21.2.4 一元二次方程的根与系数的关系
- 格式:doc
- 大小:5.02 MB
- 文档页数:2
21.2.4(1)根与系数的关系(韦达定理)一.【知识要点】1.韦达定理:设21,x x 是方程ax 2 + bx + c = 0 的两个根,则 a c x x a b x x =-=+2121, 二.【经典例题】1.(2023绵阳期末第20题)(12分)已知关于x 的一元二次方程有两个不相等的实数根.(1)求实数k 的取值范围;(2)若原方程的两个实数根为x 1,x 2,是否存在实数k ,使得x 1+x 2=﹣2成立,若存在,求k 的值;若不存在,请说明理由.2.已知关于x 的一元二次方程2(12)10k x ---=有实数根,则k 的取值范围为_____________。
3.已知21,x x 是关于x 的方程062=+-k x x的两个实数根,且221212.115x x x x --=,则k 的值为________4.已知α,β是关于x 的方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m 的值是( )A .3或-1B .3C .1D .-3或15.已知关于x 的一元二次方程22(31)220x k x k k -+++= (1)求证:无论k 取何值,方程总有实数根(2)若等腰△ABC 的一边长6=a,另两边c b ,恰好是这个方程的两根,求此三角形的三边长。
6.如果a、b是方程2x2﹣3x﹣1=0的两个实数根,则2a2+3b﹣1的值为.7.(2021年绵阳期末第21题)已知关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个实数根x1,x2,且a+3b=2.(1)求b的最大值;(2)若x12=x22,求a的值.三.【题库】【A】1.已知x1,x2是一元二次方程x2-2x=0的两根,则x1+x2的值是( )A.0B.2C.-2D.42.方程x2-5x+3=0的两根之积为()A.5 B. -5 C . 3 D. -3【B】1.已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为( )A.-10B.4C.-4D.102.已知一元二次方程x2-3x-1=0的两个根分别是x1,x2则x12x2+x1x22的值为( )A.-3B.3C.-6D. 63.方程x2-(m+6)x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是( )A.-2或3B.3C.-2D.-3或24.已知关于x的方程x2+mx-6=0的一个根为2,则m=____,另一个根是_____.5.已知a,b是方程 x2+2x=2的两个实数根,则 + = .6.方程x2+3x−6=0与x2−6x+3=0所有根的乘积等于()A. −18B. 18C. −3D. 37.设a,b是方程x2+x-2013=0的两个不相等的实数根,则a2+2a+b的值为__________. 8.(2022绵阳期末第14题)已知关于x的一元二次方程x2+3x﹣a=0的两个根分别为x1,x2,若x1•x2=2,则实数a=.9.(2020绵阳期末第15题)已知一元二次方程x2﹣3x﹣5=0的两根分别为x1、x2,那么x12+x22的值是.【C 】1.若关于x 的方程x 2+2mx+m 2+3m-2=0有两个实数根x 1,x 2,则x 1(x 2+x 1)+x 22的最小值为__________.2.(满分8分)已知关于x 的方程x 2+2(m-2)x+m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.3.(满分10分)已知关于x 的一元二次方程x 2-(2k+1)x+k 2+2k=0有两个实数根x 1,x 2.(1)求实数k 的取值范围;(2)是否存在实数k 使得x 1·x 2-x 12−x 22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.4.方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1-1)(x 2-1)=____.5.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于【D 】1.设x 1,x 2是方程x 2-x-2013=0的两实数根,则x 13+2014x 2-2013=_______________.2.已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( )A .abB .C .a b +D .a b -。
(完整版)一元二次方程根与系数的关系的关系(含答案)21。
2。
4 一元二次方程的根与系数的关系A基础知识详解————————--——-—☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k—1)x+k2-1=0有(完整版)一元二次方程根与系数的关系的关系(含答案) 两个实数根x 1、x 2.(1)求实数k 的取值范围;(2)若x 1、x 2满足x 12+x 22=16+x 1•x 2,求实数k 的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2—2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2—1)=16+(k 2-1),即k 2—4k —12=0,解得k=—2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式。
