q 的速度为 个单位长度/秒;(2)如图2,若在原点O 处放一块挡板.P 、Q 均以(1)中的速度同时向左运动,点Q 在碰到挡板后(忽略球的大小)改变速度并向相反方向运动,设它们的运动时间为t (秒),试探究:①若点Q 两次经过数轴上表示12的点的间隔是5秒,求点Q 碰到挡板后的运动速度;②若点Q 碰到挡板后速度变为原速度的2倍,求运动过程中P 、Q 两点到原点距离相等的时间t .3、解下列方程:(1)5326x x +=-;(2)341125x x -+-= 4、平面上有三个点A ,B ,O .点A 在点O 的北偏东80方向上,4cm OA =,点B 在点O 的南偏东30°方向上,3cm OB =,连接AB ,点C 为线段AB 的中点,连接OC .(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出AB OA OB <+的依据:(3)比较线段OC 与AC 的长短并说明理由:(4)直接写出∠AOB 的度数.5、某商店销售一种商品,经市场调查发现:在实际销售中,售价x 为整数,且该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x (元/件)、月销售量y (件)、月销售利润w (元)的部分对应值如表:注:月销售利润=月销售量×(售价-进价) (1)求y 关于x 的函数表达式; (2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(3)现公司决定每销售1件商品就捐赠m 元利润(6m ≤)给“精准扶贫”对象,要求:在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x 的增大而增大,求m 的取值范围.-参考答案- 一、单选题 1、C 【分析】根据23n x y +与3213m x y --的差是单项式,判定它们是同类项,根据同类项的定义计算即可. 【详解】∵23n x y +与3213m x y --的差是单项式, ·线○封○密○外∴23n x y +与3213m x y --是同类项,∴n +2=3,2m -1=3,∴m =2, n =1,故选C .【点睛】本题考查了同类项即含有的字母相同,且相同字母的指数也相同,准确判断同类项是解题的关键.2、D【分析】旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解【详解】解:旋转阴影部分,如图,∴该点取自阴影部分的概率是12故选:D【点睛】本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.3、B【分析】概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可. 【详解】 A 项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是16,故A 错误,不符合题意; B 项:若AC 、BD 为菱形ABCD 的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 AC ⊥BD 的概率为1是正确的,故B 正确,符合题意; C 项:概率很小的事件只是发生的概率很小,不代表不会发生,故C 错误,不符合题意; D 项:通过大量重复试验才能用频率估计概率,故D 错误,不符合题意. 故选B 【点睛】 本题考查概率的命题真假,准确理解事务发生的概率是本题关键. 4、B 【分析】 根据二次根式的性质及运算逐项进行判断即可. 【详解】 A3=,故运算错误;B===C、D、230==,故运算错误. 故选:B·线○封○密○外【点睛】本题考查了二次根式的性质、二次根式的运算,掌握二次根式的性质及运算法则是关键.5、B【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可.【详解】解:30000000=3×107.故选:B .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.6、C【分析】根据不等式的性质进行分析判断.【详解】解:A 、若a b <,则11+<+a b ,故选项正确,不合题意;B 、若22a b ->-,则a b <,故选项正确,不合题意;C 、若a b <,若c =0,则ac bc =,故选项错误,符合题意;D 、若()()2211a c b c +<+,则a b <,故选项正确,不合题意;故选C .【点睛】本题考查了不等式的性质.解题的关键是掌握不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.7、C【分析】根据实数的非负性,得a =-2,b =3,代入幂计算即可.【详解】∵()22230a b ++-=, ∴a =-2,b =3,∴b a =3(2)-= -8, 故选C .【点睛】本题考查了实数的非负性,幂的计算,熟练掌握实数的非负性是解题的关键.8、A【分析】利用边边边,可得△NOC ≌△MOC ,即可求解.【详解】 解:∵OM =ON ,CM =CN ,OC OC = ,∴△NOC ≌△MOC (SSS ). 故选:A 【点睛】 本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键. 9、C ·线○封○密○外【分析】由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,∆ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在Rt∆EFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.【详解】解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切线,点G、H分别是切点,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:∵OF⊥EF,OF是⊙O的半径,∴EF是⊙O的切线,∴HE=EF,NF=NG,∴△ANE是等边三角形,∴FG //HE ,FG =HE ,∠AEF =60°,∴四边形EFGH 是平行四边形,∠FEC =60°,又∵HE =EF ,∴四边形EFGH 是菱形,故B 正确,不符合题意;∵AG =AH ,∠GAF =∠HAF ,∴GH ⊥AO ,故D 正确,不符合题意;在Rt △EFC 中,∠C =90°,∠FEC =60°,∴∠EFC =30°,∴EF =2CE , ∴DE =2CE . ∵在Rt △ADE 中,∠AED =60°, ∴AD, ∴AD,故C 错误,符合题意. 故选C . 【点睛】 本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30 的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键. 10、B【分析】根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.【详解】·线○封○密○外解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,但对顶角相等,故本小题错误;③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;④若AC =BC ,且A 、B 、C 三点共线,则点C 是线段AB 的中点,否则不是,故本小题错误, ⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;所以,正确的结论有①⑤共2个.故选:B .【点睛】本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.二、填空题1、110°【分析】根据圆内接四边形对角互补,得∠D +∠B =180°,结合已知求解即可.【详解】∵圆内接四边形对角互补,∴∠D +∠B =180°,∵40D B ∠-∠=︒∴∠D =110°,故答案为:110°.【点睛】本题考查了圆内接四边形互补的性质,熟练掌握并运用性质是解题的关键.2、2【分析】利用互为相反数的两个数的和为0,计算a 的值,代入求值即可.【详解】∵37a -与22a +互为相反数,∴3a -7+2a +2=0,解得a =1,∴223a a -+=1-2+3=2, ∴代数式223a a -+的值是2, 故答案为:2. 【点睛】 本题考查了相反数的性质,代数式的值,利用互为相反数的两个数的和为零确定字母的值是解题的关键. 3、1010 【分析】 由题意知每跳两次完毕向右进1个单位,按此规律跳了2018步后距出发地0A 的距离是1009个单位,且在0A 的右侧,根据2018A 所表示的数恰是2019,即可求得初始位置0A 点所表示的数. 【详解】解:设机器人在数轴上表示a 的点开始运动,A 0表示a ,A 1表示a -1,第二步从1A 向右跳2个单位到2A ,A 2表示a -1+2= a +1,第三步从2A 向左跳3个单位到3A ,A 3表示a +1-3,第四步从3A 向右跳4个单位到4A ,A 4表示a +1-3+4= a +2,由题意知每跳两次完毕向右进1个单位,而201821009÷=, ·线○封○密·○外所以电子跳蚤跳2018步后A 2018表示的数为a +1009,又因为2018A 表示2019,∴a +1009=2019,∴a =1010,所以0A 表示1010.故答案为:1010.【点睛】本题考查了数轴、列代数式,简单一元一次方程,图形的变化规律,得到每跳动2次相对于原数+1的规律是解题的关键.4、()25601830x +=【分析】利用第三个月进馆人次=第一个月进馆人次(1⨯+平均增长率)2,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意得:()25601830x +=. 故答案为:()25601830x +=.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是找准等量关系,正确列出一元二次方程. 5、1-【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:(1)0x x +=且0x ≠,解得1x =-.