单轴、双轴太阳能跟踪系统受力分析及计算
- 格式:pdf
- 大小:137.76 KB
- 文档页数:2
太阳能双轴自动跟踪系统设计与研究太阳能是一种清洁、可再生的能源,越来越多的人开始关注和使用太阳能发电系统。
太阳能发电系统中,太阳能电池板的角度对能量转换效率影响很大。
为了使太阳能电池板能够始终面向太阳,保持最佳角度,研究和设计太阳能双轴自动跟踪系统是非常必要的。
首先,系统设计方面。
太阳能双轴自动跟踪系统主要由太阳能电池板、运动控制系统和传感器系统组成。
太阳能电池板负责转换太阳能为电能,是整个系统的核心部件。
运动控制系统根据传感器系统实时采集到的太阳位置数据,控制太阳能电池板的角度调整。
传感器系统包括光敏传感器和方位传感器,负责检测太阳的位置并将数据传输到运动控制系统。
在太阳能双轴自动跟踪系统的研究中,需要考虑以下几个问题。
首先是数据采集问题。
传感器系统需要实时采集太阳的位置数据,以便运动控制系统进行调整。
传感器系统应该具备高精度、快速响应的特点,以确保数据的准确性和系统的灵敏度。
其次是运动控制问题。
运动控制系统需要精确地控制太阳能电池板的角度调整,以达到最佳转换效率。
运动控制系统应该具备稳定性和高精度的特点,以确保太阳能电池板能够准确地跟踪太阳的位置。
此外,系统的安全性和稳定性问题也需要考虑。
例如,对于极端天气条件下的系统运行,系统应该具备抗风、抗雨和抗震能力。
太阳能双轴自动跟踪系统的研究还可以从以下几个方面展开。
首先是材料和结构的研究。
太阳能电池板的材料和结构对于系统的效率和稳定性有着重要影响。
通过研究和优化太阳能电池板的材料和结构,可以提高系统的效率和稳定性。
其次是算法和控制的研究。
根据实时采集到的太阳位置数据,运动控制系统需要精确地计算调整角度,并控制太阳能电池板的运动。
通过研究和优化算法和控制策略,可以提高系统的精度和响应速度。
综上所述,太阳能双轴自动跟踪系统的设计与研究非常重要。
通过合理设计系统的结构和算法,并优化材料和控制策略,可以提高太阳能发电系统的转换效率和稳定性。
这将对太阳能发电系统的普及和应用起到积极的促进作用,推动可持续能源发展。
太阳能双轴跟踪系统原理解析太阳能双轴跟踪系统原理解析1. 引言太阳能作为一种清洁、可再生的能源形式,受到了越来越多的关注和应用。
为了更高效地收集太阳能,提高太阳能发电系统的效率,太阳能双轴跟踪系统应运而生。
本文将深入探讨太阳能双轴跟踪系统的原理及其在太阳能发电领域的应用。
2. 太阳能双轴跟踪系统的基本原理太阳能双轴跟踪系统是一种能够根据太阳的位置来调整太阳能发电设备角度的系统。
它通过使用两个轴(水平轴和垂直轴)来实现对太阳能接收器的定位,以确保太阳能始终垂直照射到接收器上。
这种追踪方式与传统的固定式太阳能系统相比,能够使得接收器相对于太阳的角度始终保持最佳状态,从而提高太阳能发电的效率。
3. 太阳能双轴跟踪系统的构成太阳能双轴跟踪系统主要由以下几个组成部分构成:3.1 太阳能追踪控制器:该控制器根据预设的追踪算法和传感器采集的数据,来计算并控制太阳能发电设备的运动。
它可以通过控制执行机构,调整发电设备的角度和方向。
3.2 电动机或执行机构:太阳能双轴跟踪系统通过电动机或其它执行机构来实现设备的角度调整。
这些电动机或执行机构通过接收控制器的指令,将设备转动到正确的位置上。
3.3 传感器:为了准确地获取太阳的位置信息,太阳能双轴跟踪系统通常会配备多个传感器。
