自动控制理论实验一
- 格式:doc
- 大小:263.50 KB
- 文档页数:11
《自动控制》一二阶典型环节阶跃响应实验分析报告一、实验目的本实验旨在通过实际的一二阶典型环节阶跃响应实验,掌握自动控制理论中的基本概念和方法,并能够分析系统的动态响应特性。
二、实验原理1.一阶惯性环节:一阶惯性环节是工程实际中常见的系统模型,其传递函数为G(s)=K/(Ts+1),其中K为传递函数的增益,T为时间常数。
2.二阶惯性环节:二阶惯性环节是另一类常见的系统模型,其传递函数为G(s)=K/((Ts+1)(αTs+1)),其中K为传递函数的增益,T为时间常数,α为阻尼系数。
3.阶跃响应:阶跃响应是指给定一个单位阶跃输入,观察系统的输出过程。
根据系统的阶数不同,其响应形式也不同。
实验仪器:电动力控制实验台,控制箱,计算机等。
三、实验步骤1.将实验台上的一阶惯性环节模型接入控制箱和计算机,并调整增益和时间常数的初始值。
2.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。
3.根据记录的数据,绘制一阶惯性环节的阶跃响应图像。
4.类似地,将实验台上的二阶惯性环节模型接入控制箱和计算机,并调整增益、时间常数和阻尼系数的初始值。
5.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。
6.根据记录的数据,绘制二阶惯性环节的阶跃响应图像。
四、实验结果与分析1.一阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,随着时间的增加,输出逐渐趋于稳定。
根据实验数据,可以计算出一阶惯性环节的增益K和时间常数T的估计值。
2.二阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,相较于一阶惯性环节,二阶惯性环节的响应特性更加复杂。
根据实验数据,可以计算出二阶惯性环节的增益K、时间常数T和阻尼系数α的估计值。
五、实验结论通过本实验,我们成功地进行了一二阶典型环节阶跃响应实验,并获得了实际的响应数据。
通过对实验数据的分析,我们得到了一阶惯性环节和二阶惯性环节的估计参数值。
自控实验报告目录实验一典型环节及其阶跃响应 (1)一、实验目的 (1)二、实验仪器 (1)三、实验原理 (1)四、实验内容 (1)五、实验步骤 (2)六、实验结果 (3)七、实验分析 (6)实验二二阶系统阶跃响应 (7)一、实验目的 (7)二、实验仪器 (7)三、实验原理 (7)四、实验内容 (8)五、实验步骤 (9)六、实验结果及分析 (9)实验三连续系统串联校正 (15)一、实验目的 (15)二、实验仪器 (15)三、实验内容 (15)四、实验步骤 (17)五、实验结果 (17)实验一 典型环节及其阶跃响应一、 实验目的1. 掌握控制模拟实验的基本原理和一般方法。
2. 掌握控制系统时域性能指标的测量方法。
二、实验仪器1. EL-AT-III 型自动控制系统实验箱一台 2. 计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应:1. 比例环节的模拟电路及其传递函数。
21()R G s R2. 惯性环节的模拟电路及其传递函数。
3. 积分环节的模拟电路及传递函数。
4. 微分环节的模拟电路及传递函数。
5. 比例+微分环节的模拟电路及传递函数。
五、实验步骤1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2.测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
比例环节:3.连接被测量典型环节的模拟电路(图1-1)。
电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。