○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m —1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D ) A .—1或2 B .1或-2 C .—2 D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值。
解:(1)△=(m+2)2—4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m .∵2111x x +=2121x x x x +=—mm 2+=—2, 解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2—2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .—2 C .3 D .63.已知m ,n 是一元二次方程x 2—4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24。
第二十一章一元二次方程21.2 解一元二次方程*21.2.4 一元二次方程的根与系数的关系学习目标:1.探索一元二次方程的根与系数的关系.2.不解方程利用一元二次方程的根与系数的关系解决问题. 重点:探索一元二次方程的根与系数的关系.难点:不解方程利用一元二次方程的根与系数的关系解决问题.一、知识链接1.一元二次方程的求根公式是什么?2.如何用判别式b2-4ac来判断一元二次方程根的情况?算一算解下列方程并完成填空:(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.想一想方程的两根x1,x2与系数a,b,c有什么关系?二、要点探究探究点1:探索一元二次方程的根与系数的关系猜一猜(1)一元二次方程 (x-x1)(x-x2) = 0 (x1,x2为已知数) 的两根是什么?若将此方程化为x2 + px + q = 0 的形式,你能看出 x1,x2与 p,q 之间的关系吗?(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?证一证:x1 + x2= x1·x2=归纳总结:一元二次方程的根与系数的关系如果ax2+bx+c=0(a≠0)的两个根为x 1、x2,那么12bx xa ,12cx xa.(前提条件是b2-4ac≥0).(1) x2–6x–15 = 0; (2) 3x2+7x-9 = 0; (3) 5x–1 = 4x2.归纳:在求两根之和、两根之积时,先把方程化为一般式,判别Δ≥0,如是则代入 a、b、c的值即可.例2 已知关于x的方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.变式题已知关于的值.例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.练一练设x1,x2为方程x2-4x+1=0的两个根,则:(1) 12x x , (2)12xx ,(3) 2212x x , (4)212()x x .归纳:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.常见的求值式子如下: 12111.x x +=22122.x x += 12213.=x x x x + 124.(1)(1)x x ++= 125.||=x x -例4 设x 1,x 2是方程 x 2-2(k -1)x + k 2 =0的两个实数根,且2212x x 4,求k 的值.方法总结:根据一元二次方程两实数根满足的条件,求待定字母的值时,务必要注意方程有两实数根的条件,即所求的字母代入方程中,方程应该满足Δ≥0 .2b x a,1c x a.2221212()2x x x x x 2221212)()4x x x x x122121x x x x x......1.如果-1是方程2x 2- = .2.已知一元二次方程x 2+px+q=0的两根分别为-2和1,则p = , q = .3.已知关于 的值.4.已知x 1,x 2是方程2x 2+2kx+k -1=0的两个根,且(x 1+1)(x 2+1)=4.(1)求k的值; (2)求(x1-x2)2的值.5.设x1,x2是方程3x2+4x-3 = 0的两个根.利用根系数之间的关系,求下列各式的值:(1) (x 1 + 1)(x2 + 1); (2)2112.x xx x拓展提升6. 当k为何值时,方程2x2-kx+1=0的两根之差为1.7.已知关于-2=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两根x1,x2满足|x1-的值.242bb ac xa.时,方程有两个相12-132课堂探究二、要点探究探究点1:探索一元二次方程的根与系数的关系 猜一猜=b a,x 1x 2证一证:(注:b221242b b ac x x a +-+=2b b a -+--= 22b a -=.ba=- 1222b b x x a a•-+--⋅=()()22244b b ac a ---=244ac a=.ca =例1 解:(1) a=1 , b= – 6 , c= – 15. Δ = b 2– 4ac =( – 6 )2 – 4 × 1 ×(– 15) = 96 > 0. ∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 = –( – 6 ) =6,x 1 x 2 = – 15 .(2)a = 3 , b =7, c = –9. Δ= b 2 - 4ac = 72 –4×3×(-9) =157 > 0,∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 =73, x 1 x 2 =933.