故答案为:1-.【点睛】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、解答题 1、 (1)2222a b ab abc -++ (2)2285a b ab - 【分析】 (1)根据结果减去2A ,进而根据整式的加减运算化简即可求得整式B ; (2)按要求计算2A B -,根据去括号,合并同类项进行计算化简即可. (1) 解:∵2232A a b ab abc =-+,2A B +=22434a b ab abc -+ ∴224342a b ab abc A B -+-=()2222434232a b ab abc a b ab abc =-+--+ 2222434642a b ab abc a b ab abc =-+-+- 2222a b ab abc =-++ (2) 解:∵2232A a b ab abc =-+,B 2222a b ab abc =-++ ·线○封○密○外∴2A B -=()22232a b ab abc -+()2222a b ab abc --++222264222a b ab abc a b ab abc =-++--2285a b ab =-【点睛】本题考查了整式的加减运算,正确的去括号是解题的关键.2、(1)2,3(2)①12个单位长度/秒;②2秒或252秒 【分析】(1)设P 、Q 的速度分别为2x ,3x ,由两点路程之和=两点之间的距离,列方程即可求解;(2)解:①点Q 第一次经过表示12的点开始到达原点用时4秒,再次到达表示12的点用时1秒,即可求解;②分两种情况:当P 、Q 都向左运动时和当Q 返回向右运动时即可求解.(1)解:设P 、Q 的速度分别为2x ,3x ,由题意,得:6(2x +3x )=20-(-10),解得:x =1,故2x =2,3x=3,故答案为:2,3;(2) 解:①12513-=,12112÷=.答:点Q 碰到挡板后的运动速度为12个单位长度/秒.②当P 、Q 都向左运动时,102203t t +=-解得:2t =. 当Q 返回向右运动时,2010263t t +=-⎛⎫ ⎪⎝⎭ 解得:252t =. 答:P 、Q 两点到原点距离相等时经历的时间为2秒或252秒. 【点睛】本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值. 3、 (1)3x =-(2)2313x = 【解析】 (1) 解:5326x x +=-,39x =-,解得:3x =-;(2) 解:341125x x -+-=, 105(3)2(41)x x --=+,·线○封○密·○外1051582x x -+=+,1323x =, 解得:2313x =. 【点睛】 本题考查了一元一次方程的求解,解题的关键是掌握解一元一次方程的一般步骤.4、(1)见解析;(2)三角形的两边之和大于第三边;(3)OA AC > ,理由见解析;(4)70°【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得:4cm, 2.9cm AB OC == ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB 中,因为三角形的两边之和大于第三边,所以AB OA OB <+;(3)OC AC > ,理由如下:利用刻度尺测量得:4cm, 2.9cm AB OC == ,AC =2cm ,∴OC AC >;(4)根据题意得:180803070AOB ∠=︒-︒-︒=︒ .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键. 5、 (1)y =-10x +700 (2)当该商品的售价是50元时,月销售利润最大,最大利润是4000元 (3)46m ≤≤ 【分析】 (1)依题意设y =kx +b ,用待定系数法得到结论; (2)该商品进价是40-3000÷300=30,月销售利润为w 元,列出函数解析式,根据二次函数的性质求解; (3)设利润为w ′元,列出函数解析式,根据二次函数的性质求解. (1) 解:设y =kx +b (k ,b 为常数,k ≠0), 根据题意得:4030045250k b k b +=⎧⎨+=⎩, 解得:10700k b =-⎧⎨=⎩, ∴y =-10x +700; (2)·线○封○密○外解:当该商品的进价是40-3000÷300=30元,设当该商品的售价是x 元/件时,月销售利润为w 元,根据题意得:w =y (x -30)=(x -30)(-10x +700)=-10x 2+1000 x -21000=-10(x -50)2+4000,∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元;(3)解:设利润为w ′元,由题意得,w ′=y (x -30-m )=(x -30-m )(-10x +700)=-10x 2+1000 x +10mx -21000-700m ,∴对称轴是直线x =101000150202m m +-=+-, ∵-10<0,∴抛物线开口向下,∵在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x 的增大而增大, ∴150522m +≥, 解得m ≥4,∵6m ≤,∴46m ≤≤.【点睛】本题考查了一次函数的应用,以及二次函数的应用,熟练掌握二次函数的性质是解答本题的关键.·线○封○密○外。
2022年全国各省市中考数学真题汇编三角函数实际问题专题一1.(2022·湖北省宜昌市)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足53°≤α≤72°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin66°≈0.91,cos66°≈0.41,tan66°≈2.25)如图,现有一架长4m的梯子AB斜靠在一竖直的墙AO上.(1)当人安全使用这架梯子时,求梯子顶端A与地面距离的最大值;(2)当梯子底端B距离墙面1.64m时,计算∠ABO等于多少度?并判断此时人是否能安全使用这架梯子?2.(2022·山西省)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,√3≈1.73).3.(2022·江苏省泰州市)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB=8m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少?(结果精确到0.1m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)4.(2022·湖北省仙桃市)小红同学在数学活动课中测量旗杆的高度.如图,已知测角仪的高度为1.58米,她在A点观测旗杆顶端E的仰角为30°,接着朝旗杆方向前进20米到达C处,在D点观测旗杆顶端E的仰角为60°,求旗杆EF的高度.(结果保留小数点后一位)(参考数据:√3≈1.732)5.(2022·湖北省鄂州市)亚洲第一、中国唯一的航空货运枢纽——鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C处看见飞机A的仰角为45°,同时另一市民乙在斜坡CF上的D处看见飞机A的仰角为30°.若斜坡CF的坡比=1:3,铅垂高度DG=30米(点E、G、C、B在同一水平线上).求:(1)两位市民甲、乙之间的距离CD;(2)此时飞机的高度AB.(结果保留根号)6.(2022·湖南省常德市)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG//BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)7.(2022·湖北省荆州市)荆州城徽“金凤腾飞”立于古城东门外.如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E处,测得顶端A的仰角为45°.已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求城徽的高AB.(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625).8.(2022·广西壮族自治区贺州市)如图,在小明家附近有一座废旧的烟囱,为了乡村振兴,美化环境,政府计划把这片区域改造为公园.现决定用爆破的方式拆除该烟囱,为确定安全范围,需测量烟囱的高度AB,因为不能直接到达烟囱底部B处,测量人员用高为1.2m的测角器在与烟囱底部B成一直线的C,D两处地面上,分别测得烟囱顶部A的仰角∠B′C′A=60°,∠B′D′A=30°,同时量得CD为60m.问烟囱AB的高度为多少米?(精确到0.1m,参考数据:√2≈1.414,√3≈1.732)9.(2022·四川省宜宾市)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:√3≈1.7,√2≈1.4)10.(2022·河北省)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线MN//AB.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.(1)求∠C的大小及AB的长;(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan76°取4,√17取4.1)11.(2022·湖南省娄底市)“体育承载着国家强盛、民族振兴的梦想”.墩墩使用握力器(如实物图所示)锻炼手部肌肉.如图,握力器弹簧的一端固定在点P处,在无外力作用下,弹簧的长度为3cm,即PQ=3cm.开始训练时,将弹簧的端点Q调在点B处,此时弹簧长PB=4cm,弹力大小是100N,经过一段时间的锻炼后,他手部的力量大大提高,需增加训练强度,于是将弹簧端点Q调到点C处,使弹力大小变为300N,已知∠PBC=120°,求BC的长.注:弹簧的弹力与形变成正比,即F=k⋅Δx,k是劲度系数,Δx是弹簧的形变量,在无外力作用下,弹簧的长度为x0,在外力作用下,弹簧的长度为x,则Δx=x−x0.12.