现代航空发动机健康管理技术与应用
- 格式:pdf
- 大小:284.73 KB
- 文档页数:3
航空电气设备故障预测与健康管理探析摘要:在对航空可靠性、安全性与经济性进行分析的过程中,需要首先做好对航空电气设备的故障预测与健康管理工作,这样才可以实现对飞行器性能的全面把控。
在本文的分析中,主要阐述了航空电气设备故障预测与健康管理技术,为相关领域工作人员提供一定的参考,全面解决航空电气设备的故障问题。
关键字:航空电气;设备故障;健康管理引言:在对航空电气设备的故障依存与健康管理工作中,是全面预测飞机电气系统,并履行功能能力的关键所在。
例如,涉及到健康状态、剩余寿命等各种参数信息。
利用故障预测以及健康管理技术,可以实现对飞机的全面系统健康检查,并准确的确定故障的位置,以此实现辅助的决策信息提供。
1 故障预测与健康管理航空电气的设备故障预测与健康管理工作,是一种将健康管理与故障预测工作结合的工作内容。
健康管理主要是在期望系统正常性能状态下,针对航空电气设备与电气系统性能整体下降程度,或者出现的一些偏差程度进行分析。
故障预测的分析方式,便是对于历史数据以及现状进行分析,同时将其参数为主要依据,实现对故障信息的判断与分析,并结合系统功能进行预测性的评估。
在相关技术以及计算机网络技术高速发展与普及的当下,使得故障预测与健康管理技术,形成了较强的综合属性,并在飞机的检测工作中,发挥出了较强的作用[1]。
2 电气设备故障预测与健康管理系统建模分析在对过去的工作经验总结,发现常见的故障。
主要是在发电机机械磨损、定子绕组绝缘等一些物理故障问题。
利用搭建航空放电机的专用加速寿命的试验平台,可以较为直观的对现场机械设备的输入转速、处漏压力等各种零件,进行全面的参数采集与分析,并利用建模分析的方式,深入的了解零部件的实际情况,同时明确出内在联系与内在的寿命变化规律。
其次,设计寿命预测的模型建立,还需要利用模型的分析方式,对航空发电机寿命表征参数,以及后续的信息内容进行及时分析,从而保障故障预测与健康管理工作得到顺利的开展[2]。
航空装备无损检测技术现状及发展趋势摘要:科技在迅猛发展,社会在不断进步,无损检测(NDT)技术是一种具有低投入、高产出的典型工程应用技术。
它能够提高飞机、太空、发电站、船舶、汽车和建筑物的可靠性。
无损检测技术是一项应用非常广泛的技术,它与国家的重点项目建设密切相关,是我国目前急需解决的重大安全问题。
关键词:航空装备;无损检测;发展趋势引言在科学技术日新月异的背景下,无损检测技术获得了良好的发展,其发展水平成为国家装备制造工业水平的重要衡量标志。
航空制造技术作为我国今后发展的重点产业,其可靠性和安全性更为重要,将无损检测技术应用在航空装备的生产和制造等过程中,可以预测装备裂纹的发展规律,在一定程度上延长航空装备的使用寿命,便于损伤容限理论的有效实施。
1无损检测技术概述无损检测最初的目的是通过有效的化学、物理手段在不损坏被检测对象的情况下,对有关设计和工艺进行检验,评价其是否达标,从而为有关领域的材料、结构和产品决策等方面提供有效的信息输入,提供真实、可靠的数据支撑。
目前,在航空领域,无损检测技术的应用越来越广泛,比如激光超声、激光散斑、结构健康检测和红外热像技术等。
无损检测技术不但能够为产品的质量提供保证,还能有效减少原材料的消耗,在航空领域中发挥着重要的作用。
2航空装备无损检测技术2.1人员培训与资格认证体系无损检测专业涉及声、光、电、原子物理、计算机科学等众多学科知识,从事无损检测工作的人员必须经过培训并取得相应资质方可上岗。
