煤炭地下气化技术现状及产业发展分析.
- 格式:doc
- 大小:485.00 KB
- 文档页数:14
我国煤炭开采技术发展现状及展望一、发展现状我国是世界上最大的煤炭生产国之一,其煤炭开采技术经历了多年的发展,取得了显著的进步。
然而,在煤炭开采技术不断发展的同时,也存在着一些问题。
下面将从煤炭开采技术的现状、存在的问题以及改进和创新等方面进行阐述。
1.煤炭开采技术现状及使用情况我国煤炭开采技术经过多年的发展,已经形成了较为完善的体系。
目前,我国煤炭开采主要采用地下开采和露天开采两种方式。
地下开采主要是通过矿井内的巷道、采煤工作面、运输系统等环节进行开采;露天开采则主要是通过剥离表土和挖掘煤炭来实现开采。
在煤炭开采过程中,我国已经掌握了一系列先进的开采技术,如综采放顶煤技术、水平钻进技术、巷道支护技术等。
这些技术的应用大大提高了煤炭开采的效率和安全性。
2.煤炭开采技术存在的问题尽管我国煤炭开采技术取得了长足的进步,但仍然存在一些问题。
首先,我国煤炭开采过程中存在一定的安全问题,如矿井通风不畅、瓦斯泄漏等;其次,我国煤炭开采过程中的环境污染问题较为突出,如土地破坏、水资源污染等;最后,我国煤炭开采成本较高,这主要是由于我国煤炭资源分布不均,采煤成本较高所致。
3.煤炭开采技术的改进和创新为了解决上述问题,我国煤炭行业一直在进行技术改进和创新。
例如,我国已经研发出了新型的矿井通风设备和技术,可以有效解决矿井通风不畅等问题;同时,我国也在积极推广清洁煤炭技术,如洗选煤技术、型煤技术等,以降低煤炭污染;此外,我国还在积极探索新的采煤方法和技术,如地下气化技术等,以降低采煤成本。
二、展望随着科技的不断进步和环保意识的日益增强,我国煤炭开采技术将迎来新的发展机遇和挑战。
下面将从煤炭开采技术的发展趋势、创新的推动因素、挑战以及实际应用前景等方面进行展望。
1.煤炭开采技术的发展趋势未来,我国煤炭开采技术的发展将朝着高效、安全和环保方向发展。
首先,随着采煤技术的不断进步,我国煤炭开采效率将得到进一步提升;其次,随着安全意识的不断增强,我国煤炭开采过程中的安全问题将得到有效解决;最后,随着环保意识的日益增强,我国煤炭开采过程中的环境污染问题将得到有效控制。
煤炭的气化特性及其应用前景分析煤炭是一种重要的能源资源,其在我国的能源结构中占据着重要地位。
然而,煤炭的燃烧会产生大量的二氧化碳等有害气体,对环境造成严重污染。
为了解决这一问题,煤炭气化技术应运而生。
本文将从煤炭气化的特性和应用前景两个方面进行分析。
一、煤炭的气化特性煤炭气化是将煤炭在高温、高压和缺氧条件下转化为合成气的过程。
在煤炭气化过程中,煤炭中的碳和氢会与氧气反应,生成一氧化碳和氢气。
这种合成气可以用作燃料,还可以用于合成化工原料和燃料气的制备。
煤炭气化的特性主要有以下几点:1. 温度和压力对气化效果的影响:煤炭气化一般需要在高温(1000℃以上)和高压(10MPa以上)条件下进行。
在这样的条件下,煤炭中的有机物质可以被充分分解,生成合成气。
2. 气化反应的类型:煤炭气化反应主要分为干燥气化和水蒸气气化两种类型。
干燥气化是指在缺氧条件下进行的气化反应,主要生成一氧化碳和氢气。
水蒸气气化是指在水蒸气存在的条件下进行的气化反应,会生成一氧化碳、氢气和二氧化碳。
3. 气化产物的组成:煤炭气化的主要产物是一氧化碳、氢气和二氧化碳。
其中,一氧化碳和氢气是重要的合成气成分,可以用于制备合成燃料和化工原料。
二、煤炭气化的应用前景煤炭气化技术具有广阔的应用前景,主要体现在以下几个方面:1. 合成燃料的制备:通过煤炭气化可以获得一氧化碳和氢气,这两种气体可以用于合成燃料,如合成天然气和合成柴油等。
这种合成燃料可以代替传统的石油燃料,减少对石油资源的依赖。
2. 化工原料的制备:煤炭气化可以产生一氧化碳和氢气,这两种气体是制备化工原料的重要原料。
通过煤炭气化,可以生产合成氨、合成甲醇等化工原料,推动我国化工产业的发展。
3. 二氧化碳的捕集与利用:煤炭气化过程中产生的二氧化碳是一种重要的温室气体。
通过捕集和利用这些二氧化碳,可以减少其对大气的排放,达到减少温室效应的目的。
目前,已经有一些研究机构和企业开始研究二氧化碳的捕集和利用技术,为煤炭气化的可持续发展提供了新的方向。
煤炭地下气化开发利用现状与发展趋势陈井瑞;杨瑞召;韩枫涛;许超;孙梦迪;张昊【期刊名称】《中国煤炭》【年(卷),期】2024(50)2【摘要】煤炭地下气化(UCG)作为一种可以将固体煤转化为气体燃料的技术,将煤炭在地下进行气化反应,可以缓解由于在地上燃烧煤炭而产生的大气污染,助力碳减排社会效益,对于实现低碳发展具有重要作用。
以建立“清洁、低碳、安全、高效”的能源获取方式为出发点,介绍了我国煤炭地下气化的研究历程、发展目标和政策方针,对我国发布的关于煤炭资源利用和煤炭地下气化技术的相关政策进行了分析解读。
分别从经济、环境、社会效益3个维度对煤炭地下气化的开发利用价值进行分析,指出煤炭地下气化技术的开发利用可以为我国煤炭行业带来一定的效益。
同时,在推动煤炭地下气化技术的发展过程中,还要注重环境保护和管理措施,确保技术实施的安全性和可持续性。
基于PESTEL模型从政治、经济、社会、技术、环境、法律5个方面对煤炭地下气化技术的开发进行全面、系统的分析,并阐述了我国煤炭地下气化技术发展的不利因素。
最后根据PESTEL模型分析结果,从技术、政策和环境3个方面对我国煤炭地下气化的发展提出了相应的解决方案和政策性建议。
结果表明,煤炭地下气化技术具有潜在的经济和环境优势,需加强国内高校、企业与能源公司的协同合作,扩大国际合作范围,并制定和执行环境保护措施,以推动煤炭地下气化技术的发展,实现可持续能源开发和环境保护的双赢。