分组:成绩:__ _______北京航空航天大学自动控制原理实验报告实验一一、二阶系统的电子模拟及时域响应的动态测试学院专业方向班级学号学生姓名指导教师2014年11月目录一、实验目的 (1)二、实验内容 (1)三、实验原理 (1)四、实验设备 (2)五、实验步骤 (2)六、实验数据 (3)1.一阶系统实验数据及图形 (3)2.二阶系统实验数据及图形 (4)七、结论和误差分析 (6)结论: (6)误差分析: (7)八、收获与体会 (7)附录 (7)实验时间2014.11.1 同组同学 无一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2.学习在电子模拟机上建立典型环节系统模型的方法。
3.学习阶跃响应的测试方法。
二、实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。
2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的阶跃响应曲线,并测定其超调量σ%及过渡过程时间Ts 。
三、实验原理1.一阶系统实验原理系统传递函数为:()()()1C S Ks R S TS φ==+模拟运算电路如图1所示:图1212R R Uo(s)K ==Ui(s)CSR +1Ts+1在实验中始终取R2=R1,则K=1,T=R2*C 取不同的时间常数T ,T=0.25s ,T=0.5s ,T=1s记录不同的时间常数下阶跃响应曲线,测量并记录其过渡时间Ts(Ts=3T)2.二阶系统实验原理其传递函数为:222()()()(2)nn nC SSR S S SωζωωΦ==++令1nω=弧度/秒,二阶系统模拟线路下图2所示:图2取R2*C1=1,R3*C2=1,则R4/R3=R4*C2=1/(2*ζ)及ζ=1/(2*R4*C2)理论值:3(0.05)sntζω≈∆=,%σ21100%eπζ--=⨯四、实验设备1. HHMN-1 型电子模拟机一台2. PC 机一台3. 数字式万用表一块。
2014-2015学年第二学期自动控制原理实验报告姓名:王丽学号:20122527班级:交控3班指导教师:周慧实验一:典型系统的瞬态响应和稳定性1. 比例环节的阶跃响应曲线图(1:1)比例环节的阶跃响应曲线图(1:2)2. 积分环节的阶跃响应曲线图(c=1uf)3. 比例积分环节的阶跃响应曲线图(c=1uf)比例积分环节的阶跃响应曲线图(c=2uf)4. 惯性环节的阶跃响应曲线图(c=1uf)惯性环节的阶跃响应曲线图(c=2uf)5. 比例微分环节的阶跃响应曲线图(r=100k)比例微分环节的阶跃响应曲线图(r=200k)6. 比例积分微分环节的阶跃响应曲线图(r=100k)比例积分微分环节的阶跃响应曲线图(r=200k)实验结论1. 积分环节的阶跃响应曲线图可以看出,积分环节有两个明显的特征:(1)输出信号是斜坡信号(2)积分常数越大,达到顶峰需要的时间就越长2. 比例积分环节就是把比例环节与积分环节并联,分别取得结果之后再叠加起来,所以从图像上看,施加了阶跃信号以后,输出信号先有一个乘了系数K的阶跃,之后则逐渐按斜坡形式增加,形式同比例和积分的加和是相同的,因而验证了这一假设。
3. 微分环节对于阶跃信号的响应,在理论上,由于阶跃信号在施加的一瞬间有跳变,造成其微分结果为无穷大,之后阶跃信号不再变化,微分为0,表现为输出信号开始衰减。
4. PID环节同时具备了比例、积分、微分三个环节的特性,输出图像其实也就是三个环节输出特性的叠加。
三个环节在整个系统中的工作实际上是相互独立的,这也与它们是并联关系的事实相符合。
5.惯性环节的传递函数输出函数:可以看到,当t→∞时,r(t)≈Ku(t),这与图中的曲线是匹配的。
实验心得通过本实验我对试验箱更加熟悉,会连接电路;更直观的看到电路的数学模型和电路的响应曲线图三者之间的关系,这让我能够将在此之前所学的知识联系到一起。
不管是什么电路,如果要研究它首先就是得到它的数学模型,然后再通过对数学模型的研究间接的来研究该电路。
实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。
实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。