(2022·四川省成都市)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A′OB=108°时(点A′是A的对应点),用眼舒适度较为理想.求此时顶部边缘A′处离桌面的高度A′D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)13.(2022·四川省自贡市)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由.(2)实地测量如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH.(√3≈1.73,结果精确到0.1米)(3)拓展探究公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E、F(E、F、H在同一直线上),分别测得点P 的仰角α、β,再测得E、F间的距离m,点O1、O2到地面的距离O1E、O2F均为1.5米.求PH(用α、β、m表示).14.(2022·浙江省嘉兴市)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)15.(2022·甘肃省武威市)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF//EG,CG⊥AF,FG=DE).数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.16.(2022·四川省眉山市)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30°,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45°,求此建筑物的高.(结果保留整数.参考数据:√2≈1.41,√3≈1.73)17.(2022·浙江省台州市)如图1,梯子斜靠在竖直的墙上,其示意图如图2.梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)18.(2022·四川省广元市)如图,计划在山顶A的正下方沿直线CD方向开通穿山隧道EF.在点E处测得山顶A的仰角为45°,在距E点80m的C处测得山顶A的仰角为30°,从与F点相距10m的D处测得山顶A的仰角为45°,点C、E、F、D在同一直线上,求隧道EF的长度.参考答案1.解:(1)53°≤α≤72°,当α=72°时,AO取最大值,在Rt△AOB中,sin∠ABO=AOAB,∴AO=AB⋅sin∠ABO=4×sin72°=4×0.95=3.8(米),∴梯子顶端A与地面的距离的最大值为3.8米;(2)在Rt△AOB中,cos∠ABO=BOAB=1.64÷4=0.41,∵cos66°≈0.41,∴∠ABO=66°,∵53°≤α≤72°,∴人能安全使用这架梯子.2.解:延长AB,CD分别与直线OF交于点G和点H,则AG=60m,GH=AC,∠AGO=∠EHO=90°,在Rt△AGO中,∠AOG=70°,∴OG=AGtan70∘≈602.75≈21.8(m),∵∠HFE是△OFE的一个外角,∴∠OEF=∠HFE−∠FOE=30°,∴∠FOE=∠OEF=30°,∴OF=EF=24m,在Rt△EFH中,∠HFE=60°,∴FH=EF⋅cos60°=24×12=12(m),∴AC=GH=OG+OF+FH=21.8+24+12≈58(m),∴楼AB与CD之间的距离AC的长约为58m.3.解:连接MC,过点M作HM⊥NM,由题意得:∠DMC=2∠CMH,∠MCD=∠HMN=90°,AB=MC=8m,AB//MC,∴∠CMN=180°−∠MNB=180°−118°=62°,∴∠CMH=∠HMN−∠CMN=28°,∴∠DMC=2∠CMH=56°,在Rt△CMD中,CD=CM⋅tan56°≈8×1.48≈11.8(米),∴能看到的水平地面上最远处D到他的距离CD约为11.8米.4.解:过点D作DG⊥EF于点G,则A,D,G三点共线,BC=AD=20米,AB=CD=FG=1.58米,设DG=x米,则AG=(20+x)米,在Rt△DEG中,∠EDG=60°,tan60°=EGDG =EGx=√3,解得EG=√3x,在Rt△AEG中,∠EAG=30°,tan30°=EGAG =√3x20+x=√33,解得x=10,∴EG=10√3米,∴EF=EG+FG≈18.9米.∴旗杆EF的高度约为18.9米.5.解:(1)∵斜坡CF的坡比=1:3,DG=30米,∴DGGC =13,∴GC=3DG=90(米),在Rt△DGC中,DC=√DG2+GC2=√302+902=30√10(米),∴两位市民甲、乙之间的距离CD为30√10米;(2)过点D作DH⊥AB,垂足为H,则DG=BH=30米,DH=BG,设BC=x米,在Rt△ABC中,∠ACB=45°,∴AB=BC⋅tan45°=x(米),∴AH=AB−BH=(x−30)米,在Rt△ADH中,∠ADH=30°,∴tan30°=AHDH =x−30x+90=√33,∴x=60+30√3,经检验:x=60√3+90是原方程的根,∴AB=(60√3+90)米,∴此时飞机的高度AB为(60√3+90)米.6.解:如图,过点F作FN⊥BC于点N,交HG于点M,则AB=AH−EM+EN.根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),∵HG//BC,∴∠EGM=∠ECB=36°,在Rt△AHF中,∠AFH=40°,AF=50,∴AH=AF⋅sin∠AFH≈50×0.64=32(米),在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7−m)米,∴EM=MG⋅tan∠EGM=MG⋅tan36°=0.73m,EM=FM⋅tan∠EFM=FM⋅tan25°=0.47(7−m),∴0.73m=0.47(7−m),解得m≈2.7(米),∴EM=0.47(7−m)≈2.021(米),∴AB=AH−EM+EN≈32−2.021+40≈70(米).∴此大跳台最高点A距地面BD的距离是70米.7.解:延长DF交AB于点G,则∠AGF=90°,DF=CE=6.6米,CD=EF=BG=1.5米,设FG=x米,∴DG=FG+DF=(x+6.6)米,在Rt△AGF中,∠AFG=45°,∴AG=FG⋅tan45°=x(米),在Rt△AGD中,∠ADG=32°,∴tan32°=AGDG =xx+6.6≈0.625,∴x=11,经检验:x=11是原方程的根,∴AB=AG+BG=11+1.5=12.5(米),∴城徽的高AB约为12.5米.8.解:由题意得:BB′=DD′=CC′=1.2米,D′C′=DC=60米,∵∠AC′B′是△AD′C′的一个外角,∴∠D′AC′=∠AC′B′−∠AD′B′=30°,∴∠AD′C′=∠D′AC′=30°,∴D′C′=AC′=60米,在Rt△AC′B′中,∠AC′B′=60°,∴AB′=AC′⋅sin60°=60×√32=30√3(米),∴AB=AB′+BB′=30√3+1.2≈53.2(米),∴烟囱AB的高度约为53.2米.9.解:由已知可得,tan∠BAF=BFAF =724,AB=25米,∠DBE=60°,∠DAC=45°,∠C=90°,设BF=7a米,AF=24a米,∴(7a)2+(24a)2=252,解得a=1,∴AF=24米,BF=7米,∵∠DAC=45°,∠C=90°,∴∠DAC=∠ADC=45°,∴AC=DC,设DE=x米,则DC=(x+7)米,BE=CF=x+7−24=(x−17)米,∵tan∠DBE=DEBE =xx−17,∴tan60°=xx−17,解得x≈40,答:东楼的高度DE约为40米.10.解:(1)∵嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,∴∠CAB=14°,∠CBA=90°,∴∠C=180°−∠CAB−∠CBA=76°,∵tanC=ABBC,BC=1.7m,∴tan76°=AB1.7,∴AB=1.7×tan76°=6.8(m),答:∠C=76°,AB的长为6.8m;(2)图中画出线段DH如图:∵OA=OM,∠BAM=7°,∴∠OMA=∠OAM=7°,∵AB//MN,∴∠AMD=∠BAM=7°,∴∠OMD=14°,∴∠MOD=76°,在Rt△MOD中,tan∠MOD=MD,OD∴tan76°=MD,OD∴MD=4OD,设OD=x m,则MD=4x m,AB=3.4m,在Rt△MOD中,OM=OA=12∴x2+(4x)2=3.42,∵x>0,≈0.82,∴x=√175∴OD=0.82m,∴DH=OH−OD=OA−OD=3.4−0.82=2.58≈2.6(m),答:最大水深约为2.6米.11.解:由题意可得,x0=3cm,100=k(4−3),解得k=100,∴F=100Δx,当F=300时,300=100×(PC−3),解得PC=6cm,由图可得,∠PAB=90°,∠PBC=120°,∴∠APB=30°,∵PB=4cm,∴AB=2cm,PA=√PB2−AB2=2√3(cm),∵PC=5cm,∴AC=√PC2−PA2=2√6(cm),∴BC=AC−AB=(2√6−2)cm,即BC的长是(2√6−2)cm.12.解:∵∠AOB=150°,∴∠AOC=180°−∠AOB=30°,在Rt△ACO中,AC=10cm,∴AO=2AC=20(cm),由题意得:AO=A′O=20cm,∵∠A′OB=108°,∴∠A′OD=180°−∠A′OB=72°,在Rt△A′DO中,A′D=A′O⋅sin72°≈20×0.95=19(cm),∴此时顶部边缘A′处离桌面的高度A′D的长约为19cm.13.解:(1)∵∠COG=90°,∠AON=90°,∴∠POC+∠CON=∠GON+∠CON,∴∠POC=∠GON;(2)由题意可得,KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°,∵tan∠POQ=PQ,OQ∴tan60°=PQ,5解得PQ=5√3,∴PH=PQ+QH=5√3+1.5≈10.2(米),即树高PH 为10.2米;(3)由题意可得,O 1O 2=m ,O 1E =O 2F =DH =1.5米, 由图可得,tanβ=PD O 2D ,tanα=PDO 1D , ∴O 2D =PD tanβ,O 1D =PD tanα, ∵O 1O 2=O 2D −O 1D ,∴m =PD tanβ−PD tanα,∴PD =mtanαtanβtanα−tanβ,∴PH =PD +DH =(mtanαtanβtanα−tanβ+1.5)米.14.