(3)方程可化为4x 2–5x +1 =0,a =4,b = – 5,c = 1.Δ = b 2- 4ac =(– 5)2 – 4×4×1=9>0.∴方程有两个实数根.设方程的两个实数根是x 1, x 2,那么x 1 + x 2 =5544,x 1 x 2 =1.4=6.5=3.5+ x 2=2+ 35=.5k 得k=答:方程的另一个根是3,5k=- 解:设方程的两个根分别是+ x 2=1+ x =5 .121231,.22x x x 222121122)2,x xx x x ∴22221212123113()22.224xxx x x x 121212131 3.22x x x x x练一练 (1)4 (2)1 (3)14 (4)12例4 解:由方程有两个实数根,得22221212()2x x x x x = 4(k 222x 4,得 2k +4 =4,解得k 1=0,k 2=4 . 当堂检测1.;-3. 2. 1 ; -2.1161.3c x a116.3x 12121,.2k x k x x 1()1 4.2kk 解得k = -7;4.-则222121212)()474(4)65.x x x x x12124, 1.3b c x x x aa)+1=441()1.33122221121221212()234.9x x x x x x x x x x x x 12121,.22kx x x 22121212()()4 1.x x x x x x 22141,3,2 3.222k k k7.解:(1)方程有实数根,所以Δ=b 2-4ac=(-2m)2-4·m·(m-2=4m 2-4m 2+8m=8m ≥0.∵m≠0,∴m 的取值范围为m >0. 121222,.m x x x m22121212()()4 1.x x x x x x 22241.m m解得m=8.经检验,解.。
第二十一章一元二次方程*21.2.4一元二次方程的根与系数的关系一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是A.x1≠x2B.x1+x2>0C.x1•x2>0 D.x1<0,x2<02.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是A.2 B.﹣1C.2或﹣1 D.不存在3.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为A.﹣2 B.1C.2 D.04.已知关于x的一元二次方程kx2−2x+1=0有实数根,则k的取值范围是A.k<1 B.k≤1C.k≤1且k≠0 D.k<1且k≠05.已知α,β是关于x的一元二次方程x2+ (2m+3)x+m2=0的两个不相等的实数根,且满足= −1,则m 的值是A.3或−1 B.3C.−1 D.−3 或16.关于x的方程的两根互为相反数,则k的值是A.2 B.±2C.−2 D.−3二、填空题:请将答案填在题中横线上.7.一元二次方程的两根为,则的值为__________.8.设、是一元二次方程的两个根,且,则__________,__________.9.方程的两个根为、,则的值等于__________.10.若是一元二次方程x²−6x−2=0的两个实数根,则=__________.11.已知方程x2−mx−3m=0的两根是x1、x2,若x1+x2=1,则x1x2=__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.12.已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.13.已知关于x的一元二次方程x2+(m−1)x−2m2+m=0(m为实数)有两个实数根x1,x2.(1)当m为何值时,方程有两个不相等的实数根;(2)若x12+x22=2,求m的值.第二十一章一元二次方程*21.2.4一元二次方程的根与系数的关系一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是A.x1≠x2B.x1+x2>0C.x1•x2>0 D.x1<0,x2<0【答案】AC、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1,x2异号,结论D错误.故选A.【名师点睛】本题考查了根的判别式以及根与系数的关系,牢记“当 >0时,方程有两个不相等的实数根”是解题的关键.2.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是A.2 B.﹣1C.2或﹣1 D.不存在【答案】A∴x1+x2=,x1x2=,∵=4m,∴=4m,∴m=2或﹣1,∵m>﹣1,∴m=2,故选A.【名师点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式 >0,找出关于m的不等式组;(2)牢记两根之和等于﹣、两根之积等于.3.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为A.﹣2 B.1C.2 D.0【答案】D【解析】∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选D.【名师点睛】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.4.已知关于x 的一元二次方程kx 2−2x +1=0有实数根,则k 的取值范围是 A .k <1B .k ≤1C .k ≤1且k ≠0D .k <1且k ≠0【答案】C【名师点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.5.