成绩:____大连工业大学《自动控制原理》实验报告实验1 典型环节的阶跃响应专业名称:自动化班级学号:自动化10I-JK学生姓名:ABCD指导老师:EFGH实验日期:年月日一、实验目的1、熟悉各种典型环节的阶跃响应曲线;2、了解参数变化对典型环节动态特性的影响。
二、实验原理实验任务1、比例环节(K)从图0-2的图形库浏览器中拖曳Step(阶跃输入)、Gain(增益模块)、Scope(示波器)模块到图0-3仿真操作画面,连接成仿真框图。
改变增益模块的参数,从而改变比例环节的放大倍数K,观察它们的单位阶跃响应曲线变化情况。
可以同时显示三条响应曲线,仿真框图如图1-1所示。
2、积分环节(1Ts)将图1-1仿真框图中的Gain(增益模块)换成Transfer Fcn (传递函数)模块,设置Transfer Fcn(传递函数)模块的参数,使其传递函数变成1Ts型。
改变Transfer Fcn(传递函数)模块的参数,从而改变积分环节的T,观察它们的单位阶跃响应曲线变化情况。
仿真框图如图1-2所示。
3、一阶惯性环节(11 Ts+)将图1-2中Transfer Fcn(传递函数)模块的参数重新设置,使其传递函数变成11Ts+型,改变惯性环节的时间常数T,观察它们的单位阶跃响应曲线变化情况。
仿真框图如图1-3所示。
4、实际微分环节(1KsTs +) 将图1-2中Transfer Fcn (传递函数)模块的参数重新设置,使其传递函数变成1KsTs +型,(参数设置时应注意1T )。
令K 不变,改变Transfer Fcn (传递函数)模块的参数,从而改变T ,观察它们的单位阶跃响应曲线变化情况。
仿真框图如图1-4所示。
5、二阶振荡环节(2222nn ns s ωξωω++) 将图1-2中Transfer Fcn (传递函数)模块的参数重新设置,使其传递函数变成2222nn ns s ωξωω++型(参数设置时应注意01ξ<<),仿真框图如图1-5所示。
实验一自动控制系统实验箱的使用及Matlab控制工具箱的使用一、预习要求1、查阅模拟电子技术基础,掌握由集成运放电路组成的积分运算电路和微分运算电路原理。
2、了解Matlab控制工具箱基础知识(上网查阅、图书馆资料)。
二、实验目的1、掌握自动控制系统模拟实验的基本原理和基本方法。
2、熟悉Matlab控制工具箱的基本用法。
三、实验仪器1、EL-AT-Ⅲ型自动控制系统试验箱一台。
2、计算机一台。
四、实验内容1、自动控制原理实验箱的硬件资源EL-AT-Ⅲ型自动控制系统试验箱面板主要由计算机、AD/DA采集卡、自动控制原理实验箱组成,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,打印机主要记录各种实验数据和结果,实验箱主要用于构造被控模拟对象。
(1)本实验系统有八组放大器、电阻、电容组成的实验模块。
每个模块中都有一个uA741构成的放大器和若干个电阻、电容。
通过对这七个实验模块的灵活组合可构造出各种形式和阶次的模拟环节和控制系统。
(2)二极管、电阻、电容区(3) AD/DA卡输入输出模块该区域是引出AD/DA卡的输入输出端,一共引出两路输出端和两路输入端,分别是DA1、DA2, AD1、AD2。
20针的插座用来和控制对象连接。
(4)电源模块电源模块有一个实验箱电源开关,有四个开关电源提供的DC电源端子,分别是+12V、-12V、+5V、GND,这些端子给外扩模块提供电源。
(5)変阻箱、变容箱模块通过按动数字旁边的“+”、“-”按钮便可调节电阻电容的值,而且电阻电容值可以直接读出。
2、自动控制原理实验软件说明(1)软件启动在windows桌面上或“开始—程序”中双击“自动控制理论”,启动软件如图1-1所示。
QQ截图(2)实验前计算机与实验箱的连接用实验箱自带的USB线将实验箱后面的USB口与计算机的USB口连接。
(3)软件使用说明本套软件界面共分为两组画面。
A.软件说明和实验指导书画面,如图1-2所示。