解:(1)如图,过点C 作CF ⊥DE 于点F ,∵CD =CE =5cm ,∠DCE =40°.∴∠DCF =20°,∴DF =CD ⋅sin20°≈5×0.34≈1.7(cm), ∴DE =2DF ≈3.4cm ,∴线段DE 的长约为3.4cm ;(2)∵横截面是一个轴对称图形,∴延长CF 交AD 、BE 延长线于点G ,连接AB ,∴DE//AB ,∴∠A =∠GDE ,∵AD ⊥CD ,BE ⊥CE ,∴∠GDF +∠FDC =90°,∵∠DCF +∠FDC =90°,∴∠GDF =∠DCF =20°,∴∠A =20°,∴DG =DF cos20∘≈ 1.70.94≈1.8(cm),∴AG=AD+DG=10+1.8=11.8(cm),∴AB=2AG⋅cos20°≈2×11.8×0.94≈22.2(cm).∴点A,B之间的距离22.2cm.15.解:设BF=x m,由题意得:DE=FG=1.5m,在Rt△CBF中,∠CBF=35°,∴CF=BF⋅tan35°≈0.7x(m),∵AB=8.8m,∴AF=AB+BF=(8.8+x)m,在Rt△ACF中,∠CAF=26.6°,∴tan26.6°=CFAF =0.7x8.8+x≈0.5,∴x=22,经检验:x=22是原方程的根,∴CG=CF+FG=0.7x+1.5=16.9(m),∴灞陵桥拱梁顶部C到水面的距离CG约为16.9m.16.解:在Rt△BCD中,∠CBD=45°,设CD为x m,∴BD=CD=x m,∴AD=BD+AB=(60+x)m,在Rt△ACD中,∠CAD=30°,tan∠CAD=tan30°=CDAD =x60+x=√33,解得x=30√3+30≈82.答:此建筑物的高度约为82m.17.解:在Rt△ABC中,AB=3m,∠BAC=75°,sin∠BAC=sin75°=BCAB =BC3≈0.97,解得BC≈2.9.答:求梯子顶部离地竖直高度BC约为2.9m.18.解:过点A作AH⊥DE,垂足为H,设EH=x米,在Rt△AEH中,∠AEH=45°,∴AH=EH⋅tan45°=x(米),∵CE=80米,∴CH=CE+EH=(80+x)米,在Rt△ACH中,∠ACH=30°,∴tan30°=AHCH =x80+x=√33,∴x=40√3+40,经检验:x=40√3+40是原方程的根,∴AH=EH=(40√3+40)米,在Rt△AHD中,∠ADH=45°,∴DH=AHtan45∘=(40√3+40)米,∴EF=EH+DH−DF=(80√3+70)米,∴隧道EF的长度为(80√3+70)米.。
2022年湖北省荆州市中考数学一模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. −15的相反数是( )A. 5B. −5C. 15D. −152. 下列几何体中,主视图是长方形的是( )A. B.C. D.3. 下列计算正确的是( )A. a3⋅a3=2a3B. (−2a)2=4a2C. (a+b)2=a2+b2D. (a+2)(a−2)=a2−24. 一副三角尺的位置如图所示,其中三角尺ADE绕点A逆时针旋转α度,使它的某一边与BC 平行,则α的最小值是( )A. 15°B. 30°C. 60°D. 150°5. 平面直角坐标系中,下列函数的图象关于原点对称的是( )A. y=x2B. y=2xC. y=2x−4D. y=−x(x>0)6. 如图,在Rt△ABC中,∠ACB=90°,按以下步骤作图:①以B为圆心,任意长为半径作弧,分别交BA、BC于M、N两点;②分别以M、N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;③作射线BP,交边AC于D点.若AB=10,BC=6,则线段CD的长为( )A. 3B. 103C. 83D. 1657. 将无限循环小数0.7⋅化为分数,可以设0.7⋅=x,则10x=7+x,解得:x=79.仿此,将无限循环小数0.2⋅1⋅化为分数为( )A. 711B. 733C. 21101D. 20998. 如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是( )A. 10B. 8C. 6D. 49. 关于x的分式方程xx−2−4=k2−x的解为正数.为得到k的取值范围,下列过程或结论,其中不正确的是( )A. x−4(x−2)=kB. x=k+83>0C. k+83≠2D. k>−8且x≠−210. 在平面直角坐标系中,若直线y=−x+m不经过第一象限,则关于x的方程mx2+x+ 1=0的实数根的个数为( )A. 0个B. 1个C. 2个D. 1或2个二、填空题(本大题共6小题,共18.0分)11. 函数y=√x−1中,自变量x的取值范围是______.2x−412. 一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是______.13. 如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的俯角为60°,已知楼高AB为30米,则荷塘的宽CD为______ 米(结果保留根号).14. 如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则DE的值为______.BC15. 如图,点P(4a,a)是反比例函数y=k(k>0)与⊙O的一个交点,图中阴影部分的面积为x17π,则反比例函数的解析式为______.16. 已知y是关于x的函数,若该函数的图象经过点P(t,−t),则称点p为函数图象上的“相反点”,例如:直线y=2x−3上存在“相反点”P(1,−1).若二次函数y=x2+2mx+m+3的图象上存在唯一“相反点”,则m=______.三、解答题(本大题共8小题,共72.0分。
2022年湖北省荆州市中考数学全真模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.2.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.3.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.164.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为().A.12B.33C.313-D.314-5.已知3x+y=6,则xy的最大值为()A.2 B.3 C.4 D.66.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差7.6的相反数为()A.-6 B.6 C.16-D.168.许昌市2017年国内生产总值完成1915.5亿元,同比增长9.3%,增速居全省第一位,用科学记数法表示1915.5亿应为()A.1915.15×108B.19.155×1010C.1.9155×1011D.1.9155×10129.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4 D.BD=410.如图所示,a∥b,直线a与直线b之间的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度11.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为()A .1×10﹣15B .0.1×10﹣14C .0.01×10﹣13D .0.01×10﹣1212.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( ) A .10cmB .30cmC .45cmD .300cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 14.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是____.15.分解因式:3ax 2﹣3ay 2=_____.16.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.17.计算:2(a -b )+3b =___________.18.点(-1,a )、(-2,b )是抛物线2y x 2x 3=+-上的两个点,那么a 和b 的大小关系是a_______b (填“>”或“<”或“=”).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,直线y =﹣2x +b 与反比例函数y =kx 交于点A 、B ,与x 轴交于点C . (1)若A (﹣3,m )、B (1,n ).直接写出不等式﹣2x +b >kx的解.(2)求sin ∠OCB 的值.(3)若CB ﹣CA =5,求直线AB 的解析式.20.(6分)阅读与应用:阅读1:a 、b 为实数,且a >0,b >0,因为20a b≥,所以20a ab b -≥,从而2a b ab +≥(当a =b时取等号).阅读2:函数my x x =+(常数m >0,x >0),由阅读1结论可知: 2m m x x x x +≥⋅m =所以当m x x=即x m =时,函数my x x=+的最小值为2m . 阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x ,则另一边长为4x ,周长为42x x ⎛⎫+ ⎪⎝⎭,求当x =__________时,周长的最小值为__________.问题2:已知函数y 1=x +1(x >-1)与函数y 2=x 2+2x +17(x >-1),当x =__________时,21y y 的最小值为__________. 问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.1.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数) 21.(6分)如图,四边形ABCD 的四个顶点分别在反比例函数m y x =与ny x=(x >0,0<m <n)的图象上,对角线BD//y轴,且BD ⊥AC 于点P .已知点B 的横坐标为1.