【总页数】11页(P13-23)【作者】陈井瑞;杨瑞召;韩枫涛;许超;孙梦迪;张昊【作者单位】中国矿业大学〈北京〉地球科学与测绘工程学院【正文语种】中文【中图分类】TQ54【相关文献】1.煤炭地下气化发展趋势探讨与建议2.我国煤炭地下气化技术(UCG)的发展现状与展望——来自首届国际煤炭地下气化技术与产业论坛的信息3.煤炭地下气化腔CO_(2)埋存的研究进展及发展趋势4.国外煤炭地下气化研究现状因版权原因,仅展示原文概要,查看原文内容请购买。
现代煤气化技术现状及发展趋势综述发布时间:2021-05-06T13:12:18.810Z 来源:《中国科技信息》2021年6月作者:王海丽[导读] 近年来,随着社会经济的飞速发展,生活和建设的各领域对能源的需求与日俱增。
煤炭一直是我国能源的主体,煤炭生产总量也在逐年快速提升,而其消费量占我国总消费量的很大比重。
现在,环境保护问题受到人们越来越多的关注,如何实现煤炭向清洁、高效的利用转换是未来发展的必然趋势,煤气化是更新利用的一种良好途径。
新疆维吾尔自治区乌鲁木齐市新市兖矿新疆煤化工有限公司王海丽 830000摘要:近年来,随着社会经济的飞速发展,生活和建设的各领域对能源的需求与日俱增。
煤炭一直是我国能源的主体,煤炭生产总量也在逐年快速提升,而其消费量占我国总消费量的很大比重。
现在,环境保护问题受到人们越来越多的关注,如何实现煤炭向清洁、高效的利用转换是未来发展的必然趋势,煤气化是更新利用的一种良好途径。
关键词:煤气化技术;现状;发展趋势引言无论在工业生产还是国民的生活中,对能量源的消耗量都呈现着持续增长的趋势,导致对资源的供需矛盾越来越突出,出现了一系列的问题。
近年来,我国煤气化技术得到了持续快速的发展,因煤炭资源的使用情况及分布状况决定了,我们要不断的开发和使用现代化先进的煤气化技术,发展具有清洁能源、煤炭能源化工一体化的新型洁净煤技术,是当前煤技术发展的主要方向。
1现代煤气化技术的应用现状1.1固定床气化技术目前固定床气化技术主要有两种:一种是由美国开发的固定床间歇式气化炉,一种是由德国鲁奇公司开发的鲁奇气化炉。
固定床间歇式气化炉采用空气和H2O作为氧化剂,煤炭品种为无烟煤和焦炭,能够在常压条件下发生气化反应,早期使用比较广泛。
该技术在气化过程中污染仍然较大,容易产生废水、废渣等,在我国目前环保政策下发展前景渺茫。
鲁奇气化炉是由德国首次使用的,原理是在高温(800~900℃)、高压(2.5~4.0MPa)下,分别将煤炭反应产生含CO和H2外,还含有CH4以及其他气体,气体成分简单,热值高,能够作为城市用气。
浅析新形势下煤炭地下气化技术摘要:煤炭地下气化技术是一种有效的清理煤炭采空区深部煤层的可行手段,它能有效节省能源消耗、提高煤炭的采掘效率和减少采煤的安全隐患。
新形势下,煤炭地下气化技术也面临着更多的挑战,包括技术成熟度问题、安全性问题和节能效率问题等,但仍然具有一定的发展前景。
关键词:煤炭地下气化技术、采空区、采掘效率、安全性、节能效率正文:煤炭地下气化技术是采煤行业的一项关键技术,用于清理煤炭采空区深部煤层,采用机械或化学处理方法将煤层中的煤气化,减少煤炭的消耗。
煤炭地下气化技术的优势在于能够有效节省能源消耗、提高采掘效率和减少安全隐患,从而更好地利用煤层资源,满足煤炭需求。
新形势下,煤炭地下气化技术也面临着更多的挑战,例如,技术成熟度不够,在开展应用前需要进行大量的研究和试验工作;安全性问题需要全面考虑,尤其是对地下气体的控制,以避免可能的危害;节能效率低,在使用煤炭地下气化技术过程中,仍需要充分利用其它清洁能源,以提高能源利用效率。
尽管煤炭地下气化技术在新形势下存在许多挑战,但它仍具有一定的发展前景,具有很强的发展潜力。
因此,未来需要进一步加强对煤炭地下气化技术的研究,提高煤炭地下气化技术的安全性和节能效率,以更好地发挥煤炭地下气化技术的潜力。
对于煤炭地下气化技术的改进,研究者在改善气化设备、提高气化效率、提升安全性等方面取得了一定的进展。
例如,改进气化设备可以增加地下气体的开采量,提高气化效率,杜绝火灾危险,从而有效提高了开采效率。
此外,在提高气化安全性方面,研究人员也采用了各种安全措施,包括多重监控、调试、自动排放等技术,以防止煤层的火灾或爆炸事故的发生,保障煤炭地下气化技术的安全运行。
此外,研究者也在加强煤炭地下气化技术的节能效率方面取得了重要进展,例如开发了低温煤气化技术,可以有效减少煤气化过程中消耗的能源,达到节能的目的。
未来,煤炭地下气化技术将继续进行深入研究,加快技术的进步,实现对煤炭采空区的更好清理,有效节省能源,提高采掘效率,为更高效、更安全的开采工作铺平道路。
煤炭地下气化技术研究与应用1. 引言煤炭地下气化技术是一种将煤炭在地下转化为合成气(syngas)的新型煤化工技术。
它是通过直接在煤层中进行气化反应,将固体煤转化为可燃性气体的过程。
与传统的煤矿开采方式不同,煤炭地下气化技术具有资源利用率高、环境污染低等优势,因此在能源领域引起了广泛的关注和研究。
本文将介绍煤炭地下气化技术的原理、方法以及在能源领域的应用情况。
首先,将详细介绍煤炭地下气化的基本原理和反应机制。
然后,将介绍煤炭地下气化的主要方法和技术,包括煤层气化和煤矿气化两种主要方式。
最后,将探讨煤炭地下气化技术在能源领域的应用前景和挑战。
2. 煤炭地下气化的原理和反应机制煤炭地下气化是指通过在煤层中引入氧气和蒸汽,并通过适当的温度和压力条件下进行反应,将煤转化为含有氢气和一氧化碳等可燃气体的过程。
其基本原理是在不使用传统的开采方式的情况下,直接将煤炭转化为气体,从而实现高效能源的利用。
煤炭地下气化的反应机制包括氧化反应、反应扩散和质量传递等多个步骤。
首先,通过氧化反应引入氧气和蒸汽,使煤炭中的碳和氢发生氧化反应,生成可燃性气体。
然后,由于反应速率的不均匀性,反应区域会逐渐扩散,进而扩大气化区域。