⾃动控制原理1实验指导书《⾃动控制原理Ⅰ》实验指导书2011年9⽉实验⼀典型环节及其阶跃响应⼀.实验⽬的1.学习构成典型环节的模拟电路。
2.熟悉各种典型环节的阶跃响应曲线,了解参数变化对典型环节动态特性的影响。
3.学会由阶跃响应曲线计算典型环节的传递函数。
4.掌握仿真分析软件multisim的使⽤。
⼆.物理模拟说明⽤电⼦线性运算放⼤器和各种反馈电路能够模拟线性系统典型环节。
同时,模拟典型环节是有条件的,即是将运算放⼤器视为满⾜以下条件的理想放⼤器:(1)输⼊阻抗为∞,进⼊运算放⼤器的电流为零,同时输出阻抗为零;(2)电压增益为∞;(3)通频带为∞;(4)输⼊与输出间呈线性特性.可是,实际运算放⼤器毕竟不是理想的;电⼦元件和电路仍然有惯性(尽管⾮常⼩)其通频带有限,并⾮达到∞,输⼊输出功率也是有限的;⼀般的运算放⼤器,在开环使⽤时,其通频带仅为10-100Hz,当将其接成K=1的⽐例器,其通频带也不过MHz左右。
所以,以线性运算放⼤器和各种反馈电路去模拟系统的各种线性和⾮线环节也不是⽆条件的,它仍然是在⼀定条件下,在⼀定程度上模拟出线性典型环节的特性,超出条件的范围和要求过份精确都是办不到的。
因此,需要说明以下⼏点事项:(1)⽤实际的运算放⼤器模拟线性系统各种典型环节都是有条件的近似关系,不可能得到理想化典型环节的特性。
其主要原因是:1实际运算放⼤器输出幅值受其电源所限,根本不可能达到∞,此即⾮线性影响;2实际运算放⼤器不是⽆惯性的。
尽管惯性很⼩,但通频带不会达到∞。
(2)实际运算放⼤器输出幅值受限的⾮线性因素对所有各种模拟环节都有影响,但情况迥异。
对⽐例环节、惯性环节、积分环节、⽐例积分环节和振荡环节,只要控制了输⼊量的⼤⼩或是输⼊量施加的时间长短(对于积分或⽐例积分环节),不使其输出在⼯作期间内达到最⾼饱和度,则⾮线性因素对上述环节特性的影响可以避免;但是⾮线性因素对模拟⽐例微分环节和微分环节的影响却⽆法避免。
2014-2015-1实验报告自动控制理论学校:南昌大学院系:信息工程学院班级:姓名:学号:日期:目录实验一典型环节的模拟研究 (1)实验二二阶系统瞬态响应和稳定性 (10)实验三三阶系统的瞬态响应和稳定性 (15)实验四一阶、二阶系统的频率特性 (20)实验五频率特性的时域分析 (41)实验六频域法串联超前校正 (44)实验七频域法串联滞后校正 (52)实验八时域法串联比例微分校正和时域法微分反馈校正 .. 59实验一典型环节的模拟研究一. 实验要求1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响三.实验内容及步骤在实验中欲观测实验结果时,可用普通示波器,也可选用本实验机配套的虚拟示波器。
如果选用虚拟示波器,只要运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分。
1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路实验步骤: 注:‘S ST’不能用“短路套”短接!(1)用信号发生器(B1)的‘阶跃信号输出’ 和‘幅度控制电位器’构造输入信号(Ui ):B1单元中电位器的左边K3开关拨下(GND ),右边K4开关拨下(0/+5V 阶跃)。
阶跃信号输出(B1的Y 测孔)调整为4V (调节方法:按下信号发生器(B1)阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y 测孔)。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(31’档)① 打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),用示波器观测A6输出端(Uo )的实际响应曲线Uo (t )。
一、实验目的1. 理解自动控制系统的基本概念和原理;2. 掌握自动控制系统的基本分析方法;3. 培养动手操作能力和实验技能;4. 提高对自动控制系统的设计、调试和优化能力。
二、实验原理自动控制系统是一种利用反馈控制原理,使被控对象的输出量能够跟踪给定输入量的系统。
