统计学平均指标
- 格式:pptx
- 大小:486.87 KB
- 文档页数:47
平均指标的意义和作用在各种统计数据中,平均指标被广泛应用。
它是对一组数据集中趋势的浓缩和概括,能够提供重要的信息和见解。
平均指标作为统计学中常用的工具,对于研究者、决策者和普通人都具有深远的意义和作用。
首先,平均指标在科学研究中有着重要的作用。
在实验设计和数据分析中,研究者通常会使用平均指标来衡量和描述实验结果。
例如,在医学研究中,研究人员通常会计算患者群体的平均生存时间来评估某种治疗方法的有效性。
这个平均值能够提供一种客观的统计结果,为研究者提供决策依据。
其次,平均指标在经济和商业领域中也具有重要的意义。
例如,国民经济中的GDP就是一种平均指标,通过对整个国家或区域的生产总值进行平均,可以评估该地区的经济实力和发展水平。
此外,商业界中常用的销售额平均指标可以帮助企业了解产品市场表现和销售趋势,从而进行业务战略的调整和决策。
再者,平均指标在教育领域也具备重要的作用。
学生的平均成绩是评估教育质量的重要指标之一。
学校可以通过对学生群体的成绩进行平均,从而了解学生的整体水平和教学效果。
这有助于教师和学校制定相应的教学计划和改进措施,提高教育质量和学生的学习成就。
此外,平均指标还可以在社会调查和民意调查中得到广泛应用。
例如,调查人员可以对受访者的意见进行统计,并计算出平均值来了解大众的态度和观点。
这有助于政府和决策者了解民意,从而进行社会政策的制定和调整。
总之,平均指标在各个领域中都有着重要的意义和作用。
它可以提供一种简洁而有效的方式,对一组数据进行概括和描述,并为决策者提供重要信息。
通过合理地运用平均指标,我们可以更好地认识和理解世界,做出更科学、准确的决策。
因此,对平均指标的意义和作用的深入理解和应用将对我们的工作、学习和生活产生积极的影响。
平均数平均数,在统计上指的的是平均指标,用来反映同类社会经济现象在一定时间、地点条件下,总体各单位数量差异抽象化的代表性指标,是反映总体单位数量特征的一般水平的综合指标。
如平均工资、平均收入、平均成本、平均价格等。
平均指标能够反映总体部的一般分布特征,这种特征表现为:一般距离其平均数远的标志值比较少,而距离其平均值近的或接近其平均值的标志值比较多,所以,平均指标反映了总体分布的集中趋势或一般水平。
或者简单地说,平均数就是用来反映总体现象的集中趋势或者一般水平的一种指标.。
平均数是集中量数的代表,也是最常用的一种描述统计指标,它反映了数据的代表性,也即可以通过平均数对数据的集中性或代表性有一个直观的了解。
其次,平均数也是常用的一种统计量,许多推断统计方法都是基于平均数进行的。
目前大多数统计方法中,平均数都占有最重要的位置,无论是要掌握某个总体的状况,还是要比较不同总体的差异等,都涉及到平均数。
平均数在统计分析及统计研究中应用十分广泛。
具体来讲,表现在几个方面:(一)运用平均数可以科学地对两个总体的水平进行对比。
比如我国的GDP 总量在2010年已经超过日本,跃居全世界第二。
如果单以GDP总量来对比,说我国的经济水平超过日本,是不科学的,因为这样的对比不具有可比性,两个国家的规模是不一样,在进行对比时,用人均GDP来进行对比就消除了规模的大小对水平的影响。
(二)运用平均数可以反映现象总体的发展变化趋势,比如利用历年我国职工年平均工资,可以说明职工年平均工资的变动趋势等。
(三)利用平均数用来分析现象之间的依存关系。
比如将耕地按施肥量分组,计算单位面积产量,可以分析施肥量与单位面积产量之间的依存关系。
(四)平均指标是统计推断的基础。
例如,在农业产品产量的抽样调查中,利用样本的平均亩产量,推断全部播种面积总产量,利用部分居民的年平均收入推断全部居民的总收入等。