最后,通过质量传递过程将反应产物带出煤层,实现气体的采集和利用。
3. 煤炭地下气化的方法和技术煤炭地下气化通常有两种主要方法:煤层气化和煤矿气化。
3.1 煤层气化煤层气化是指直接在煤层中进行气化反应的一种方法。
其主要过程包括气井钻探、气化反应和气体采集等步骤。
首先,通过气井钻探将氧气和蒸汽引入到煤层中,形成气化反应区。
然后,通过适当的温度和压力条件以及催化剂的作用,使煤炭逐渐转化为可燃气体。
最后,通过气井将反应产物带出煤层,用于能源生产和化工应用。
3.2 煤矿气化煤矿气化是指在煤矿井下直接进行气化反应的一种方法。
其主要过程包括煤矿井下的气化反应、气体采集和煤矸石处理等步骤。
首先,通过在煤矿井下喷射氧气和蒸汽,形成气化反应区。
煤炭地下气化技术研究与应用课件 (一)煤炭地下气化技术研究与应用课件煤炭地下气化技术是一种利用煤炭直接转化为燃料气的新型技术。
通过对高温高压下的煤炭进行间接气化,将煤炭中的化学能转化为燃料气,解决了传统煤炭开采方式中的环境污染和安全问题,是一种非常有前景的煤炭开采方式。
一、煤炭地下气化技术原理(一) 煤炭地下气化过程煤炭地下气化采用一种新的气化方式,通过利用煤炭内在气化反应,将煤炭内部的化学能转化为燃料气。
在地下工作面将氧、水蒸气、二氧化碳等气体送入地下煤炭中,通过煤与气混合反应,产生高温高压气体,将煤炭内部的化学能通过化学反应转化为燃料气,燃料气经过地上工厂加工处理后可作为燃料供应市场。
(二) 煤炭地下气化的优缺点优点:煤炭地下气化可以将深层煤层中的煤炭资源进行全面开采,储量大,上部地质条件无限制。
地下气化过程中产生的废弃物可以封存回填到井下,不仅减少了地面安全隐患,而且能够减少环境污染和二氧化碳排放。
缺点:由于煤炭地下气化是一种间接气化方式,反应过程较为复杂,容易产生煤炭留渣和渗透水等问题。
大型的地下气化项目需要消耗大量的资金和技术投入,从而存在一定的经济风险。
二、煤炭地下气化技术研究和应用现状近年来,在国内外开展了一系列的煤炭地下气化技术研究和应用探索。
国际上的代表性地下气化项目有美国的地下气化试验项目、苏联和德国等的工业化地下气化项目;国内的典型地下气化项目有宝山、新河、云南三条工业生产线。
目前,煤炭地下气化技术已经成为国家能源政策的重要组成部分。
新型煤化工产业已经成为我国经济发展的新动力,政府也对煤炭地下气化技术进行了大力支持。
三、煤炭地下气化技术发展趋势(一) 技术集成化趋势目前我国的煤炭地下气化技术主要是以气化、加工、储存、输送四个方面进行独立开发。
随着技术的不断发展,未来的趋势是更多地将协同处理、内在相容性以及多重功能草案融合在一起,实现技术的集成化。
(二) 高效、低成本等技术趋势煤炭地下气化技术虽然在实际应用中已经具有开采效率高、资源利用充分等显著优势,但是高成本、复杂设备等问题也对其发展带来了困境。
煤炭气化技术及应用前景煤炭作为我国主要的能源来源之一,一直以来都扮演着重要的角色。
然而,煤炭的燃烧不仅产生大量的二氧化碳等温室气体,还会释放出有害物质,对环境造成严重污染。
为了解决这个问题,煤炭气化技术应运而生。
煤炭气化技术是将煤炭转化为可燃气体的过程。
通过气化反应,煤炭中的碳、氢等元素与氧气反应生成一系列气体,主要包括一氧化碳、氢气和甲烷等。
这些气体可以用作燃料,也可以用于化工合成等领域。
与传统的燃烧方式相比,煤炭气化技术具有许多优势。
首先,煤炭气化技术可以减少二氧化碳的排放。
煤炭气化产生的气体中含有较高浓度的一氧化碳,可以通过进一步的处理转化为二氧化碳。
而这些二氧化碳可以被收集和储存,从而减少对大气的排放。
这种碳捕集技术可以有效地减缓全球气候变化的速度。
其次,煤炭气化技术可以实现资源的高效利用。
煤炭气化可以将煤炭中的碳、氢等元素转化为气体,而不是直接燃烧。
这样一来,煤炭的能量利用率大大提高,可以充分发挥煤炭的潜在能量。
同时,煤炭气化还可以产生一系列有机化合物,可以用于合成燃料、化工原料等,进一步提高资源的利用效率。
此外,煤炭气化技术还可以解决煤炭开采带来的环境问题。
传统的煤炭开采方式会导致大量的煤矸石堆积,给生态环境带来严重破坏。
而煤炭气化可以将煤炭中的有机物转化为气体,减少煤矸石的产生。
同时,煤炭气化还可以对煤炭进行深度加工,将煤炭中的灰分、硫等有害物质去除,减少对环境的污染。
然而,煤炭气化技术也面临一些挑战。
首先,煤炭气化过程中产生的气体中可能含有一些有害物质,如硫化物、氮氧化物等。
这些物质需要经过进一步的处理才能达到环境排放标准。
其次,煤炭气化技术的设备和工艺相对复杂,需要大量的投资和技术支持。
此外,煤炭气化过程中需要消耗大量的水和能源,对水资源和能源供应也提出了一定的挑战。
尽管面临一些挑战,煤炭气化技术仍然具有广阔的应用前景。
随着环境保护意识的提高和对可再生能源的需求增加,煤炭气化技术将逐渐成为一种重要的能源转换方式。
煤气化的行业现状煤气化是指将煤炭等固体化石燃料转化为气体燃料的过程,通常用来生产合成气或天然气。
自20世纪以来,随着工业化和城市化的发展,煤气化成为了一种重要的能源转换方式。
然而,随着环保意识的增强和天然气的普及,煤气化行业正面临着诸多挑战和机遇,本文将展开论述。
一、现状国内煤气化行业已经有了较高的技术水平,主要生产方案有两种:一是通过间接煤气化法生产合成气,分布在华北、东北、华东等地,这种方法主要产生一氧化碳和氢气;二是通过直接煤气化法生产天然气,这种方法主要集中在内蒙古等地,其产出的天然气更清洁、更丰富。
近年来,随着国内环保意识的提高和对煤炭利用的深化,煤气化行业也不断受到关注。
据统计,目前我国是全球最大的煤炭消费国,但是近年来由于环保压力和经济发展需求的矛盾,需要优化产业结构,推动煤炭转化。
这也为煤气化产业提供了发展机遇。
然而,煤气化行业的发展依然面临许多问题,包括技术瓶颈、经济效益低下、环保排放等。