航空维修无损检测工作借鉴国内外成熟做法,积极开展无损检测人员的培训与资格认证工作,成立了“无损检测人员培训与资格认证委员会”,组建强有力的师资队伍,编写系列配套的培训教材和相应考核题库、试件库,建立完整规范的培训、认证考核及档案管理的考核认证程序,开展相应的培训考核认证工作,形成了完整配套又相对独立的具有航空维修特色的航空装备无损检测人员培训与资格认证体系。
目前,着力在无损检测人员的培训上完善以下工作:一是调整培训的方式方法,根据不同的培训对象和不同的培训需求,开展多渠道、多形式的分层次培训。
机电一体化系统在航空领域的应用研究与设计优化引言:随着科技的飞速发展,在航空领域,机电一体化系统的应用正日益重要。
机电一体化系统是将机械与电子技术相结合,实现高效的能源转换和精确的控制。
本文将重点研究和探讨机电一体化系统在航空领域的具体应用及设计优化的方法。
一、机电一体化系统在航空领域的应用研究1. 飞行控制系统机电一体化系统在航空领域最为广泛地应用于飞行控制系统。
通过集成传感器、执行器和控制算法,实现对飞机的姿态、飞行状态、稳定性和操纵性能的控制。
同时,机电一体化系统还可以实现自适应控制、故障检测和冗余设计,提高飞行安全性和可靠性。
2. 发动机控制系统机电一体化系统在航空发动机的控制中起着关键作用。
通过集成传感器、液压元件和电子控制器,实现对发动机参数的实时监测和调整,提高发动机的燃烧效率、热力性能和可控性,降低燃料消耗和排放。
3. 航电系统机电一体化系统在航空电子设备的控制中具有重要应用价值。
通过集成各种传感器、显示器和通信设备,实现对飞行数据的采集、处理和传输,提供精准的导航和飞行控制指令,增强飞行员的辅助性功能,提高飞行效率和安全性。
二、机电一体化系统在航空领域的设计优化1. 系统集成设计机电一体化系统的设计首先需要对各个组成部分进行系统集成分析。
通过分析子系统之间的相互作用和信息流动,设计出合理的数据交互接口和信号传输机制,保证系统的高效协同运行。
2. 控制算法优化机电一体化系统的关键在于控制算法的优化。
通过建立精确的数学模型和控制策略,实现对系统的精确控制和优化调节。
同时,应用先进的控制算法,如自适应控制、模糊控制和神经网络控制,提高系统的自适应性和鲁棒性。
3. 故障检测与容错设计机电一体化系统在航空领域的应用要求具备高可靠性和容错性能。
通过集成故障检测传感器和检测算法,实时监测系统的状态和健康性,及时发现和定位故障,并采取相应的容错措施,确保系统的正常运行和安全性。
4. 能源管理与优化航空领域对能源管理和优化的要求较高。
DCWTechnology Study技术研究23数字通信世界2023.12航空发动机作为现代飞机的核心部件之一,是装备制造领域的最高端产品,一旦发生故障将会造成飞行安全事故,不仅会导致巨大的财产损失,还可能造成人员伤亡事故。
传统的航空发动机维护方式主要有两大类:一类是基于故障的事后维修方式,这种方式存在的最主要问题是无法提前主动预防故障;另一类则是周期性的维护维修,这类方式会带来一些不必要的维护,大大增加航空发动机的维护成本[1]。
发动机故障预测与健康管理,即利用数据分析和监测技术来提前发现可能的故障,并进行相应的维护和保养。
剩余使用寿命预测是发动机故障预测与健康管理最重要的内容,也是最大的技术难点。
随着该技术的不断深入,剩余使用寿命预测方法大致分为两个方向,分别是基于模型的方法和基于数据驱动的方法。
基于模型的剩余使用寿命预测方法需要对设备建立精确的数学物理模型来研究其退化机制,从而获得预测的发生故障时刻。
虽然该方法能够取得十分精确的结果,但是在实践中建立实际的物理退化模型十分困难。