当m=1,n=20时. ①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.22.(8分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min) A 7 25 0.01 Bmn0.01设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为y A ,y B .(1)如图是y B 与x 之间函数关系的图象,请根据图象填空:m = ;n = ;(2)写出y A与x之间的函数关系式;(3)选择哪种方式上网学习合算,为什么.23.(8分)计算:(﹣2)﹣2﹣22sin45°+(﹣1)2018﹣38-÷224.(10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.i)求证:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且AB EFkBC FC==时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)25.(10分)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.(1)若∠DAB=50°,求∠ATC的度数;(2)若⊙O半径为2,TC=,求AD的长.26.(12分)解不等式组3122 324 xx x ⎧-≥⎪⎨⎪+<⎩请结合题意填空,完成本题的解答:(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解集为.27.(12分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图.(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.2、A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3、A【解析】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.4、C【解析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE =∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【详解】如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,AE AEAB AD '=⎧⎨=⎩, ∴Rt △AB ′E ≌Rt △ADE (HL ), ∴∠DAE =∠B ′AE , ∵旋转角为30°, ∴∠DAB ′=60°, ∴∠DAE =12×60°=30°,∴DE =1×3=3,∴阴影部分的面积=1×1﹣2×(12×1 故选C . 【点睛】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE =∠B ′AE ,从而求出∠DAE =30°是解题的关键,也是本题的难点. 5、B 【解析】根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x 2+6x ,利用配方法求该式的最值. 【详解】 解:∵1x+y=6, ∴y=-1x+6,∴xy=-1x 2+6x=-1(x-1)2+1. ∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy 的最大值为1. 故选B . 【点睛】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy 的最大值. 6、D 【解析】A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;∴平均数不发生变化. B. ∵原众数是:3;添加一个数据3后的众数是:3; ∴众数不发生变化; C. ∵原中位数是:3;添加一个数据3后的中位数是:3; ∴中位数不发生变化;D. ∵原方差是:()()()()()22222313233234355=63-+-+-⨯+-+-; 添加一个数据3后的方差是:()()()()()222223132333343510=77-+-+-⨯+-+-;∴方差发生了变化. 故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键. 7、A 【解析】根据相反数的定义进行求解. 【详解】1的相反数为:﹣1.故选A. 【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数. 8、C 【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】用科学记数法表示1915.5亿应为1.9155×1011, 故选C . 【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 9、D【解析】由△OAB 绕O 点逆时针旋转60°得到△OCD 知∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,据此可判断C ;由△AOC 、△BOD 是等边三角形可判断A 选项;由∠AOB=35°,∠AOC=60°可判断B 选项,据此可得答案. 【详解】解:∵△OAB 绕O 点逆时针旋转60°得到△OCD ,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,故C 选项正确; 则△AOC 、△BOD 是等边三角形,∴∠BDO=60°,故A 选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B 选项正确. 故选D . 【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质. 10、A 【解析】分析:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案. 详解:∵a ∥b ,AP ⊥BC∴两平行直线a 、b 之间的距离是AP 的长度 ∴根据平行线间的距离相等∴直线a 与直线b 之间的距离AP 的长度 故选A.点睛:本题考查了平行线之间的距离,属于基础题,关键是掌握平行线之间距离的定义. 11、A 【解析】根据科学记数法的表示方法解答. 【详解】解:把0.000?000?000?000?001这个数用科学记数法表示为15110-⨯. 故选:A . 【点睛】此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键. 12、A 【解析】根据已知得出直径是60cm 的圆形铁皮,被分成三个圆心角为120︒半径是30cm 的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。
2022年湖北省荆门市中考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果|x|=2,那么x=()A.2B.﹣2C.2或﹣2D.2或1 2-2.纳米(nm)是非常小的长度单位,1nm=0.000000001m,将数据0.000000001用科学记数法表示为()A.1010-B.910-C.810-D.710-3.数学兴趣小组为测量学校A与河对岸的科技馆B之间的距离,在A的同岸选取点C,测得AC=30,∠A=45°,∠C=90°,如图,据此可求得A,B之间的距离为()A.B.60C.D.304.若函数y=ax2﹣x+1(a为常数)的图象与x轴只有一个交点,那么a满足()A.a=14B.a≤14C.a=0或a=﹣14D.a=0或a=145.对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是() A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)6.如图,一座金字塔被发现时,顶部已经淡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为120m的正方形,且每一个侧面与地面成60°角,则金字塔原来高度为()A.120m B.C.D.7.如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD的面积为()A.B.C.D.8.抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是() A.0≤x1<x2B.x2<x1≤0C.x2<x1≤0或0≤x1<x2D.以上都不对9.如图,点A,C为函数y=kx(x<0)图象上的两点,过A,C分别作AB⊥x轴,CD⊥x轴,垂足分别为B,D,连接OA,AC,OC,线段OC交AB于点E,且点E恰好为OC的中点.当△AEC的面积为34时,k的值为()A.﹣1B.﹣2C.﹣3D.﹣410.抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若0x>﹣4,则0y>c.其中正确结论的个数为()二、填空题11﹣(﹣2022)0=_____.12.八(1)班一组女生的体重(单位:kg)分别是:35,36,38,40,42,42,45.则这组数据的众数为_____.13.如图,点G为△ABC的重心,D,E,F分别为BC,CA,AB的中点,具有性质:AG:GD=BG:GE=CG:GF=2:1.已知△AFG的面积为3,则△ABC的面积为_____.14.1.如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t=_____小时.15.如图,过原点的两条直线分别为l1:y=2x,l2:y=﹣x,过点A(1,0)作x轴的垂线与l1交于点A1,过点A1作y轴的垂线与l2交于点A2,过点A2作x轴的垂线与l1交于点A3,过点A3作y轴的垂线与l2交于点A4,过点A4作x轴的垂线与l1交于点A5,⋯,依次进行下去,则点A20的坐标为_____.16.如图,函数y =223(2)39(2)42x x x x x ⎧-+<⎪⎨-+≥⎪⎩的图象由抛物线的一部分和一条射线组成,且与直线y =m (m 为常数)相交于三个不同的点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)(x 1<x 2<x 3).