一方面,由于煤气化工艺的复杂性,生产成本较高。
此外,虽然煤气化产生的二氧化碳、硫化物等环境污染物的排放已经得到了控制,但是煤气化过程中产生的氮氧化物排放仍然是一个难题。
另一方面,煤气化存储和运输所需的设施成本较高,并且液化天然气也已经得到广泛应用,这进一步降低了煤气化产品的市场需求。
二、未来趋势虽然煤气化行业面临着挑战,但是其未来发展仍然十分可观。
首先,随着环保政策的加强,推动清洁能源的发展已经成为了全球性的趋势。
而作为一种替代性能源,煤气化的地位也逐渐得到提升。
其次,煤气化产品的氧化潜力极高,可以被应用于诸多领域。
煤气化产生的一氧化碳和氢气可以被用于工业生产中的合成气和液化气体。
此外,煤气化产生的清洁天然气可以取代石油天然气,应用于民用等领域。
最后,煤气化技术也在不断创新。
最新的研究成果表明,采用微生物降解的方法可以提高煤气化的产率和效率,这将大大降低煤气化生产的成本和环境污染。
综上所述,煤气化行业仍然处在一个转型发展的时期。
煤炭气化技术的发展与应用前景煤炭作为我国主要的能源资源之一,在我国的能源结构中占据着重要地位。
然而,煤炭的高污染排放和能源利用效率低下等问题也日益凸显。
为了解决这些问题,煤炭气化技术应运而生,并且在近年来取得了长足的发展。
本文将探讨煤炭气化技术的发展与应用前景。
首先,煤炭气化技术是一种将固体煤转化为气体燃料的技术。
通过高温和高压的条件下,煤炭中的碳和氢等元素与水蒸气或空气反应,生成合成气。
合成气中主要含有一氧化碳、氢气和二氧化碳等成分,可以用于发电、制造化学品和燃料等方面。
相比于传统的燃煤发电方式,煤炭气化技术能够大幅减少污染物的排放,提高能源利用效率,对于改善环境污染和节约能源具有重要意义。
其次,煤炭气化技术的发展已经取得了显著的成果。
我国在煤炭气化技术方面投入了大量的研发和应用工作,并取得了一系列重要的突破。
例如,我国成功开发了多种煤炭气化技术,包括固定床气化、流化床气化和煤浆气化等。
这些技术在实际应用中已经取得了良好的效果,为我国的能源结构调整和环境保护提供了有力支撑。
此外,煤炭气化技术的应用前景也非常广阔。
首先,煤炭气化技术可以用于发电。
合成气可以直接燃烧,也可以通过气轮机和蒸汽轮机等设备转化为电能。
这种发电方式不仅能够提高能源利用效率,还能够减少大气污染物的排放。
其次,煤炭气化技术可以用于制造化学品。
合成气可以用于合成氨、甲醇、乙烯等化学品,为化工行业提供了新的原料来源。
此外,煤炭气化技术还可以用于制造燃料。
合成气可以通过化学反应转化为液体燃料,如合成柴油和合成天然气等,为交通运输和工业生产提供了新的能源选择。
然而,煤炭气化技术的发展也面临一些挑战和问题。
首先,煤炭气化技术的建设成本较高。
由于煤炭气化技术需要高温和高压的条件,设备的制造和维护成本较高,需要大量的投资。
其次,煤炭气化技术的环境影响也需要引起关注。
尽管煤炭气化技术可以减少大气污染物的排放,但在气化过程中仍会产生一定量的二氧化碳和其他有害气体。
煤炭气化技术的发展与应用前景煤炭气化技术作为一种重要的能源转化技术,近年来得到了广泛的关注和研究。
它通过将煤炭转化为合成气,进一步提取出煤气、煤油和煤焦油等有价值的产品,既能有效利用煤炭资源,又能减少环境污染。
本文将探讨煤炭气化技术的发展历程,分析其应用前景,并展望未来的发展方向。
煤炭气化技术的发展可以追溯到19世纪末的工业革命时期。
当时,人们开始意识到煤炭资源的重要性,但传统的燃煤方式存在着煤烟污染、低效能等问题。
煤炭气化技术的出现为解决这些问题提供了新的途径。
最早的煤炭气化技术是通过加热煤炭,使其产生可燃气体,然后将其用于照明和供热等方面。
随着科技的进步,煤炭气化技术逐渐得到改进和完善,新型的气化炉和气化工艺相继问世。
在20世纪,煤炭气化技术迎来了快速发展的时期。
特别是在第二次世界大战期间,由于石油资源的短缺,煤炭气化技术被广泛应用于合成燃料的生产。
在那个时候,煤炭气化技术不仅仅是一种能源转化技术,更是国家安全和经济发展的重要支撑。
然而,随着石油资源的重新供应,煤炭气化技术逐渐被淡忘,研究和应用的热情也有所降低。
然而,近年来,随着环境污染和能源安全问题的日益突出,煤炭气化技术再次成为研究和应用的热点。
煤炭气化技术可以将煤炭中的有机物质转化为合成气,这种气体可以用于发电、制造化学品和合成燃料等方面。
相比于传统的燃煤方式,煤炭气化技术可以大幅度减少二氧化碳和其他有害气体的排放,对环境保护具有重要意义。
而且,煤炭气化技术还能够提取出其他有价值的产品,如煤气、煤油和煤焦油等,进一步提高煤炭资源的利用效率。
尽管煤炭气化技术在环保和能源利用方面具有巨大的潜力,但仍面临着一些挑战和困难。
首先,煤炭气化技术的成本较高,需要大量的投资和专业技术支持。
其次,煤炭气化过程中产生的废水和废气处理也是一个难题,需要寻找有效的处理方法。
此外,煤炭气化技术的应用也受到煤炭资源的地域限制,只能在煤炭资源丰富的地区推广应用。
煤化工产业发展现状及发展方向引言概述:煤化工产业是指利用煤炭资源进行化学转化和加工的产业,是煤炭资源高效利用和绿色发展的重要领域。
本文将从五个方面阐述煤化工产业的现状以及未来的发展方向。
正文内容:1. 煤化工产业现状1.1 煤化工产业的发展历程- 20世纪初,煤化工产业起步,主要以煤气创造和煤焦化为主。
- 20世纪50年代,煤化工产业进入高峰期,煤炭直接液化和煤炭间接液化技术取得突破。
- 20世纪80年代以来,煤化工产业逐渐向煤基化学品和煤基新材料方向发展。
1.2 煤化工产业的优势和挑战- 煤炭资源丰富,煤化工产业可以实现煤炭资源的高效利用。
- 煤化工产业可以降低对石油等化石能源的依赖,减少对进口能源的需求。
- 煤化工产业在环境保护和碳排放减少方面面临挑战,需要加大技术创新和环保投入。