’平均数又称为统计指标,是统计学中的一部分,定义为反映现象总体各单位某一数量标志值的典型水平、一般水平和代表性水平。
2015年《统计学》第五章平均指标习题及满分答案(一)填空题1.平均数可以反映总体各单位标志值分布的(集中趋势)。
2.社会经济统计中,常用的平均指标有(算术平均指标)、(调和平均指标)、(几何平均指标)、(中位数)和(众数)。
3.算术平均数不仅受(标志值)大小的影响,而且也受(权数)多少的影响。
4.各变量值与其算术平均数离差之和等于(零),各变量值与其算术平均数离差平方和为(最小)。
5.调和平均数是平均数的一种,它是(标志值倒数)的算术平均数的(倒数),又称(倒数)平均数。
6.几何平均数是计算平均比率和平均速度最适用的一种方法,凡是变量值的连乘积等于(总比率)或(总速度)的现象,都可以使用几何平均数计算平均比率或平均速度。
7.众数决定于(分配次数)最多的变量值,因此不受(极端值)的影响,中位数只受极端值的(位置)影响,不受其(大小)的影响。
(二)单项选择题1.平均数反映了(A)。
A、总体分布的集中趋势B、总体中总体单位的集中趋势C、总体分布的离中趋势D、总体变动的趋势2.加权算术平均数的大小(D)。
A、受各组标志值的影响最大B、受各组次数的影响最大C、受各组权数系数的影响最大D、受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数(B)。
A、接近于变量值大的一方B、接近于变量值小的一方C、不受权数的影响D、无法判断4.权数对于算术平均数的影响,决定于(D)。
A、权数的经济意义B、权数本身数值的大小C、标志值的大小D、权数对应的各组单位数占总体单位数的比重5.各总体单位的标志值都不相同时(A)。
A、众数不存在B、众数就是最小的变量值C、众数是最大的变量值D、众数是处于中间位置的变量值6.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( C )。
A、算术平均法B、调和平均法C、几何平均法D、中位数法7.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数(D)。
第五章平均指标和标志变异指标一、单项选择题1.平均指标反映( )。
A. 总体分布的集中趋势B. 总体分布的离散趋势C. 总体分布的大概趋势 D. 总体分布的一般趋势2.平均指标是说明( )。
A. 各类总体某一数量标志在一定历史条件下的一般水平B. 社会经济现象在一定历史条件下的一般水平C. 同质总体内某一数量标志在一定历史条件下的一般水平D. 大量社会经济现象在一定历史条件下的一般水平3.计算平均指标最常用的方法和最基本的形式:()A.中位数 B. 众数C. 调和平均数D. 算术平均数4.算术平均数的基本计算公式( )。
A.总体部分总量与总体单位数之比B.总体标志总量与另一总体总量之比C. 总体标志总量与总体单位数之比D. 总体标志总量与权数系数总量之比5.加权算术平均数中的权数为()。
A. 标志值B. 权数之和C. 单位数比重 D. 标志值总量6.权数对算术平均数的影响作用决定于()。
A. 权数的标志值 B. 权数的绝对值C. 权数的相对值 D. 权数的平均值7.加权算术平均数的大小()。
A. 主要受各组标志值大小的影响,而与各组次数的多少无关B. 主要受各组次数大小的影响,而与各组标志值的多少无关C. 既受各组标志值大小的影响,又受各组次数多少的影响D. 既与各组标志值的大小无关,也与各组次数的多少无关8.在变量数列中,若标志值较小的组权数较大时,计算出来的平均数()。
A. 接近于标志值小的一方B. 接近于标志值大的一方C. 接近于平均水平的标志值 D. 不受权数的影响9.假如各个标志值都增加5个单位,那么算术平均数会:( )。