已知α,β是关于x 的一元二次方程x 2+ (2m +3)x +m 2=0的两个不相等的实数根,且满足= −1,则m的值是A .3或 −1B .3C .−1D .−3 或 1【答案】B【解析】∵α、β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根; ∴α+β=−2m −3,α⋅β=m 2, ∴==223m m --=−1, ∴m 2−2m −3=0, 解得m =3或m =−1.∵一元二次方程x 2+(2m +3)x +m 2=0有两个不相等的实数根, ∴∆=(2m +3)2−4×1×m 2=12m +9>0, ∴m >−,∴m =−1不合题意舍去, ∴m =3.【名师点睛】此题考查了一元二次方程根与系数的关系、根的判别式等知识点,根据根与系数的关系结合=1,找出关于m的方程是解题的关键.6.关于x的方程的两根互为相反数,则k的值是A.2 B.±2C.−2 D.−3【答案】C【名师点睛】本题主要考查一元二次方程根与系数的关系,熟记公式是解决本题的关键.二、填空题:请将答案填在题中横线上.7.一元二次方程的两根为,则的值为__________.【答案】2【解析】由题意得:+2=0,=2,∴=−2,=4,∴=−2+4=2,故答案为:2.【名师点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.8.设、是一元二次方程的两个根,且,则__________,__________.【答案】,【名师点睛】本题考查了根与系数的关系:若、是一元二次方程ax2+bx+c=0(a≠0)的两根时,=−,=.9.方程的两个根为、,则的值等于__________.【答案】3【解析】根据题意得,,所以===3.故答案为3.【名师点睛】本题考查了根与系数的关系:若、是一元二次方程(a≠0)的两根时,,.10.若是一元二次方程x²−6x−2=0的两个实数根,则=__________.【答案】6【解析】∵x1+x2=﹣,∴x1+x2=6.故答案为:6.【名师点睛】本题考查了一元二次方程的根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=﹣,x1•x2=.11.已知方程x2−mx−3m=0的两根是x1、x2,若x1+x2=1,则x1x2=__________.【答案】−3【解析】∵,∴.【名师点睛】本题主要考查的是一元二次方程的根与系数的关系,属于基础题型.理解根与系数的关系的公式是解决这个问题的关键.三、解答题:解答应写出文字说明、证明过程或演算步骤.12.已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)−2.【名师点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当 ≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22−x1x2=3p2+1,求出p值.13.已知关于x的一元二次方程x2+(m−1)x−2m2+m=0(m为实数)有两个实数根x1,x2.(1)当m为何值时,方程有两个不相等的实数根;(2)若x12+x22=2,求m的值.【答案】(1);(2),.【名师点睛】本题是常见的根的判别式、根与系数关系的结合试题.把求未知系数m的问题转化为解方程问题是解决本题的关键.。
21.2.4 一元二次方程的根与系数的关系A基础知识详解——————————————☆知识点一元二次方程根与系数的关系B重难点解读—————————☆重难点根据方程中两根的关系确定方程中字母的值○随堂例题例1 已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1、x2.(1)求实数k的取值范围;(2)若x1、x2满足x12+x22=16+x1•x2,求实数k的值.(2)∵关于x 的方程x +(2k-1)x+k -1=0有两个实数根x 1,x 2,∴x 1+x 2=1-2k ,x 1•x 2=k 2-1.∵x 12+x 22=(x 1+x 2)2-2x 1•x 2=16+x 1•x 2,∴(1-2k )2-2×(k 2-1)=16+(k 2-1),即k 2-4k-12=0, 解得k=-2或k=6(不符合题意,舍去). ∴实数k 的值为-2.【一中名师点拨】题目中提到两个实数根,即隐含着根的判别式大于等于0;当根据方程中两根的关系确定方程中字母的值,关键是把这种关系式转化为含x 1+x 2及x 1x 2的形式. ○随堂训练1.(2017烟台)若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为( D )A .-1或2B .1或-2C .-2D .12.已知关于x 的一元二次方程x 2+(m+2)x+m=0, (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)若x 1,x 2是原方程的两根,且2111x x +=-2,求m 的值.解:(1)△=(m+2)2-4m=m 2+4>0,∴无论m 取何值,原方程总有两个不相等的实数根; (2)∵x 1,x 2是原方程的两根, ∴x 1+x 2=-(m+2),x 1x 2=m . ∵2111x x +=2121x x x x +=-mm 2+=-2,解得m=2,经检验,m=2是分式方程的解,且符合题意,∴m 的值为2.课后达标基础训练1.(2017呼和浩特)关于x 的一元二次方程x 2+(a 2-2a )x+a-1=0的两个实数根互为相反数,则a 的值为( B ) A .2 B .0 C .1 D .2或02.(2017新疆)已知关于x 的方程x 2+x-a=0的一个根为2,则另一个根是( A ) A .-3 B .-2 C .3 D .63.