1.3 煤化工产业的发展现状- 煤化工产业在我国发展迅速,已经形成为了一定的规模和产值。
- 煤基化学品、煤基新材料、煤基液体燃料等领域取得了一系列技术突破和产业化发展。
- 煤化工产业在能源化工、化学工程与技术等领域具有广阔的应用前景。
2. 煤化工产业发展方向2.1 优化煤化工技术- 加强煤炭气化和煤炭液化等核心技术研发,提高煤化工产业的技术水平和竞争力。
- 推动煤炭气化技术的发展,提高气化效率和产品质量。
- 加强煤炭液化技术的研究,提高液化产物的利用率和降低成本。
2.2 发展煤基化学品和煤基新材料- 加大对煤基化学品和煤基新材料的研发力度,提高产品质量和降低生产成本。
- 推动煤基化学品的应用,扩大市场份额。
- 加强煤基新材料的研究和开辟,提高产品性能和应用领域。
2.3 推动煤化工产业绿色发展- 加大环保投入,推动煤化工产业向清洁生产和低碳发展方向转变。
- 提高煤化工产业的环境管理水平,减少污染物排放和资源浪费。
- 加强煤化工产业的循环经济建设,实现资源的高效利用和能源的清洁转化。
总结:煤化工产业作为煤炭资源高效利用和绿色发展的重要领域,具有巨大的发展潜力。
煤制天然气产业发展及技术分析随着能源需求的不断增长和对环境友好能源的需求,煤制天然气产业逐渐成为了热点。
煤制天然气是指利用煤炭资源生产天然气的过程,具有资源丰富、成本低、稳定供应等优势。
本文将对煤制天然气产业的发展及相关技术进行分析。
一、煤制天然气产业发展现状1.市场需求持续增长煤制天然气作为清洁能源,受到政府政策的大力支持,并且在工业、民用、交通等领域都有广泛的应用。
随着能源需求的增长和环保意识的提升,煤制天然气产业市场需求持续增长。
2.技术创新不断推进煤制天然气技术一直在不断创新,煤制气化技术、合成气制甲醇技术等都在不断提升。
新型催化剂、反应器等技术的应用,使得产气成本大大降低,生产效率不断提升。
3.环保政策推动随着环保政策的不断推进和对传统燃煤行业的限制,煤制天然气产业受到了更多的关注和支持。
煤制天然气的清洁环保特性得到了广泛认可,符合当前社会的发展趋势。
二、煤制天然气技术分析1.煤气化技术煤气化是指把煤转化为一种含有一氧化碳和氢气的气体混合物的化学反应过程。
通过煤气化技术可以将原煤中的化学能转化为合成气,再通过合成气制甲醇、合成氨等进一步加工。
目前,煤气化技术已经取得了重大突破,可以实现高效率、低成本、低排放的煤气化生产。
2.合成气制甲醇技术合成气可以用来制备多种化工产品,其中最常见的是甲醇。
合成气制甲醇技术是将合成气转化为甲醇的过程,通过催化剂的作用,将一氧化碳和氢气合成甲醇。
目前,合成气制甲醇技术已经相当成熟,生产成本低、产率高,可以有效满足市场需求。
3.煤制天然气储存技术煤制天然气生产后需要进行储存,以保证供应的稳定。
目前常见的煤制天然气储存技术主要包括地下储气库、液化天然气、管道输送等多种形式。
这些储存技术均有其适用的场景和特点,可以根据实际需求进行选择。
4.环保技术在煤制天然气生产过程中,气体净化、废气处理等环保技术也是至关重要的。
通过脱硫、除尘等技术手段,可以将煤制天然气生产过程中产生的废气、废水等进行有效处理,达到环保排放标准。
煤成气化技术发展现状及未来展望随着工业化进程的不断加速,能源的需求越来越大。
传统的化石能源短缺,新型能源就成为了人们关注的焦点。
其中,煤成气化技术成为了备受瞩目的领域。
在这个领域里,煤可以被转化成为可再生的气体资源,从而为解决能源短缺问题提供了一种可行的途径。
本文将探讨煤成气化技术的发展现状以及未来展望。
一、煤成气化技术的概念和发展历程煤成气化技术是指将煤转化为气体燃料的技术。
对于煤的转化技术,可以采用多种不同的方法,包括煤气化、煤液化和煤热解等。
其中,煤气化技术是最为主流的一种,并且也是煤成气化技术的代表。
在煤气化技术中,煤先被加热到高温下,与水蒸气或者其他的气体一起反应,产生一种混合气体。
这种混合气体可以通过净化和分离等步骤,得到市场上所需要的合成气,包括甲烷、乙烷、工业原料气和燃料气等。
煤成气化技术的发展历程可以追溯到上世纪30年代。
当时,在德国,一家煤矿厂开始使用煤气化技术,将煤转化为煤气,并将煤气作为能源用于生产和生活中。
接着,在上世纪40年代,美国的一家煤矿厂也开始使用煤气化技术。
到了上世纪60年代,日本和中国也相继开始煤气化技术的研究和应用。
在上世纪70年代,煤气化技术得到了广泛的使用,此后,煤成气化技术一直得到了各国的重视,并取得了重大进展。
二、煤成气化技术的发展现状随着科学技术的发展和比较煤资源的不断增加,煤成气化技术得到了迅猛的发展。
在煤成气化技术的应用中,三个国家比较典型,分别是中国、美国和俄罗斯。
2.1 中国中国地大物博,煤炭资源得天独厚,因此煤气化技术在中国有着广泛的应用。
如今,中国成为煤化工全球最大的生产国。
其在煤成气化技术的研究方面也取得了很大的成果。
例如,借助规模化的煤气化技术,中国已经成功建成了世界上最大的气化工厂。
在国家的支持下,相关企业已经积极投入到煤成气化技术的发展中,不断创新和提升技术,意在满足国家能源需求的大局。
2.2 美国美国在此领域也有着广泛应用,其煤气化技术的研究主要集中在煤成气化技术上,实现了煤的转化。
煤化工产业发展现状及发展方向一、煤化工产业发展现状煤化工产业作为我国能源化工产业的重要组成部份,在国家经济发展中具有重要地位。
目前,煤化工产业在我国的发展取得了显著成绩,但也存在一些问题和挑战。
1. 产业规模和产能煤化工产业在我国的规模不断扩大,产能逐年增加。
目前,我国煤化工产业已经形成为了以煤炭气化、煤制油、煤制气、煤制甲醇等为主要产业链条的发展格局。
根据统计数据,我国煤化工产能已经达到XX万吨/年。
2. 技术水平和创新能力我国在煤化工领域的技术水平和创新能力也得到了显著提升。