设t =112233x y x y x y +,则t 的取值范围是_____.三、解答题17.已知x +1x=3,求下列各式的值:(1)(x ﹣1x)2;(2)x 4+41x .18.如图,已知扇形AOB 中,∠AOB =60°,半径R =3.(1)求扇形AOB 的面积S 及图中阴影部分的面积S 阴;(2)在扇形AOB的内部,⊙O1与OA,OB都相切,且与弧AB只有一个交点C,此时我们称⊙O1为扇形AOB的内切圆,试求⊙O1的面积S1.19.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE 的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).20.为了了解学生对“新冠疫情防护知识”的应知应会程度,某校随机选取了20名学生“新冠疫情防护知识”的测评成绩,数据如表:成绩/分888990919596979899学生人数21a321321数据表中有一个数因模糊不清用字母a表示.(1)试确定a的值及测评成绩的平均数,并补全条形图;(2)记测评成绩为x,学校规定:80≤x<90时,成绩为合格;90≤x<97时,成绩为良好;97≤x≤100时,成绩为优秀.求扇形统计图中m和n的值:(3)从成绩为优秀的学生中随机抽取2人,求恰好1人得97分、1人得98分的概率.21.如图,AB为⊙O的直径,点C在直径AB上(点C与A,B两点不重合),OC=3,点D在⊙O上且满足AC=AD,连接DC并延长到E点,使BE=BD.(1)求证:BE是⊙O的切线;(2)若BE=6,试求cos∠CDA的值.22.已知关于x的不等式组120320x ax a++>⎧⎨--<⎩(a>﹣1).(1)当a=12时,解此不等式组;(2)若不等式组的解集中恰含三个奇数,求a的取值范围.23.某商场销售一种进价为30元/个的商品,当销售价格x(元/个)满足40<x<80时,其销售量y(万个)与x之间的关系式为y=﹣110x+9.同时销售过程中的其它开支为50万元.(1)求出商场销售这种商品的净利润z(万元)与销售价格x函数解析式,销售价格x定为多少时净利润最大,最大净利润是多少?(2)若净利润预期不低于17.5万元,试求出销售价格x的取值范围;若还需考虑销售量尽可能大,销售价格x应定为多少元?24.已知抛物线y=ax2+bx+c过点A(﹣2,0),B(4,0),D(0,﹣8).(1)求抛物线的解析式及顶点E的坐标;(2)如图,抛物线y=ax2+bx+c向上平移,使顶点E落在x轴上的P点,此时的抛物线记为C,过P作两条互相垂直的直线与抛物线C交于不同于P的M,N两点(M位于N 的右侧),过M,N分别作x轴的垂线交x轴于点M1,N1.①求证:△PMM1∽△NPN1;②设直线MN的方程为y=kx+m,求证:k+m为常数.参考答案:1.C 【解析】【分析】根据绝对值的意义即可求解.【详解】∵|±2|=2,∴x =±2.故选:C .【点睛】本题考查了绝对值的意义,掌握绝对值的意义是解题的关键.2.B 【解析】【分析】科学记数法的表现形式为10n a ⨯,(110a ≤<且n 为整数),确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】0.000000001变成1,小数点向左移动了9位,且0.0000000011<,所以1a =,9n =-,即910-.故选:B .【点睛】本题主要考查科学记数法,确定a 及n 的值是解题的关键.3.C 【解析】【分析】根据等腰直角三角形的性质,利用勾股定理计算即可求解.【详解】解:在Rt △ABC 中,∠C =90°,∠A =45°,AC =30,∴∠B =∠A =45°,∴BC=AC=30,∴AB=故选:C【点睛】本题主要考查了等腰直角三角形,勾股定理,利用勾股定理求解线段长度是解此题的关键.4.D【解析】【分析】由题意分两种情况:①函数为二次函数,函数y=ax2-x+1的图象与x轴恰有一个交点,可得Δ=0,从而解出a值;②函数为一次函数,此时a=0,从而求解.【详解】解:①函数为二次函数,y=ax2﹣x+1(a≠0),∴Δ=1﹣4a=0,∴a=1 4;②函数为一次函数,∴a=0,∴a的值为14或0;故选:D.【点睛】此题考查了二次函数的性质,根的判别式,一次函数的性质,对函数的情况进行分类讨论是解题的关键.5.A【解析】【分析】根据立方差公式即可求解.【详解】解:∵a3+b3=(a+b)(a2﹣ab+b2)恒成立,将上式中的b用-b替换,整理得:∴a3﹣b3=(a﹣b)(a2+ab+b2),故选:A.【点睛】本题考查了运用公式法分解因式,熟练掌握立方差公式是解题的关键.6.B【解析】【分析】根据题意作出图形,即求AC的长,求得∠BAC=30°,进而解Rt ABC△即可求解.【详解】如图,∵底部是边长为120m的正方形,∴BC=12×120=60m,∵AC⊥BC,∠ABC=60°,∴∠BAC=30°,∴AB=21sin2BC BCBABCC==∠=120m,∴AC=.答:这个金字塔原来有故选:B.【点睛】本题考查了解直角三角形的应用,构造直角三角形是解题的关键.7.A【解析】【分析】连接OC ,首先根据题意可求得OC =6,OE =3,根据勾股定理即可求得CE 的长,再根据垂径定理即可求得CD 的长,据此即可求得四边形ACBD 的面积.【详解】解:如图,连接OC ,∵AB =12,BE =3,∴OB =OC =6,OE =3,∵AB ⊥CD ,∴在Rt △COE 中,EC ===∴CD =2CE =∴四边形ACBD 的面积=111222AB CD ⋅=⨯⨯故选:A .【点睛】本题考查了勾股定理的应用,垂径定理,熟练掌握和运用垂径定理是解决本题的关键.8.D 【解析】【分析】根据二次函数图象及性质,即可判定.【详解】∵抛物线y =x 2+3开口向上,在其图象上有两点A (x 1,y 1),B (x 2,y 2),且y 1<y 2,∴|x 1|<|x 2|,∴0≤x 1<x 2,或x 2<x 1≤0,或x 2>0,x 1≤0且x 2+x 1>0,或x 2<0,x 1>0且x 2+x 1<0,故选:D .【点睛】本题考查了二次函数的图象及性质,熟练掌握和运用二次函数的图象及性质是解决本题的关键.9.B 【解析】【分析】根据三角形的中线的性质求出△AEO 的面积,根据相似三角形的性质求出S △OCD =1,根据反比例函数系数k 的几何意义解答即可.【详解】∵点E 为OC 的中点,∴34AEO AEC S S ==,∵点A ,C 为函数y =kx(x <0)图象上的两点,∴S △ABO =S △CDO ,∴S 四边形CDBE =S △AEO =34,∵EB ∥CD ,∴△OEB ∽△OCD ,∴2ΔΔ12OEB OCD S S ⎛⎫= ⎪⎝⎭,∴S △OCD =1,则12xy =﹣1,∴k =xy =﹣2.故选:B .【点睛】本题考查的是反比例函数系数k 的几何意义、相似三角形的性质,掌握反比例函数系数k 的几何意义、相似三角形的面积比等于相似比的平方是解题的关键.10.B 【解析】【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.【详解】∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,∴抛物线开口向下,则a<0,故①正确;∵抛物线开口向下,对称轴为x=﹣2,∴函数的最大值为4a﹣2b+c,∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;∵对称轴为x=﹣2,c>0.∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,∴16a+c>4b,故③正确;∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),∵抛物线开口向下,∴若-4<0x<0,则0y>c.若0x≥0,则0y≤c,故④错误;故选:B【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系,掌握二次函数的性质.11.﹣1【解析】【分析】先计算立方根、特殊角的三角函数值、零指数幂,再进行计算即可解答.【详解】﹣(﹣2022)0=﹣12+12﹣1=0﹣1=﹣1故答案为:﹣1.【点睛】本题考查了立方根、特殊角的三角函数值、零指数幂等知识点,熟练掌握各知识点是解答本题的关键.12.42【解析】【分析】根据众数的定义即可求得.【详解】解:在这组数据中42出现了2次,出现的次数最多,故这组数据的众数是42.故答案为:42.【点睛】本题考查了众数的定义,熟练掌握和运用众数的定义是解决本题的关键.13.18【解析】【分析】根据线段比及三角形中线的性质求解即可.【详解】解:∵CG:GF=2:1,△AFG的面积为3,∴△ACG的面积为6,∴△ACF的面积为3+6=9,∵点F为AB的中点,∴△ACF的面积=△BCF的面积,∴△ABC的面积为9+9=18,故答案为:18.【点睛】题目主要考查线段比及线段中点的性质,熟练掌握线段中点的性质是解题关键.1)14.【解析】根据题意求出PAC ∠和PBA ∠的度数以及AP 的长度,然后再Rt APC 中,利用锐角三角函数的定义求出AC ,PC 的长,再在Rt BCP △中,利用锐角三角函数的定义求出BC 的长,从而求出AB 的长,最后根据时间=路程÷速度,进行计算即可求解.【详解】由题意得:∠PAC =45°,∠PBA =30°,AP =100海里,在Rt △APC 中,AC =AP •cos45°=100×22=(海里),PC =AP •sin45°=22=(海里),在Rt △BCP 中,BC =tan 30PC︒=,∴AB =AC +BC =()海里,∴t故答案为:(.【点睛】本题考查了解直角三角形在实际问题中的应用,熟练掌握锐角三角函数的定义是解题的关键.15.(210,﹣210)【解析】首先把x=1代入l1:y=2x,可得点A1的坐标为(1,2),把y=2代入l2:y=﹣x,可得点A2的坐标为(﹣2,2),据此即可求得A3,A4,A5,A6,A7,A8,A9的坐标,即可找到规律,据此即可求得.