A. 增加到5倍B. 增加5个单位C. 不变D. 不能预期平均数的变化10.各标志值与平均数离差之和()。
A.等于各变量平均数离差之和B. 等于各变量离差之和的平均数C. 等于零 D. 为最大值11.当计算一个时期到另一个时期的销售额的年平均增长速度时,应采用哪种平均数?( )A. 众数B. 中位数C. 算术平均数D. 几何平均数12.众数是()。
任务五:总体分布集中趋势分析(平均指标)一、平均指标的意义•(一)平均指标的概念•概念:表明同质总体内某一数量标志在一定时间、地点、条件下所达到的一般水平。
•理解•特点反映总体的一般水平反映总体的集中趋势代表性的数值:说明总体单位标志值的一般水平抽象化的数值:抽象化总体各单位标志值的差异计算同类现象:计算相同性质的单位构成的总体一、平均指标的意义•(二)平均指标的作用•1.消除总体数量差异使其具有可比性。
•2.平均指标可作为对事物进行评价的客观标准。
•3.平均指标可以用来分析现象之间的依存关系。
•4.平均指标在抽样推断中是一个重要指标。
•(三)平均指标的种类•1.按时间•2.按计算一、平均指标的意义静态平均数:同一时间总体单位标志值一般水平动态平均数:同一事物在不同时间条件下的一般水平数值平均数位置平均数算数平均数调和平均数几何平均数众数中位数二、算术平均数•(一)算术平均数的基本形式•算数平均数:反映该数量标志在总体中的一般水平。
•算术平均数=•例题:某企业某月工人工资总额为260 000元,工人人数为200人,则该月工人的平均工资为:•注意总体标志总量和总体单位总量必须属于同一个总体分子、分母在内容上必须保持总体范围的一致性二、算术平均数•算数平均数与强度相对指标的区别定义计算算数平均数:说明的是现象发展的一般水平强度相对指标:某现象在另一现象中的发展强度等算数平均数:分子分母是从属关系,分母的改变影响分子强度相对指标:虽有平均之意,但分子分母不是从属关系•1.简单算术平均数(未分组的资料)• •某小组有6位同学,统计学考试成绩分别为70分、78分、82分、85分、90分、98分,求该组的平均成绩。
(二)算术平均数的计算为算数平均数为总体各单位的标志值n 为总体单位个数为加总符号二、算术平均数2.加权算术平均数(资料已分组)二、算术平均数为算数平均数为总体各单位的标志值n 为总体单位个数为加总符号f 为各组的次数(权数)说明:分组资料单项数列:加权算术平均数公式计算组距数列:以组中值代表各组标志值•注意:•(1)公式的变形:用比重即频率形式表示:•(2)当•(3)应用:标志值和权数的乘积为标志总量且具有实际经济意义二、算术平均数权数一般情况下:分组资料中变量值的次数为权数变量值为相对数或平均数,次数不合适为权数二、算术平均数•3.算术平均数的数学性质•性质一:算术平均数与总体单位数的乘积等于各变量值的总和。
平均数在统计学中的地位平均数在统计学中的地位1. 在统计学中,平均数是最基本和最常用的一种测量指标,它能够很好地反映一组数据的集中趋势。
平均数可以帮助我们了解数据的整体情况,将众多观测值归纳为一个代表性的数值,有助于我们进行更全面、深入和准确的分析。
2. 平均数的计算方法相对简单,只需将所有观测值相加,再除以观测值的数量即可得到平均值。
这种计算方法的简洁性使得平均数在实际应用中得到广泛使用。
无论是在教育领域、经济学研究、医学实践还是其他领域,平均数都是最常见的统计指标之一。
3. 平均数可以以不同的方式来解释和理解。
它可以作为一种中心趋势度量,帮助我们确定数据集中的核心位置。
平均数还可以作为一个参考点,用于判断个别观测值与整体趋势的偏离程度。
通过计算与平均数的差值,我们可以判断一个观测值在数据集中是偏大还是偏小,从而更好地了解其相对位置。
4. 平均数的应用也不仅仅限于描述数据集的集中趋势,它还可以作为一种预测工具。
通过观察数据的平均数,我们可以推测未来的趋势和变化方向。