在煤炭气化技术方面,我国已经掌握了多种气化技术,包括固定床气化、流化床气化、煤水浆气化等。
同时,我国在煤制油、煤制气、煤制甲醇等领域的技术也取得了重要突破。
3. 环境保护和可持续发展煤化工产业在环境保护和可持续发展方面面临一些挑战。
煤炭气化和煤制油等过程会产生大量的二氧化碳和其他污染物,对环境造成一定压力。
同时,煤化工产业对煤炭资源的依赖程度较高,对资源的可持续利用也提出了一定要求。
二、煤化工产业发展方向为了进一步推动煤化工产业的发展,我国可以从以下几个方面进行努力:1. 提高技术水平和创新能力通过加大科研投入,加强技术研发和创新,提高煤化工产业的核心竞争力。
可以加强煤炭气化技术的研究,提高气化效率和产物质量。
同时,加强煤制油、煤制气、煤制甲醇等领域的技术研发,提高产品质量和降低生产成本。
2. 推动产业结构升级和转型发展加大对煤化工产业的支持力度,鼓励企业进行技术改造和装备升级,提高产业的整体水平。
同时,加强与其他相关产业的协同发展,推动煤化工产业向高端、智能化方向发展。
3. 加强环境保护和资源节约在煤化工产业发展的过程中,要注重环境保护和资源的可持续利用。
加大对环境管理设施建设和运行的投入,减少污染物排放,提高环境保护水平。
同时,加强对煤炭资源的综合利用,提高资源利用效率。
4. 加强国际合作和市场开辟积极参预国际合作,吸收国外先进技术和管理经验,推动煤化工产业的国际化发展。
我国煤化工技术的现状以及发展前景分析一、我国煤化工技术的现状我国煤化工技术的发展起步较早,经过多年的积累和发展,已经形成了较为完善的煤化工技术体系。
目前,我国煤化工技术主要包括煤炭气化、合成气制乙烯、甲醇制造、煤制烯烃和煤制油等多个领域。
在煤炭气化领域,我国已经掌握了包括固定床气化、流化床气化、煤粉气化等多种气化技术,并且已经建设了多个大型的煤化工生产基地。
在合成气制乙烯和甲醇制造领域,我国具有较强的生产能力,已经形成了具有一定规模的生产体系。
煤制烯烃和煤制油等新型煤化工技术也在逐步发展壮大。
需要指出的是,我国煤化工技术在一些关键核心技术领域仍然存在一定的短板和不足。
在煤化工技术中,深度处理高硫煤气化产物的技术还不够成熟,高硫煤气化产品的脱硫、脱氮、脱灰技术仍然是一个亟待解决的技术难题;在煤制油技术中,催化裂解过程中的催化剂稳定性和寿命问题、产品升级改质技术等方面也存在一些技术瓶颈。
我国煤化工技术的产业链条尚未完全健全,整体产业的发展还存在较大的空间。
尽管我国煤化工技术在一些关键技术领域存在一定的短板和不足,但是随着我国煤化工技术的不断发展和完善,煤化工产业的发展前景依然广阔。
在能源需求不断增长的情况下,我国煤炭资源的开发利用仍然具有很大的市场需求和潜力。
随着我国石油资源的逐渐枯竭和能源结构的优化调整,煤炭资源成为了我国主要的能源替代品。
煤化工技术的发展可以大大提高煤炭资源的利用率,增加煤炭资源的附加值,推动煤炭资源的清洁高效利用。
目前,我国煤炭资源的利用率还比较低,主要以燃煤为主,未来煤化工产品的市场需求量将会持续增长。
煤化工技术的技术进步也为煤化工产业的发展提供了有力支撑。
随着科技的不断进步和煤化工技术的不断完善,煤化工产品的生产成本不断降低,产品品质不断提高,产品类别不断丰富。
尤其是在生物质气化、生物质液化等新型煤化工技术的研究和开发方面,增强了我国煤化工产品的竞争力。
政府对煤化工技术的支持力度也逐渐加大,为煤化工产业的健康发展提供了有力的政策支持。
能源与动力工程学院科研训练报告煤地下气化开采现状及发展专业班级环境82姓名季浩卿学号 08039039指导教师李荫堂摘要:本文主要将介绍煤炭地下气化开采的基本原理,国内外的发展历史、开采现状,以及未来的发展前景等方面。
关键词:煤炭地下气化,“长通道、大断面、两阶段”,发展现状,清洁利用前言煤炭地下气化,又被称为“地下煤改气”,是有别于传统的采煤工艺的一种理想的采煤方法。
它是将处于地下的煤炭进行有控制的燃烧,通过热作用及化学作用而产生可燃气体输出地面的一种能源采集方式。
煤炭地下气化,可以最大限度地利用煤炭资源,输出的煤气产品属于洁净能源,可以广泛应用于发电、煤化工和燃气供应。
煤炭地下气化技术在安全、环保和经济方面都具有明显技术优势,积极探索研究和推广煤炭地下气化技术,从提高煤炭资源利用率角度、社会经济发展角度和国家能源安全角度考虑,都是非常必要的。
1 煤炭地下气化开采的发展历史1.1世界煤炭地下气化开采发展史1888年俄国化学家门捷列夫设想:“随着时间的推移,这样的时代可能要实现,即煤不从地下开采出来,而是在地下直接转化为可燃气体,……。
”前苏联是世界上进行地下气化现场试验最早的国家,也是地下气化工业应用成功的唯一国家。
1932年在顿巴斯建立了世界上第一座有井式气化站;至1967年,相继建立了,5座地下气化站,到60年代末已建站12座。
统计到1994年,共烧掉1600万t煤,生产500亿m3低热值煤气,其中,南阿宾斯克站连续工作40年,安格林站连续工作38年,所生产的煤气主要用于发电或工业锅炉燃烧。
1949~1964年,苏联从事地下气化的研究单位有全苏地下气化研究所和地下气化设计院等18个单位,从事开发和生产的工程技术人员达3000余人。
目前俄罗斯正在筹建8~10座日产100万m3以上的气化站。
美国地下气化试验始于1946年,首先在亚拉马州的浅部煤层进行试验,利用有井式施工,采用空气、水蒸气、富氧空气等不同气化剂进行试验,煤气热值为0.9~5.4MJ/m3,后因煤气漏失严重告终。
煤化工产业发展现状及发展方向一、煤化工产业发展现状煤化工产业是指利用煤炭资源进行化学转化和加工的产业,主要包括煤炭气化、煤制油、煤制烯烃、煤制化肥等领域。
煤化工产业在我国具有重要的地位和作用,对于实现能源结构优化、提高能源利用效率、促进经济可持续发展具有重要意义。