本实验主要研究线性定常系统的稳定性、动态性能和稳态性能。
三、实验设备1. 自动控制实验台;2. 实验仪器:信号发生器、示波器、信号调理器、数据采集卡等;3. 实验软件:MATLAB/Simulink。
四、实验内容1. 系统搭建与调试(1)搭建实验台,连接实验仪器;(2)设置信号发生器,产生不同频率、幅值的信号;(3)调整信号调理器,对信号进行放大、滤波等处理;(4)将处理后的信号输入实验台,观察系统的响应。
2. 稳定性分析(1)根据实验数据,绘制系统的伯德图;(2)根据伯德图,判断系统的稳定性;(3)通过改变系统参数,观察对系统稳定性的影响。
3. 动态性能分析(1)根据实验数据,绘制系统的阶跃响应曲线;(2)根据阶跃响应曲线,分析系统的上升时间、超调量、调节时间等动态性能指标;(3)通过改变系统参数,观察对系统动态性能的影响。
4. 稳态性能分析(1)根据实验数据,绘制系统的稳态误差曲线;(2)根据稳态误差曲线,分析系统的稳态性能;(3)通过改变系统参数,观察对系统稳态性能的影响。
五、实验结果与分析1. 系统搭建与调试通过搭建实验台,连接实验仪器,观察系统的响应,验证了实验系统的可行性。
2. 稳定性分析根据伯德图,判断系统在原参数下的稳定性。
通过改变系统参数,观察对系统稳定性的影响,得出以下结论:(1)系统在原参数下稳定;(2)减小系统参数,系统稳定性提高;(3)增大系统参数,系统稳定性降低。
3. 动态性能分析根据阶跃响应曲线,分析系统的动态性能指标:(1)上升时间:系统在给定输入信号作用下,输出量达到稳态值的80%所需时间;(2)超调量:系统在达到稳态值时,输出量相对于稳态值的最大偏差;(3)调节时间:系统在给定输入信号作用下,输出量达到稳态值的95%所需时间。
自动控制理论》课程实验指导一、实验注意事项1、接线前务必熟悉实验线路的原理及实验方法。
2、实验接线前必须先断开总电源与各分电源开关,严禁带电接线。
接线完毕,检查无误后,才可进行实验。
3、实验自始至终,实验板上要保持整洁,不可随意放置杂物,特别是导电的工具和多余的导线等,以免发生短路等故障。
4、实验完毕,应及时关闭各电源开关,并及时清理实验板面,整理好连接导线并放置到规定的位置。
5、实验前必须充分预习实验指导书。
二、实验模拟装置使用注意事项1、无源阻容元件可供每个运算放大器使用。
2 、运算放大器是有源器件,故连在运算放大器上的阻容元件只能供本运算放大器选用。
3 、信号幅值不宜过大,按指导书中指示的幅值。
否则,可能使运算放大器处于饱和状态。
三、每次实验内容第一次:实验二第二次:实验三第三次:实验四备注:实验一作为实验前的预习及热身(1)图1-1、运放的反馈连接实验一 控制系统典型环节的模拟、实验目的1) 、熟悉数字示波器的使用方法2) 、掌握用运放组成控制系统典型环节的电子电路 3) 、测量典型环节的阶跃响应曲线4) 、通过实验了解典型环节中参数的变化对输出动态性能的影响二、 实验仪器1) 、THSSC-1实验箱一个 2) 、数字示波器一台三、 实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z i 和Z 2为复数阻抗,它们都是由 R 、C 构 成。
--U o Z 2G (S )--U i Z 1基于图中A 点的电位为虚地,略1)、比例环节比例环节的模拟电路如图1-2所示:Z 2 Gr 沁=2 100K去流入运放的电流,则由图1-1得:由上式可求得由下列模拟电 Z1路组成的典型环节的传递函数及 其单位阶跃响应。
—0百 接示液器1V 2图1-2比例环节U -G(S) 口 Z 2Z iR 2/CS R 2 1/CSRR 2* 1 R i R 2CS 13)、积分环节Z 2 1/CS G (S ): Z 1 R 1 一 RCS 丄TS式中积分时间常数4)、比例微分环节(PD ),其接线图如图及阶跃响应如图1-5所示2)、惯性环节TS 1IV耳U o2-去图1-4、积分环节G(S) R i /CS R i 1/CS飞g 1)=K(T D S 1)(4)图1-5比例微分环节5)、比例积分环节,其接线图单位阶跃响应如图Z 2 R 2+1/CS (R 2CS+1) G(S)= Z 1 R 1 R 1CS 二空」 空 1 ) R 1 R 1CS R 1 R 2CS 1 =K(1) T i SR 2式中 K , T 2 二 R 2CR 11-6所示。