已知m ,n 是一元二次方程x 2-4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( D ) A .-6 B .-2 C .0 D .24.已知实数x 1,x 2满足x 1+x 2=11,x 1x 2=30,则以x 1,x 2为根的一元二次方程是( A )A .x 2-11x+30=0B .x 2+11x+30=0C .x 2+11x-30=0D .x 2-11x-30=05.已知x 1、x 2是方程2x 2+3x-4=0的两根,那么x 1+ x 2= 23- ;x 1·x 2= 2 ;11x +21x = 43- ;x 12+ x 22=47-;21x x -= 423-. 6.已知关于x 的方程x 2+ax+b+1=0的解为x 1=x 2=2,则a+b 的值为 -1 .7.以3+2和3-28.已知方程5x 2+mx-10=0的一根是-5,求方程的另一根及m 的值. 解:设方程的另一个根为k , 则-5k=-2,解得52k =,又k-5=5m -,得m=23.9.已知关于x 的一元二次方程kx 2+x-2=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程两个实数根分别为x 1,x 2,且满足x 12+x 22+3x 1•x 2=3,求k 的值.12(1)求实数m 的取值范围;(2)若x 1+x 2=6-x 1x 2,求(x 1-x 2)2+3x 1x 2-5的值. 解:(1)△=(2m-3)2-4m 2=4m 2-12m+9-4m 2=-12m+9,∵△≥0,∴-12m+9≥0,∴m ≤43; (2)由题意可得x 1+x 2=-(2m-3)=3-2m ,x 1x 2=m 2,又∵x 1+x 2=6-x 1x 2,∴3-2m=6-m 2,∴m 2-2m-3=0,∴m 1=3,m 2=-1,又∵m ≤43,∴m=-1,∴x 1+x 2=5,x 1x 2=1,∴(x 1-x 2)2+3x 1x 2-5=(x 1+x 2)2-4x 1x 2+3x 1x 2-5=(x 1+x 2)2-x 1x 2-5=52-1-5=19.能力提升11.(2017仙桃)若α、β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为( B ) A .-13 B .12 C .14 D .1512.若非零实数a ,b (a ≠0)满足a 2-a-2018=0,b 2-b-2018=0,则ba 11+= 20181-. 13.已知关于x 的方程x 2-(k+1)x+41k 2+1=0的两根是一个矩形两邻边的长,且矩形的对角线长为5,求k= 2 .14.已知关于x 的一元二次方程x 2+(2k+1)x+k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是 -2或-4.15.(2017黄石)已知关于x 的一元二次方程x 2-4x-m 2=0. (1)求证:该方程有两个不等的实根;(2)若该方程的两实根x 1、x 2满足x 1+2x 2=9,求m 的值.。
§21.2.4《一元二次方程的根与系数的关系》教学设计教学目标:掌握一元二次方程根和系数的关系,能不解方程求出一元二次方程的两根和与两根积。
能灵活解决的与有关一元二次方程的根问题。
渗透从特殊到一般的再有一般到特殊数学思想,以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,培养学生分析、观察、归纳的能力及推理论证的能力,通过知识的产生过程,让学生感悟数学的思维方式,利用韦达定理不失时机渗透爱国主义精神,激发学生学习数学兴趣,提高学生解决问题能力。
教学重难点:1、理解一元二次方程根和系数的关系特点和应用及推导过程;2、利用一元二次方程根和系数的关系解决有关问题。
学情分析:1、知识掌握方面:本节课是在学习了一元二次方程的求根公式及根的判别式的基础上进行的,学生通过上几节一元二次方程的解法的学习,熟练掌握了一元二次方程的求根公式,有一定的运算能力和探究能力。
2、学生年龄特点:九年级学生具有一定的认知能力,和主动学习能力,适合由特殊到一般的探究方式。
教学过程:活动1(复习旧知):1、写出一元二次方程的一般式ax 2+bx+c=0 (a ≠0)2、一元二次方程求根公式。
a ac b b x 2422,1-±-=解下列方程并填空:观察、思考两根和、两根积与系数的关系,所有的一元二次方程的两个根都有这样的规律观察、思考两根和、两根积与系数的关系。
活动2(讨论与探究):任意的一元二次方程,ax 2+bx+c=0 (a ≠0)的两根为x 1、x 2 则 x 1+x 2, x 1·x 2与系数a ,b ,c 的关系是什么(引导学生讨论)活动3 (猜想结论(引导学生))若0(02≠=++a c bx ax ,)042≥-ac b ,两根为x 1,x 2则: x 1+x 2=a b - x 1·x 2= ac 活动4(推导结论): 证明:由求根公式得:a ac b b x 2421-+-=,a ac b b x 2422---=∴a b a ac b b ac b b x x -=----+-=+2442221a c a ac a acb b x x ==---=•222221444)4()(活动5(形成结论):若0(02≠=++a c bx ax ,)042≥-ac b ,两根为x 1、x 2那么x 1+x 2=a b - x 1·x 2= ac 如果方程x 2+px+q=0的两根是X 1 ,X 2,那么:x 1+x 2= -p , x 1·x 2= q这就是一元二次方程根与系数的关系,也称韦达定理,因为是法国数学家韦达最先发现的。
第 1 页
*21.2.4 一元二次方程的根与系数的关系
1.理解并掌握根与系数关系:x1+x2=-ba,x1x2=ca.