1. 煤炭气化:煤炭气化是将煤炭在高温和压力下转化为合成气的过程。
合成气主要由一氧化碳和氢气组成,可用于生产合成燃料、化学原料和电力等。
目前,我国煤炭气化技术已经相对成熟,煤炭气化产业规模不断扩大,但仍存在一些问题,如高能耗、高污染等。
2. 煤制油:煤制油是将煤炭转化为液体燃料的过程。
通过煤炭气化得到的合成气,经过一系列的催化反应和分离工艺,可以得到液体燃料,如合成柴油、合成汽油等。
煤制油技术在我国已经取得了重大突破,建成为了一批大型煤制油示范工程,但仍需要进一步提高技术水平和降低成本。
3. 煤制烯烃:煤制烯烃是将煤炭转化为烯烃类化学品的过程。
烯烃类化学品广泛应用于塑料、橡胶、合成纤维等领域,对于提高煤化工产业附加值具有重要意义。
目前,我国煤制烯烃技术还处于探索阶段,需要进一步加大科研力度和技术攻关。
4. 煤制化肥:煤制化肥是将煤炭转化为化肥的过程。
通过煤炭气化得到的合成气,经过一系列的催化反应和分离工艺,可以得到氨、尿素等化肥产品。
煤制化肥技术在我国已经取得了重大突破,但仍需要进一步提高生产效率和降低能耗。
二、煤化工产业发展方向1. 技术创新:煤化工产业应加大技术创新力度,提高核心技术的自主研发能力,降低技术依赖度。
重点发展高效节能的煤炭气化、煤制油、煤制烯烃等关键技术,推动煤化工产业向高效、环保、可持续的方向发展。
2. 产业升级:煤化工产业应加快产业升级步伐,推动传统煤化工产业向高附加值、高品质的方向发展。
通过提高产品质量、增加附加值,提升煤化工产业的竞争力和盈利能力。
3. 能源结构优化:煤化工产业应与能源结构优化相结合,推动煤炭资源的高效利用。
煤炭地下气化技术现状及产业发展分析 (2014-11-11 09:29:45) 煤炭地下气化技术现状及产业发展分析
煤炭地下气化(undergroundcoalgasification,UCG)是将地下赋存的煤在煤层内燃烧、气化成煤气,输送到地面,作为能源或化工原料,特别适用于常规方法不可采或开采不经济的煤层,以及煤矿的二次或多次复采,产品气可以经过处理通过管道输送,也可以直接使用煤气发电或化工合成。煤炭地下气化(UCG)是一门融多学科为一体的综合性能源生产技术,牵涉到地质学、水文学、钻井技术、点火燃烧控制技术、产品气加工利用技术、生态环境保护技术等一系列技术,其复杂程度远超地面气化,这也使其风险程度增加。目前,煤炭地下气化(UCG)技术在少数国家已经实现了少量的商业化应用,俄、美、英、德国、澳大利亚、日本和中国等国家已不同程度地掌握了该领域的一些关键技术。 1 煤炭地下气化(UCG)基本原理及相关技术 1.1 基本原理 煤炭地下气化的过程主要是在地下气化炉的气化通道中实现的,整个气化过程可以分为氧化、还原、干馏干燥3个反应区(图1)。从化学反应角度来讲,3个区域没有严格的界限,氧化区、还原区也有煤的热解反应,3个区域的划分只是说在气化通道中氧化、还原、热解反应的相对强弱程度。经过这3个反应区以后,生成了含可燃组分主要是H2、CO、CH4的煤气,气化反应区逐渐向出气口移动,因而保持了气化反应过程的不断进行,气化通道的煤壁(气化工作面)不断燃烧,向前推进,剩余的灰分和残渣遗留在采空区。
1.2 关键技术类型 1)有井式气化技术。该法又称巷道式地下气化炉技术(图2)。在开采或废弃的煤矿井中建地下气化炉,以人工掘进的方式在煤层中建立气化巷道,并在进气孔底部巷道筑一道密闭墙(促使定向燃烧煤层),然后便可将密闭墙前面的煤炭点燃气化,从一个井筒鼓风,通过平巷,由另一个井筒排出煤气。
此法只应用于关闭矿井中遗弃资源的回收,须进行井下施工,作业环境和安全性差,这对其应用带来不利。除新奥集团内蒙古地下气化试验外,我国已完成的UCG项目以及正在进行前期工作的绝大部分UCG项目都是有井式的。 2)无井式气化技术。该法采用常规的油气钻井技术钻孔(图3),很好地发挥了石油企业的钻井技术优势,免去了巷道式建地下气化炉的条件限制。相比于“有井式”气化炉,“无井式”气化建炉具有工艺简单、建设周期短的特点,适用于整装煤田的大规模地下气化,也可用于深部及水下煤层气化。 无井式煤炭地下气化法从地面向煤层打直径150~400mm、间距10~40m的一系列钻孔,两钻孔之间贯通形成气化通道,点火气化。双孔式气化技术中两孔间的贯通方法常用的有低压火力渗透贯通法、高压火力渗透贯通法、电力贯通法、水力压裂贯通法以及定向钻孔贯通法5种。 1.3 产气率及产品气组成 1)产气率。产气率与煤质、赋存条件以及采用的气化剂种类等有关(表1)。一般来说,气化烟煤时,如果采用空气作为气化剂,煤气热值1200kcal/Nm3,产气效率大约为3830Nm3/t,若采用富氧水蒸气作为气化剂,煤气热值2200kcal/Nm3,产气效率大约为2100Nm3/t。 2)产品气的组成。煤炭地下气化产品气的组分与煤阶、气化剂类型以及工程技术等因素相关,与地面煤炭气化产品气组成基本一致,不同煤阶、气化剂所对应的产品气组分如表2所示。