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
自动控制理论实验报告实验二控制系统的时域分析一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、实验要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0==?∞t x f dx x f 其拉氏变换为:)()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式:① )(sys impulse ;② );,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y =(二)分析系统稳定性有以下三种方法:1、利用pzmap 绘制连续系统的零极点图;2、利用tf2zp 求出系统零极点;3、利用roots 求分母多项式的根来确定系统的极点(三)系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容实验三控制系统的根轨迹分析一实验目的1.利用计算机完成控制系统的根轨迹作图2.了解控制系统根轨迹图的一般规律3.利用根轨迹图进行系统分析二实验要点1. 预习什么是系统根轨迹?2. 闭环系统根轨迹绘制规则。
三实验方法(一)方法:当系统中的开环增益k 从0到变化时,闭环特征方程的根在复平面上的一组曲线为根轨迹。
极点配置(一)实验原理给定一个连续时间系统的状态空间模型:Bu Ax x += (1)其中:x 是系统的n 维状态向量,u 是m 维控制输入,A 和B 分别是适当维数的已知常数矩阵。
在状态反馈Kx -=u (2)作用下,闭环系统的状态方程是x BK A x )(-= (3)由线性时不变系统的稳定性分析可知,闭环系统(3)的稳定性由闭环系统矩阵A-BK 的特征值决定,即闭环系统(3)渐近稳定的充分必要条件是矩阵A-BK 的所有特征值都具有负实部。
而由经典控制理论知道,矩阵A-BK 的特征值也将影响诸如衰减速度、振荡、超调等过渡过程特性。
因此,若能找到一个适当的矩阵K ,使得矩阵A-BK 的特征值位于复平面上预先给定的特定位置,则以矩阵K 为增益矩阵的状态反馈控制器(2)就能保证闭环系统(3)是渐近稳定的,且具有所期望的动态响应特性。
这种通过寻找适当的状态反馈增益矩阵K ,使得闭环系统极点(即矩阵A-BK 的特征值)位于预先给定位置的状态反馈控制器设计问题称为是状态反馈极点配置问题,简称为极点配置问题。
对给定的线性定常系统(1)和一组给定的期望闭环极点},,{n 2,1λλλ =Ω,按以下步骤可以设计出使得闭环系统(3)具有给定极点},,{n 2,1λλλ =Ω的状态反馈控制器(2)。
第1步:检验系统的能控性。
如果系统是能控的,则继续第2步。
第2步:利用系统矩A 阵的特征多项式0111)det(a a a A I n n n +++=---λλλλ (4)确定的110,,,-n a a a 值。
第3步:确定将系统状态方程变换为能控标准形的变换矩阵T 。
若给定的状态方程已是能控标准形,那么T=I 。
非奇异线性变换矩阵T 可按如下方式确定:可控性矩阵:],b ,[1b A A b U n -= (5)计算1-U ,并记最后一行为h给出变换阵:112],,,h [--=n hA hA hA T (6)第4步:利用给定的期望闭环极点,可得期望的闭环特征多项式为011121)())((b b b n n n n +++=-----λλλλλλλλλ (7)并确定110,,,b -n b b 的值第5步:确定极点配置状态反馈增益矩阵K :T a b a b a b a b K n n n n ],,,[11221100--------= (8)也可以通过待定系数的方法来确定极点配置状态反馈增益矩阵K 。