基于数据驱动的剩余使用寿命预测方法相较于上述方法,较为简单易懂,并且随着数据样本量增加,将会得到更准确的结果。
基于数据驱动的剩余使用寿命预测方法按神经网络结构的深度可以分为两类:基于浅层机器学习的方法和基于深度学习的方法。
经过20多年的研究和发展,神经网络模型在设备剩余使用寿命预测领域表现出了很好的效果。
Shao Y [2]等提出了一种剩余寿命渐进预测的方法,该方法主要基于BP 神经网络预测轴承剩余寿命,验证了所提出方法具有很好的效果。
Wu 等[3]采用Dropout 提升LSTM 的泛化能力,在NASA 的航空发动机数据集上的预测效果优于RNN 算法。
综合来看,如何有效地提取发动机退化特征并且建立准确的剩余使用寿命预测模型是实现航空发动机剩余寿命预测的关键。
针对现有方法特征提取不充分,模型计算复杂度高,预测精度较低等问题,本文提出一种基于Transformer 模型结构的预测模型。
航空机电产品故障预测和健康管理技术作者:杜志兴来源:《科技创新导报》 2014年第16期杜志兴(中航金城南京机电液压工程研究中心江苏南京 211106)摘要:随着航天系统复杂性与综合性、智能化程度的提高,对航空机电产品的维护与保障的成本不断提高,同时由于组成环节与影响因素的增加,航空机电产品发生故障的几率也越来越大。
基于航空机电产品可靠、安全、经济方面考虑,故障预测与健康管理技术受到了越来越多的重视与应用。
在国内外的航空机电产品检测技术中,故障预测与健康管理技术已经成为了核心的技术。
该文主要介绍了故障预测与健康管理在航空机电产品中的发展情况,以航空机电产品为例对故障预测与健康管理技术进行了阐述与分析。
希望通过对故障预测与健康管理技术现状的描述来为未来更加先进的航空机电产品故障预测与健康管理技术的发展提供参考与依据。
关键词:航空机电产品故障预测与健康管理中图分类号:TP206文献标识码:A 文章编号:1674-098X(2014)06(a)-0164-01故障预测与健康管理技术的作用是监控和预测系统完成其功能的状态,其中包括剩余寿命、故障预测等。
相关的分析研究表明,故障预测与健康管理技术能够将维护的费用降低,提高系统或设备的完好、保证任务的成功。
电子系统的故障预测与健康管理技术已经成为了国内外的研究热点。
航空机电产品中也可以使用故障预测与健康管理技术,该文对其进行了探讨,希望为以后的航空机电产品的发展提供参考。
1 故障预测与健康管理技术概述故障预测与健康管理(Prognostic and Health Management,简称PHM)中包含着连个方面的内容,一方面是健康,即与期望的正常性能状态相比较的性能下降程度或偏差程度;另一方面是预测,即以系统现在或者历史性能状态为依据,对部件或者系统的功能状态进行预测性的诊断。
PHM技术的发展基础是传统的健康监控与故障诊断技术。
系统与设备性能不断增加、变得更为复杂,再加上信息技术的飞速发展,PHM技术的发展历程可以归结为从开始的外部测试发展到机内测试,渐渐地发展成为一门独立的学科,随着综合诊断的提出与不断发展,PHM体系形成并得到了完善。
航空发动机可靠性评估分析航空发动机是现代民用航空的核心组件,发动机的可靠性直接关系着航班的安全和航空公司的运营效益。
因此航空发动机的可靠性评估分析显得尤为重要。
一、航空发动机可靠性分析的概念航空发动机的可靠性评估分析是指通过数据分析、统计推算以及故障排除等方式,对航空发动机的性能进行综合评估以及可靠性分析。
此过程可以为发动机的进一步优化和提高提供参考,有助于提高航空发动机的可靠性与好处。