在经济学中,通过计算过去几年的平均增长率,可以预测未来的经济增长趋势。
5. 当然,平均数也存在一定的局限性。
平均数不能有效地反映数据的变异程度。
在一组数据中,如果存在极端值或离群值,平均数会受到这些值的显著影响,导致平均数不够准确。
为了更全面地了解数据的分布情况,我们需要使用其他统计指标,比如方差、标准差等。
平均数适用于数值型数据,但并不适用于分类型数据或序数型数据。
在处理这些数据类型时,我们需要使用其他的统计方法。
6. 总结回顾:平均数是统计学中最基本和常用的测量指标之一,可以很好地反映数据集的集中趋势。
通过计算观测值的总和除以观测值的数量,我们可以得到平均数的数值。
平均数具有简洁性和易于理解的特点,适用于各个领域的数据分析。
然而,平均数也存在一定的局限性,特别是在面对极端值和不同类型的数据时。
在进行数据分析时,我们需要结合其他统计指标来全面理解数据的分布和趋势。
第五章平均指标一、名词1、平均指标:又称平均数,它是反映总体内各单位某一数量标志不同数值一般水平的综合指标。
2、算术平均数:是用总体标志总量与总体单位总量对比而求得的平均数。
3、调和平均数:各个标志值倒数的算术平均数的倒数,又称为倒数平均数。
4、中位数:将总体中某一数量标志的各个数值按大小顺序排列,处于中间位置的标志值就是中位数。
5、众数:是现象总体中出现次数最多的那个标志值。
6、标志变异指标:是说明总体各单位标志值差异程度的综合指标,也称标志变动度。
7、平均差:是总体各单位标志值与其平均数之离差绝对值的算术平均数。
8、标准差:是总体各单位标志值与其算术平均数离差平方和的算术平均数的平方根。
9、标志变动系数:是用相对数表现的标志变异指标,又称离散系数。
10、交替标志:将现象的总体单位划分为具有某一属性的单位和不具有某一属性的单位两组,并以“是”或“非”、“有”或“无”反遇单位属性或性质的标志,称为交替标志,也称是非标志。
二、填空。
1、平均指标是反映总体内各个(单位)某一(数量标志)不同数值的(一般水平)的综合指标。
2、平均指标用一个(代表性数值)说明被研究总体各单位标志值的一般水平,反映事物变动的(集中趋势)。
3、算术平均数的分子分母具有(一一对应)关系。
4、加权算术平均数的大小,受两个因素的影响:一个是受(各组变动值x)的影响;另一个是受(各组变量值出现的次数)的影响。
5、权数不仅可以用(频数)表示,而且也可以用(频率)表示。
6、调和平均数是各个(标志值倒数)的算术平均数的(倒数),它分为(简单调和平均数)和(加权调和平均数)。
7、平均指标说明分配数列中变量值的(一般水平),而标志变异指标则说明变量值的(差异状况)。
8、在变量数列中,哪一组单位数所占比重大,哪一组单位数所占比重大,哪一组标志对(平均数)的影响就大。
因此,当各组单位数所占比重相等时,加权算术平均数等于(简单算术平均数)。
9、标志变异指标主要有(全距)、(平均差)、(标准差)。
统计学中常用的平均数指标包括:
•均值(Mean):数据的总和除以数据的个数。
•中位数(Median):数据中间的值。
•众数(Mode):数据中出现次数最多的值。
••加权平均数(Weighted Mean):每个数据值乘以它的权重后求和除以所有权重的和。
•算术平均数(Arithmetic Mean):与均值含义相同。
• -几何平均数(Geometric Mean):数据的乘积的n次方根。
• -调和平均数(Harmonic Mean):数据个数除以数据值的倒数的和。
•还有些其他不常见的指标如:
•分位数(Quantile):将数据分成等份,每份称为一个分位数。
•标准差(Standard Deviation):衡量数据分布偏差的统计量。
•这些指标都可以用来描述数据的分布情况和数据的波动程度。