【详解】解:当x=1时,y=2,∴点A1的坐标为(1,2);当y=﹣x=2时,x=﹣2,∴点A2的坐标为(﹣2,2);同理可得:A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),A6(﹣8,8),A7(﹣8,﹣16),A8(16,﹣16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(﹣22n+1,22n+1),A4n+3(﹣22n+1,﹣22n+2),A4n+4(22n+2,﹣22n+2)(n为自然数).∵20=4×4+4,∴点A20的坐标为(22×4+2,﹣22×4+2),即(210,﹣210).故答案为:(210,﹣210).【点睛】本题考查了坐标与图形,坐标的规律,根据函数图象找到坐标规律是解决本题的关键.16.35<t<1##0.6<t<1【解析】【分析】根据A、B关于对称轴x=1对称,可知x1+x2=2,由直线y=m(m为常数)相交于三个不同的点,可得y1=y2=y3=m,求出x3的范围,进而求出t的范围.【详解】解:由二次函数y=x2﹣2x+3(x<2)可知:图象开口向上,对称轴为x=1,∴当x=1时函数有最小值为2,x1+x2=2,由一次函数y=﹣34x+92(x≥2)可知当x=2时有最大值3,当y=2时x=103,∵直线y=m(m为常数)相交于三个不同的点A(x1,y1),B(x2,y2),C(x3,y3)(x1<x2<x3),∴y 1=y 2=y 3=m ,2<m <3,∴2<x 3<103,∴t =123x x x +=32x ,∴35<t <1.故填:35<t <1【点睛】本题考查了二次函数的性质、一次函数的性质、函数值的取值范围等知识点,熟练掌握各知识点,利用数形结合的思想是解答本题的关键.17.(1)5(2)47【解析】【分析】(1)由21()x x +=22112x x x x +⋅⋅+、21()x x -=22112x x x x-⋅⋅+,进而得到21()x x +﹣4x •1x 即可解答;(2)由21()x x -=2212x x -+可得221x x +=7,又2221()x x +=4412x x ++,进而得到441x x +=2221()x x +﹣2即可解答.(1)解:∵21(x x +=22112x x x x +⋅⋅+∴21()x x -=22112x x x x -⋅⋅+=2211124x x x x x x +⋅+-⋅=21(x x+﹣4x •1x =32﹣4=5.(2)解:∵21()x x -=2212x x-+,∴221x x +=21()x x -+2=5+2=7,∵2221()x x +=4412x x ++,∴441x x +=2221()x x+﹣2=49﹣2=47.【点睛】本题主要考查通过对完全平方公式的变形求值.熟练掌握完全平方公式并能灵活运用是解答本题的关键.18.(1)扇形面积S =32π,阴影部分面积S =32π(2)π【解析】【分析】(1)根据扇形的面积公式就可以求出,阴影的面积用扇形的面积减去三角形的面积;(2)设⊙O 1与OA 相切于点E ,连接O 1O ,O 1E ,通过解三角形就可以求出半径,再利用圆的面积进行计算.(1)∵∠AOB =60°,半径R =3,∴S =2603360π⨯=32π,∵OA =OB ,∠AOB =60°,∴△OAB是等边三角形,∴S △OAB S 阴=32π(2)设⊙O 1与OA 相切于点E ,连接O 1O ,O 1E ,∴∠EOO 1=12∠AOB =30°,∠OEO 1=90°,在Rt △OO 1E 中,∵∠EOO 1=30°,∴OO 1=2O 1E ,∵OC =OO 1+O 1C ,O 1E =O 1C ,∴O 1E =1,∴⊙O 1的半径O 1E =1.∴S 1=πr 2=π.【点睛】本题考查了相切两圆的性质.构造直角三角形是常用的方法,本题的关键是求得圆的半径.19.(1)证明见解析(2)tan ∠DAF =26416x x-【解析】【分析】(1)根据矩形的性质得到∠B =∠D =90°,BC =AD ,根据折叠的性质得到BC =CE ,∠E =∠B =90°,等量代换得到∠E =∠D =90°,AD =CE ,根据AAS 证明三角形全等即可;(2)设DF =a ,则CF =8﹣a ,根据矩形的性质和折叠的性质证明AF =CF =8﹣a ,在Rt △ADF 中,根据勾股定理表示出DF 的长,根据正切的定义即可得出答案.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠D =90°,BC =AD ,根据折叠的性质得:BC=CE ,∠E =∠B =90°,∴∠E =∠D =90°,AD =CE ,在△CEF 与△ADF 中,90CFE AFDD E AD CE ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=26416x-,∴tan∠DAF=DFAD=26416xx-.【点睛】本题考查了锐角三角函数,全等三角形的判定与性质,矩形的性质,翻折变换(折叠问题),根据矩形的性质和折叠的性质证出AF=CF是解题的关键.20.(1)a=5,平均值为93,补图见解析(2)m=15;n=30(3)2 5【解析】【分析】(1)根据题意用20减去其他学生人数求得a的值,根据表格数据求平均数即可求解;(2)根据题意分别求得80≤x<90与97≤x≤100的人数所占的百分比,即可求得,m n的值;(1)由题意可知,a=20﹣(2+1+3+2+1+3+2+1)=5,∴a=5,测评成绩的平均数=1 20(88×2+89+90×5+91×3+95×2+96+97×3+98×2+99)=93,补全的条形统计图如图所示:(2)m=1220+×100%=15%;n=32120++×100%=30%;(3)根据题意列表得,设97分的用A1、A2、A3表示,98分的用B1、B2,表示,99分的用C表示,如图A1A2A3B1B2CA1A1A2A1A3A1B1A1B2A1CA2A2A1A2A3A2B1A2B2A2C A3A3A1A3A2A3B1A3B2A3C B1B1A1B1A2B1A3B1B2B1C B2B2A1B2A2B2A3B2B1B2C C C A1C A2C A3C B1C B2从6个人中选2个共有30个结果,一个97分,一个98分的有12种,故概率为:1230=25.【点睛】本题考查了条形统计图与扇形统计图信息关联,求扇形统计图的百分比,根据列表法求概率,掌握以上知识是解题的关键.21.(1)证明见解析【解析】【分析】(1)根据直径所对的圆周角是直角可得∠ADB=90°,从而可得∠BDE+∠ADC=90°,根据等腰三角形的性质以及对顶角相等可得∠ECB=∠ADC,然后根据等腰三角形的性质可得∠E=∠BDE,从而可得∠E+∠BCE=90°,最后利用三角形内角和定理可得∠EBC=90°,即可解答;(2)设⊙O的半径为r,则AC=AD=3+r,在Rt△ABD中,利用勾股定理可求出r=5,从而求出BC=2,然后在Rt△EBC中,根据勾股定理可求出EC的长,从而利用锐角三角函数的定义进行计算即可解答.(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠BDE+∠ADC=90°,∵AC=AD,∴∠ACD=∠ADC,∵∠ACD=∠ECB,∴∠ECB=∠ADC,∵EB=DB,∴∠E=∠BDE,∴∠E+∠BCE=90°,∴∠EBC=180°﹣(∠E+∠ECB)=90°,∵OB是⊙O的半径,∴BE 是⊙O的切线;(2)解:设⊙O的半径为r,∵OC=3,∴AC=AD=AO+OC=3+r,∵BE=6,∴BD=BE =6,在Rt△ABD中,BD2+AD2=AB2,∴36+(r+3)2=(2r)2,∴r1=5,r2=﹣3(舍去),∴BC =OB ﹣OC =5﹣3=2,在Rt △EBC 中,EC 2BC +=,∴cos ∠ECB =BCEC cos ∠CDA =cos ∠ECB cos ∠CDA 的值为【点睛】本题考查了切线的判定与性质,解直角三角形,熟练掌握切线的判定与性质,以及锐角三角函数的定义是解题的关键.22.(1)﹣2<x <4(2)0<a ≤1【解析】【分析】(1)把a 的值代入再求解;(2)先解不等式组可得−2a −1<x <2a +3,然后令b 1=−2a −1,b 2=2a +3,画出函数图象并求出临界情况下a 的值,然后结合题意得出a 的取值范围.(1)解:当a =12时,不等式组化为:2040x x +>⎧⎨-<⎩,解得:−2<x <4;(2)解不等式组得:−2a −1<x <2a +3,令b 1=−2a −1,b 2=2a +3,函数图象如图所示,当a =0时,b 1=3,b 2=-1,此时为有1个奇数解和3个奇数解的临界情况,当a =1时,b 1=-3,b 2=5,此时为有3个奇数解和5个奇数解的临界情况,∵−2a −1<x <2a +3,且不等式组的解集中恰含三个奇数,∴0<a ≤1.【点睛】本题考查了不等式组的解法,利用一次函数图象求不等式解集,灵活运用数形结合思想是解题的关键.23.(1)z =﹣2110x +12x ﹣320,当x =60时,z 最大,最大利润为40(2)45≤x ≤75,x =45时,销售量最大【解析】【分析】(1)根据总利润=单价利润×销量﹣40,可得z 与x 的函数解析式,再求出126012210b x a =-=-=⎛⎫⨯- ⎪⎝⎭时,z 最大,代入即可.(2)当z =17.5时,解方程得出x 的值,再根据函数的增减性和开口方向得出x 的范围,结合y 与x 的函数关系式,从而解决问题.(1)由题可知:z =y (x ﹣30)﹣50=(﹣1910x +)(x ﹣30)﹣50=﹣2110x +12x ﹣320,∴当126012210b x a =-=-=⎛⎫⨯- ⎪⎝⎭时,z 最大,∴最大利润为:﹣2160126032010⨯+⨯-=40;(2)当z =17.5时,17.5=﹣2110x +12x ﹣320,∴x 1=45,x 2=75,∵净利润预期不低于17.5万元,且a <0,∴45≤x ≤75,∵y =﹣110x +9.y 随x 的增大而减小,∴x =45时,销售量最大.【点睛】本题主要考查了二次函数的实际应用,二次函数的性质,一次函数的性质等知识,正确列出z 关于x 的函数的解析式是解题的关键.24.