二、航空发动机可靠性分析的方法1.根本方法:统计数据分析通常情况下,固定时间内航空公司所检查到的发动机故障或飞行不正常事件等进行分析,得出故障次数、飞行小时数、平均故障率、平均修理时间、平均维修费用和平均使用费用等关键指标。
2. 监控方法:遥测系统遥测系统能够实时地给出航空发动机在飞行过程中的相关数据,例如各个传感器测量到的数据、电压和电流等数据。
这些数据能够及时反映发动机在飞行过程中的变化情况,诊断当前状态并预测未来的状态变化,有助于科学地分析航空发动机的可靠性。
3.检修方法:基于故障排除的发动机维护策略航空发动机故障排除法是从整个故障排除流程的管理和运用方面进行研究。
它通过整合回馈机制、发动机故障分析和故障根本原因分析,提高了故障排除流程的有效性和可靠性。
三、航空发动机可靠性分析的关键指标1.平均故障率平均故障率是指在特定时段内发生故障的数量与该时段的总使用量之比,代表了发动机的故障率水平,通过对平均故障率的分析可以发现发动机中存在的问题,可以改进和优化设计。
2.平均修理时间平均修理时间是故障修理开始到再次投入使用之间的平均时间,代表了发动机在出现故障后恢复运行的效率。
通过分析平均修理时间,可以评估航空发动机的可靠性水平是否达标。
3. 故障类型分布发动机的故障类型分布是指不同类型故障的数量及占比,通过分析故障类型分布可以发现发动机故障出现的主要原因,进一步分析原因,可以避免同类型故障反复发生。
四、航空发动机可靠性分析的发展趋势随着科技的进步,航空发动机可靠性评估分析方法在不断发展和完善,越来越多的新技术得以运用。
航空发动机滑油系统的现状与发展摘要:滑油系统是保证航空发动机机械传动系统正常工作必不可少的部分,随着中国航空发动机技术的发展进步,滑油系统的研究也不断深入,在元部件设计、子系统设计、系统整合和健康监视方面的自行研制上都有了长足的进步。
本文对发动机滑油系统的现状进行了分类,并阐述了未来先进滑油系统的发展方向。
关键词:滑油系统;在线监视;健康管理;航空发动机Keywords:oilsystem;on-linemonitoring;healthmanagement;aeroengine航空发动机是一种高度复杂和精密的热力机械,其条件十分苛刻,需要经受高转速、高温、高压的考验。
由于轴承转速高,并处于发动机中心,结构紧凑,润滑与隔热、散热条件较差,出现滑转、磨损、积炭和支承座裂纹等故障的几率较高,需要滑油系统润滑和冷却航空发动机各承力和传动部件,所以滑油系统的性能和工作的可靠性直接关系到发动机的工作性能和可靠性[1]。
长期以来我国航空发动机相关领域的研究主要偏重压气机、燃烧室、涡轮这三大部件,忽视了对滑油系统的研究工作,导致发动机滑油系统的设计难以满足现代高性能航空发动机的需要,已成为限制高性能发动机研制与发展的瓶颈。
近年来,随着中国航空发动机方面的发展,中国学者对滑油系统的研究也越来越深入,从元部件的设计[2]、子系统设计、系统整合和在线监视等方面进行了深入研究,滑油系统的研制得到了长足的发展。
1滑油系统的研究现状1.1对元部件的研究1.1.1供/回油泵主要功能为发动机轴承和传动部分润滑油的输送和抽回,一般为容积式齿轮泵,目前常采用的为外啮合齿轮泵或内啮合转子泵。
一般的研究方法为理论分析及CFD数值计算,通过已知供、回油系统边界条件来计算泵的性能,主要着眼的问题为齿轮泵的汽蚀现象和高空性能等。
1.1.2燃滑油散热器主要功能是冷却滑油,使滑油温度保持在正常范围,同时加热燃油。
目前普遍采用管壳式散热器。
一般的换热性能计算方法有效率-传热单元法、平均温差法、温差换热量性能曲线簇法和基于实验数据的改进方法等。