2.会用根的判别式及根与系数关系解题.
自学指导 阅读教材第15至16页,完成预习内容.
知识探究
1.完成下列表格
方程 x1 x2 x1+x2 x1·x2
x2-5x+6=0 2 3 5 6
x2+3x-10=0 2 -5 -3 -10
问题:你发现什么规律?
①用语言叙述你发现的规律;(两根之和为一次项系数的相反数;两根之积为常数项)
②x2+px+q=0的两根x1,x2用式子表示你发现的规律.(x1+x2=-p,x1·x2=q)
2.完成下列表
方程 x1 x2 x1+x2 x1·x2
2x2-3x-2=0 2 -12 32 -1
3x2-4x+1=0 13 1
4
3
1
3
问题:上面发现的结论在这里成立吗?(不成立)
请完善规律:
①用语言叙述发现的规律;(两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数
之比)
②ax2+bx+c=0的两根x1,x2用式子表示你发现的规律.(x1+x2=-ba,x1·x2=ca)
3.利用求根公式推导根与系数的关系(韦达定理).
ax2+bx+c=0的两根x1=___242bbaca___,x2=____242bbaca____,x1+x2=-__ba__,x1·x2=__ca__.
自学反馈
根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积:
(1)x2-3x-1=0; (2)2x2+3x-5=0;
(3)13x2-2x=0.
解:(1)x1+x2=3,x1·x2=-1; (2)x1+x2=-32,x1·x2=-52;
(3)x1+x2=6,x1·x2=0.
活动1 小组讨论
例1 不解方程,求下列方程的两根之和与两根之积:
(1)x2-6x-15=0; (2)3x2+7x-9=0;
第 2 页
(3)5x-1=4x2.
解:(1)x1+x2=6,x1·x2=-15; (2)x1+x2=-73,x1·x2=-3;
(3)x1+x2=54,x1·x2=14.
先将方程化为一般形式,找对a、b、c.
例2 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.
解:另一根为32,k=3.
本题有两种解法,一种是根据根的定义,将x=-3代入方程先求k,再求另一个根;一种是利用根与系
数关系解答.
例3 已知α,β是方程x2-3x-5=0的两根,不解方程,求下列代数式的值.
(1)11;(2)α2+β2;(3)α-β.
解:(1)-35; (2)19; (3)29或-29.
活动2 跟踪训练
1.不解方程,求下列方程的两根和与两根积:
(1)x2-3x=15; (2)5x2-1=4x2;
(3)x2-3x+2=10; (4)4x2-144=0;
(5)3x(x-1)=2(x-1); (6)(2x-1)2=(3-x)2.
解:(1)x1+x2=3,x1x2=-15; (2)x1+x2=0,x1x2=-1;
(3)x1+x2=3,x1x2=-8; (4)x1+x2=0,x1x2=-36;
(5)x1+x2=53,x1x2=23; (6)x1+x2=-23,x1x2=-83.
2.两根均为负数的一元二次方程是( C )
A.7x2-12x+5=0 B.6x2-13x-5=0 C.4x2+21x+5=0 D.x2+15x-8=0
两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.
活动3课堂小结
1.一元二次方程的根与系数的关系.
2.一元二次方程根与系数的关系成立的前提条件.
教学至此,敬请使用学案当堂训练部分.