(1)y =x 2﹣2x ﹣8,E (1,﹣9)(2)①证明见解析;②证明见解析【解析】【分析】(1)将点A 、B 、C 的坐标分别代入y =ax 2+bx +c ,即可得到该抛物线的函数解析式;将该函数解析式化为顶点式即可得到顶点坐标;(2)①通过1NN x ⊥轴,1MM x ⊥轴,可知△PMM 1和△NPN 1是直角三角形,结合MP ⊥NP以及直角三角形两个锐角互余,可得∠MPM 1=∠PNN 1,即可证明△PMM 1∽△NPN 1,②根据平移后“顶点E 落在x 轴上的P 点”,可得到平移后的函数解析式,设N (x 1,kx 1+m ),M(x 2,kx 2+m ),联立直线与抛物线的解析式,结合根与系数的关系即可证明k +m 是常数.(1)将A (﹣2,0),B (4,0),D (0,﹣8)代入y =ax 2+bx +c ,∴42016408a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得128a b c =⎧⎪=-⎨⎪=-⎩,∴y =x 2﹣2x ﹣8,∵y =x 2﹣2x ﹣8=(x ﹣1)2﹣9,∴E (1,﹣9);(2)①证明:∵PN ⊥PM ,∴∠MPN =90°,∴∠NPN 1+∠MPM 1=90°,∵NN 1⊥x 轴,MM 1⊥x 轴,∴∠NN 1P =∠MM 1P =90°,∴∠N 1PN +∠PNN 1=90°,∴∠MPM 1=∠PNN 1,∴△PMM 1∽△NPN 1;②证明:由题意可知平移后的抛物线解析式为y =(x ﹣1)2,设N (x 1,kx 1+m ),M (x 2,kx 2+m ),联立方程组()21y x y kx m⎧=-⎪⎨=+⎪⎩,整理得x 2﹣(2+k )x +1﹣m =0,∴x 1+x 2=2+k ,x 1•x 2=1﹣m ,∵△PMM 1∽△NPN 1,∴11PN MM =11NN PM ,即121x kx m -+=121kx m x +-,∴k +m =(k +m )2,∴k +m =1或k +m =0,∵M 、N 与P 不重合,∴k +m =1,∴k +m 为常数.【点睛】本题主要考查了二次函数的图象与性质、一元二次方程根与系数的关系以及相似三角形的判定,会用待定系数法求解函数的解析式,熟练地将函数解析式的一般式化为顶点式、会求交点坐标以及掌握相似三角形的判定是解题的关键.。
2022年湖北省荆州市中考数学真题
一、选择题(本大题共有10个小题,每小题3分,共30分)
1.化简a﹣2a
的结果是( )
A.﹣a B.a C.3a D.0
2.实数a,b,c,d
在数轴上对应点的位置如图,其中有一对互为相反数,它们是( )
A.a与d B.b与d C.c与d D.a与c
3.如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是( )
A.60° B.70° C.80° D.90
°
4. 从班上I3名排球队员中,挑选7名个头高的参加校排球比赛.若这3
名队员的身高各不相
同,其中队员小明想知道自己能否入选,只需知道这13名队员身高数据的()
A.平均数 B.中位数 C.最大值 D
.方差
5.“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km
的实践基地
参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min到达基地,求甲、乙的速度
.
设甲的速度为3xkm/h,则依题意可列方程为()
A.+= B.+20
=
C.﹣= D.﹣=20
6.如图是同一直角坐标系中函数y1=2x和y2=的图象.观察图象可得不等式2x
>的
解集为( )
A.﹣1<x<1 B.x<﹣1或x>1
C.x<﹣1或0<x<1 D.﹣1<x<0或x>1
7.关于x的方程x2﹣3kx﹣2=0
实数根的情况,下列判断正确的是( )
A.有两个相等实数根 B
.有两个不相等实数根
C.没有实数根 D
.有一个实数根
8.如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC
边相
切,分别交AB,AC于D,E,则图中阴影部分的面积是()
A.﹣ B.2﹣π C. D
.﹣
9.如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB
上,
OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan
∠
OAP的值是()
A. B. C. D.3
10.如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD
各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,
得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形
AnBn∁nD
n
的面积是( )
A. B. C. D
.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.一元二次方程x2﹣4x+3=0配方为(x﹣2)2=k,则k的值是
.
12.如图,点E,F分别在▱ABCD的边AB,CD的延长线上,连接EF,分别交AD,BC
于
G,H.添加一个条件使△AEG≌△CFH,这个条件可以是
.(只需写一种情况)
13.若3﹣的整数部分为a,小数部分为b,则代数式 (2+a)•b的值是 .
14.如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC
于
D,E,连接CD.若CE=AE=1,则CD= .
15.如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm
,球的
最高点到瓶底面的距离为32cm,则球的半径为 cm(玻璃瓶厚度忽略不计)
.
16.规定;两个函数y1,y2的图象关于y轴对称,则称这两个函数互为“Y函数”.
例如:函
数y1=2x+2与y2=﹣2x+2的图象关于y轴对称则这两个函数互为“Y函数”.若函数
y
=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数“图象与x轴只有一个交点,则其“
Y
函数“的解析式为
三、解答题(本大题共有8个小题,共72分)
17.已知方程组的解满足2kx﹣3y<5,求k
的取值范围.
18.先化简,再求值:(﹣)÷,其中a=()﹣1,
b=(﹣2022
)0.
19.为弘扬荆州传统文化,我市将举办中小学生“知荆州、爱荆州、兴荆州”知识竞赛活动.
某校举办选拔赛后,随机抽取了部分学生的成绩,按成绩(百分制)分为A,B,C,
D
四个等级,并绘制了如下不完整的统计图表
.
等级 成绩(x) 人数
A 90<x≤100 m
B 80<x≤90 24
C 70<x≤80 14
D x≤70 10
根据图表信息,回答下列问题:
(1)表中m= ;扇形统计图中,B等级所占百分比是 ,C等级对应的扇形
圆心角为 度;
(2)若全校有1400人参加了此次选拔赛,则估计其中成绩为A等级的共有 人;
(3)若全校成绩为100分的学生有甲、乙、丙、丁4人,学校将从这4人中随机选出
2
人参加市级竞赛,请通过列表或画树状图,求甲、乙两人至少有1人被选中的概率
.
20.如图,在10×10
的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形
称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明
.
(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△
ABC
有一条公共边,且不与△ABC重叠;
(2)在图2中,作出以BC为对角线的所有格点菱形
21. 荆州城徽“金凤腾飞”立于古城东门外,如图,某校学生测量其高AB
(含底座),先
在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E处,测得
顶端A的仰角为45°.已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,
求城徽的高AB. (参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625).
22
.小华同学学习函数知识后,对函数通过列表、描点、连线,
画出了如图所示的图象
.
x … ﹣4 ﹣3 ﹣2 ﹣1 ﹣ ﹣ ﹣ 0 1 2 3 4
…
y … 1 2 4 1 0
﹣4 ﹣2 ﹣ ﹣1 …
请根据图象解答:
(1)【观察发现】①写出函数的两条性质: ; ;②若函数图象上的两点
(x1,y1),(x2,y2)满足x1+x2=0,则y1+y2=0一定成立吗? .(填“一定”
或“不一定”)
(2)【延伸探究】如图2,将过A(﹣1,4),B(4,﹣1)两点的直线向下平移n个单
位长度后,得到直线l与函数y=﹣(x≤﹣1)的图象交于点P,连接PA,
PB.
①求当n=3时,直线l的解析式和△PAB的面积;
②直接用含n的代数式表示△PAB的面积.
23.某企业投入60
万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产
量等于销售量),经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足
函数关系式y=24﹣x,第一年除60万元外其他成本为8元/件.
(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;
(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年
成本)后,其他成本下降2元/件.①求该产品第一年的售价:②若第二年售价不高于第
一年,销售量不超过13万件,则第二年利润最少是多少万元?
24.如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A
重合),
连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交
射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.
(1)求证:DE是半圆O的切线;
(2)当点E落在BD上时,求x的值;
(3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数
关系式:
(4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围
.