河南农业大学
自动控制理论
上
机
实
验
报
告
学院:机电工程学院
班级:13级电信一班
姓名:
学号:
实验一、二阶系统时域响应特性的实验研究
一、 实验目的:
1. 学习并掌握利用MATLAB 编程平台进行控制系统时域仿真的方法。
2. 通过仿真实验研究并总结二阶系统参数对时域响应特性影响的规律。
3. 通过仿真实验研究并总结二阶系统附加一个极点和一个零点对时域响应特性影响的规律。
二、 实验内容及要求:
(一) 实验内容:
自行选择二阶系统模型及参数,设计实验程序及步骤仿真研究二阶系统参数(n w ,ζ)对系统时域响应特性的影响;研究二阶系统分别附加一个极
点、一个零点后对系统时域响应特性的影响;根据实验结果,总结各自的响应规律。
(二) 实验要求:
1. 分别选择不少于六个的n w 和ζ取值,仿真其阶跃(或脉冲)响应。
通过绘图展示参数n w ,ζ对时域响应的影响。
不同n w 和ζ变化分别绘制于两幅图中。
2. 通过图解法获得各时域响应指标,并进行比较,总结出二阶系统参数变化对时域系统响应特性影响的规律。
3. 分别选择不少于六个取值的附加零点、极点,仿真其阶跃(或脉冲)响应,将响应曲线分别绘制于两幅图中,并与无零、极点响应比较。
4. 通过图解法获得各响应的时域指标并进行比较分析系统附加零点、极点对二阶系统时域响应特性影响的规律。
5.以上仿真及图形绘制全部采用MATLAB平台编程完成。
三、实验方案设计:
四、实验结果:(实验方案设计以及实验结果一起写出)
实验要求一:1-1
代码:
clear
t=0:0.01:10;
zeta=[0,0.2,0.3,0.6,0.7,1.2,1.5];
for i=1:length(zeta)
num=1;
den=[1,2*zeta(i),1];
y(:,i)=step(num,den,t);
end
plot(t,y,t,ones(length(t),1),'k-.')
axis([0 10 0 2.5])
gtext('zeta=0');gtext('zeta=0.2');gtext('zeta=0.3');gtext('zeta=0.6') ;gtext('zeta=0.7');gtext('zeta=1.2');gtext('zeta=1.5')
结果如下图:
图1 1-2:
代码:
clear
wn=[0.9,1.1,1.2,1.3,1.4,1.5,];
zeta=0.4;
t=[0:0.01:10];
hold on
for i=1:length(wn)
num=[wn(i)^2];
den=[1,2*zeta*wn(i),wn(i)^2];
sys=tf(num,den);
step(sys,t)
end
grid on
gtext('wn=0.9');gtext('wn=1.1');gtext('wn=1.2');gtext('wn=1.3');gtext ('wn=1.4');gtext('wn=1.5')
结果如下图:
图2:
实验要求二:
由以上两图,可得出当Wn不变时,随着ζ的增加,c(t)将从无衰减的周期运动变为有衰减的正弦运动,当ζ>=1时c(t)呈现单调上升运动(无振荡)。
时域的各项指标,ζ越小,上升时间tr越短,峰值时间 tp越短,调整时间ts越长。
ζ越大,超调量σ% 越小,响应的振荡性越弱,平稳性越好;
当ζ不变时,随着Wn的增大,上升时间tr减小,峰值时间 tp减小,调整时间ts减小。
超调量σ%只与阻尼比有关,而与无阻尼振荡频率Wn无关。
综合来说,ζ过大,比如ζ>1, 则系统响应迟缓,时间ts长,快速性差;若ζ过小,虽然响应的起始速度较快,tr和tp小,但振荡强烈,响应曲线衰减缓慢,调节时间ts亦长。
实验要求三:
3-1:
代码:
wn=1;
zeta=0.5;
a=[1,2,3,4,5,6]
t=[0:0.1:12]
hold on
den=[1,2*wn*zeta,wn^2];
for i=1:length(a)
num=[wn^2/a(i),wn^2];