2 国内外煤炭地下气化(UCG)技术发展现状 2.1 国外主要技术现状 1)前苏联UCG技术。前苏联是世界上进行煤炭地下气化试验研究最早的国家,也是地下气化工业应用最成功的国家之一,我国目前比较先进的煤炭地下气化技术主要是在前苏联技术基础上发展起来的。 前苏联最初试验于1933年,到20世纪60年代初期,在莫斯科近郊、顿巴斯和库兹巴斯已有5个商业规模的地下气化试验区,利用气化技术已回收了约1500万t煤,生产煤气超过500亿m3,所生产的煤气用于发电或工业燃料。1942年苏联在莫斯科近郊煤田又试验成功无井式地下气化炉,同时还发展了各种贯通技术,由过去的渗透技术转向定向钻孔贯通技术,以求得长距离贯通。在气化技术上,他们对气化剂进行了试验,由过去的鼓入空气得到低热值煤气转向鼓入氧气得到中热值煤气,大大提高了煤炭地下气化技术的水平,从而在苏联和世界各国得到推广。 该地下气化技术的优点表现在:a逆向火力燃烧 +定向钻进,形成渗滤气化通道;b采用 U型结构实现煤层预热,减小热损,提高气化效率;c实现多点移动注气、多孔稳定出气,保证煤气产量;d实现中等规模生产。 缺点表现在:a气化钻孔比较多,气化炉成本高;b对地质水文要求比较高;c缺少富氧和纯氧运行经验。 2)美 国 CRIP (controlledretractioninjectionpoint,受控注入点后退气化)工艺。美国劳伦斯·利弗莫尔国家实验室 1976年开始研究地下煤气化,在模拟研究和实验室研究的基础上,研发出受控注入点后退气化工艺 (CRIP)。这种新工艺把定向钻进和反向燃烧结合在一起,定向钻孔先打垂直注入孔和产气孔,到达煤层后,从注入孔沿煤层底板继续打水平孔,直到与产气孔底部相交,然后在钻孔中下套管。开始气化时,用移动点火器在靠近产气孔的第一个注入点烧掉一段套管,并点燃煤体,燃烧空穴不断扩展,一直烧到煤层顶板,待顶板开始塌落时,注入点后退相当于一个空穴宽度的距离,再用点火器烧掉一段套管,形成新的燃烧带,如此逐段向垂直注入孔推进。 该地下气化技术的优点表现在:a注气点移动实现气化工作面控制;b热解带减小,气化效率提高,减少了通道堵塞及钻孔堵塞;c从事了富氧试验。 缺点表现在:a点火操作比较复杂;b气 化 规 模 小,生产不连续不适用于规模生产。 3)加拿大 εUCGTM技术。成立于 1994年的加拿大 ErgoExergyTechnologies公司的地下煤气化技术是目前最受关注的技术之一,近年其专有的εUCGTM技术已被多个国家的多个公司选用来建设试验装置 (表 3)。 该方法基于前苏联地下煤气化开采技术,利用煤层中已存在的天然通道并对其进行改良,建立连接注入井和生产井之间的通道来解决无法建立有效贯通通道问题。 2.2 国内技术现状 我国煤炭地下气化试验研究发展主要在 20世纪 80年代以后。目前也由实验室试验研究、现场试验研究逐步转向工业示范生产应用,开发了具有自主知识产权的煤炭地下气化技术。目前工业示范情况比较好的是新矿集团 (有井式技术)和新奥集团 (无井式技术),它们都与中国矿业大学进行合作。 1)新矿集团 “有井式”UCG技术。新矿集团地下煤气化 1999年开始试验研究工作,2000年 3月点火成功,同年 7月正式向 1万余户居民供生活用燃气。于 2001—2002年相继建成了协庄气化站、鄂庄气化站 (一期),并一次点火成功。目前日产气量达到 10万 m3,煤气热值达到 11.26MJ/m3。2002年 地下煤层气化申报了国家“863”计划 “煤炭地下气化稳定控制技术的研究”课题,获得科技部批准并被列入中国 “863”计划和试验基地。 2)新奥集团 “无井式”UCG技术。2007年 1月,新奥集团投资 2亿多元组建乌兰察布新奥气化采煤技术有限公司,与中国矿业大学和乌兹别克斯坦 Angren气化站共同开展 “无井式煤炭地下气化试验项目”研究。同年 10月,我国首套日产煤气15万 m3/d的无井式煤炭地下气化试验系统和生产系统一次点火成功。该试验现场已具备供热、发电、生产化工原料的能力,取得了一批创新性研究成果,申报了 9项专利。这项研究创新地构建了“L型后退面扩展”的全新结构地下气化炉,创造性地开发了气化通道贯通技术、气化通道疏通技术和无井式气化,造气成本仅为地面气化造气的 40%左右。 截止到 2011年年底,新奥集团乌兰察布气化站已连续运行四年,第三个试验炉稳定运行 900天,热值和组分稳定,发电机连续运行 780天,空气连续气化生产气量 30万 m3/d,富氧连续气化生产气量15万 m3/d,达到了工业化生产要求。 2.3 世界主要 UCG项目 1)澳大利亚 Chinchilla项目。澳大利亚煤炭资源丰富,包括 Linc能源公司、CarbonEnergy有限公司在内的多家企业在开发 UCG项目,其中 Linc能源公司 UCG项目最为典型,其位于澳大利亚昆士兰的 Chinchilla项目是迄今西方国家中运行成功的最大试验项目,技术采用加拿大的 εUCGTM技术。该项目于 1999年 12月 26日开始产气,2003年 4月完成试验和有控制的停运。期间共钻了 9口工艺井,煤层厚 10m,深约 140m,共气化煤35000t,最大产气量约 80000m3/h,相当于 70MW电力。最近 Chinchilla的 4号 UCG发生器已投运,同时计划建设 5号发生器。Linc能源公司以空气为气化剂获得的合成气低热值约为5MJ/Nm3、压力 110kPa、温度 300℃,典型组成 (剔除氮气后计算) 为 H2 32%,CO 17%,CH4 18%。H2/CO摩尔比为 1:81,很适合用于通过 GTL工艺合成油。 2007年 Linc公 司收购了乌兹别克斯坦的Angren地下煤气化厂 (目前唯一运转的工业化装置),并获其相关知识产权。Linc的 Chinchilla UCG装置所产气体主要用作发电机组的燃料,其规模将来可能扩大到 400MW。正在与美国合成石油公司合作开展煤制油,计划建设一个大的煤制油装置。 2)安格连斯克 (Angren)UCG项目。该项目位于乌兹别克斯坦,于 1961年投产,至今一直在生产。气化煤阶为褐煤,煤层厚度 4~24m,煤灰分含量 25% ~28%,含水 31% ~35%,热值3650kcal/kg,煤层倾角 5°~15°,深 110~250m,井间距 25m。系统压力 156kPa(平均)。设计规模 14亿 m3/a,最大年产气量达 14.1亿 m3(1965年)。产品气热值为 800~850kcal/m3。目前已被澳大利亚 Linc能源公司收购,日产合成气 100万 m3。 3)南非 MajubaUCG项目。该项目由 Eskom Holdings公司实施,采用 ErgoExergy