sys=tf(num,den);
step(sys,t);
end
hold off
grid on
gtext('a=1');gtext('a=2');gtext('a=3');gtext('a=4');gtext('a=5');gtex t('a=6')
结果如下图:
图3
3-2:
代码:
sym s;
wn=1;
zeta=0.7;
s=zpk('s');
zero=[-1,-2,-3,-4,-5,-6];
t=0:0.1:20;
hold on
for i=1:length(zero)
G=(s-zero(i))*wn^2/[-zero(i)*(s^2+1.4*s+wn^2)];
step(G,t)
end
hold off
grid on
gtext('zero=-1');gtext('zero=-2');gtext('zero=-3');gtext('zero=-4');g text('zero=-5');gtext('zero=-6')
结果如下图:
图4
实验要求四:
当ζ,Wn不变时,响应随附加极点增大而变慢。
上升时间tr,峰值时间tp,调节时间ts随附加极点增大而增大。
附加极点越往主导极点靠近系统的快速性就越差。
当ζ,Wn不变时,响应随附加零点减小而变慢。
上升时间tr,峰值时间tp,调节时间ts随附加零点减小而增大。
增加一个靠近ζ,Wn的零点使超调量增大,响应速度加快;附加零点越远离极点,对系统相应的影响越小。
五、实验规律分析与总结:
由实验要求二和四,可以得出实验规律如下:
当Wn不变时,时域的各项指标,ζ越小,上升时间tr越短,峰值时间 tp越短,调整时间ts越长。
ζ越大,超调量σ% 越小,响应的振荡性越弱,平稳性越好;
当ζ不变时,随着Wn的增大,上升时间tr减小,峰值时间 tp减小,调整时间ts减小。
超调量σ%只与阻尼比有关,而与无阻尼振荡频率Wn无关。
当ζ,Wn不变时,上升时间tr,峰值时间tp,调节时间ts随附加零点减小而增大。
当p远大于阻尼系数ζ时,可以忽略增加极点对原二阶系统的影响。
当ζ,Wn不变时,上升时间tr,峰值时间tp,调节时间ts随附加极点增大而增大。
零点离虚轴越远,对系统的影响越小。
若附加的零点远离虚轴,可忽略它对系统的影响,按原二阶系统处理。
实验总结:
在本次实验前,我查阅了自动控制课件第七讲,自动控制理论课本的2.7节,MATLAB宝典以及老师给复印的资料。
首先学习到的是单位阶跃响应以及单位脉冲响应的函数,分别为:y=step(G, t)和impulse(num,den);以及系统对任意输入的响应:Lsim(sys,u,t)。
本实验为二阶系统,课本上给出了典型二阶系统,由此,做本次实验时候,我先建立了分子系数矩阵,然后根据公式建立了分母系数矩阵,以实验1-1为例:分子系数矩阵为:num=1;(本处应为num=Wn^2,但是我将Wn设为1,故此直接写为num=1)。
分母系数矩阵为:den=[1,2*zeta(i),1]。
然后通过上一段中所提到的单位阶跃函数:y(:,i)=step(num,den,t)得出最后的实验结果。
同理,1-2,3-1以及3-2都由此方法得出。
通过本次实验,对于二阶系统的两个重要参数:Wn和ζ有了更深入的了解。
由以上的实验分析,典型二阶系统在单位阶跃输入下的各项动态性能指标之间存在着矛盾,如为了提高系统的响应速度,使Wn很大,ζ较小;而这样又会影响系统的超调量。
同时对于增加极点和零点的知识进行了复习,增加零点,其结果是在一定程度上改善了系统的响应。
加深了对课本知识的理解和掌握。
刚开始拿到此次实验的题目时,觉得挺简单的,可真正去做的时候才发现很多都不会,大脑一片空白,根本不知道该如何进行。
最后,不得不重新拾起课本,将课本上有关的知识仔细认真地看了一遍,才渐渐有了眉目。
而通过此次的学习,不仅加深了对以前学过的知识的理解和掌握,同时,又对以后的实验有了底。
MATLAB的仿真,通过对它的熟练应用,相信可以让我们对自控知识的处理省下不少的精力。
六、实验仿真程序清单:
程序代码以及实验过程中的截图存放文件夹中。