这些传感器可以是太阳光电传感器、倾斜传感器等。
它们通过检测太阳的位置和周围环境的变化,向控制器提供实时的反馈信息,以确保设备能够准确追踪太阳。
3.4 太阳能接收器:太阳能双轴跟踪系统最关键的一部分是太阳能接收器。
它通常由太阳能电池板或聚光器组成,用于将太阳光转化为电能。
通过精确地追踪太阳,太阳能接收器可以最大限度地吸收太阳的能量,提高太阳能的利用效率。
4. 太阳能双轴跟踪系统的优势相较于固定式太阳能系统,太阳能双轴跟踪系统具有以下几个优势:4.1 提高发电效率:通过追踪太阳的位置并使接收器始终垂直照射,太阳能双轴跟踪系统可以最大限度地吸收太阳能,提高发电效率。
平单轴、斜单轴、双轴自动跟踪技术选择分析方法众所周知,为提高光伏电站的发电量,降低度电成本,增加投资的经济效益,可以采用光伏自动跟踪技术。
从国内技术来讲,对非聚光形式有双轴跟踪、斜单轴、平单轴以下3种跟踪技术。
对各种跟踪方式优缺点比较如下:(1)双轴跟踪范围大的同时占地面积大,安装容量容易受安装环境影响;安 装相对复杂、抗风能力一般,一次性投入相对较高,在电池板价格低的情况下,经 济价值一般。
安装结构示意图参见图5-7。
(2)斜单轴单元安装容量、跟踪范围一方面受环境影响另一方面受顶杆电机 行程约束,抗风能力较好、安装比较简单,整个性价比较高,如果安装在斜坡上则 优势更明显。
(3)平单轴跟踪范围大、安装简单、容易扩展容量,容量大时造价低、抗风 能力强,经济性能高,更适合在赤道附近地区应用同时对地基平面要求高。
西限位开关水平电机东限位开关光强检测装置东西方向侧视图正视图图5-7 双轴跟踪示意图从发电效率来看:平单轴:发电量提高10%~20%,成本增加3%~5%,单机最大功率50kW (2008年底)。
斜单轴:发电量提高20%~30%,成本增加10%,单机最大功率3.3kW (2006年底)。
双轴:发电量提高30%~40%,成本增加15%,单机最大功率l0kW (2008年底)。
在光伏电站设计中,要不要跟踪,应因地而异,完全由综合技术经济性来判定。
从以上3种跟踪技术比较来说,通常是斜单轴跟踪费效比较好,平单轴适合于低纬度地区(30度内)。
对平板太阳电池方阵,在太阳电池组件已大幅降价之后,一般不必选择双轴跟踪。
因为双轴跟踪往往可靠性并不高,给维护带来麻烦,结果所谓得不偿失。
图5-8所示分别为斜单轴跟踪系统的原理图和前视图。
Z=维度Z=维度图5-8 斜单轴跟踪系统原理图。
太阳能双轴跟踪系统原理一、前言太阳能作为一种清洁、可再生的能源,越来越受到人们的关注和重视。
而太阳能跟踪系统则是提高太阳能利用效率的重要手段之一。
本文将详细介绍太阳能双轴跟踪系统的原理。
二、太阳能双轴跟踪系统的概述太阳能双轴跟踪系统是指通过控制电机驱动,使得光伏板始终朝向太阳,并保持与太阳光线垂直,从而最大限度地提高光伏板的发电效率。
该系统由控制器、电机、传感器和支架等组成。
三、控制器控制器是整个系统的核心部件,它负责接收传感器采集到的数据,并根据预设算法计算出正确的电机转动角度和方向,从而实现对光伏板的精确跟踪。
控制器还可以设置参数,如时间间隔、角度误差等。
四、电机电机是实现光伏板转动的关键部件,通常采用直流电机或步进电机。
在工作时,控制器会根据传感器采集到的数据计算出电机需要转动的角度和方向,并通过控制电流来驱动电机转动。
五、传感器传感器是实现太阳能跟踪的关键部件,它可以测量太阳的位置和光线的强度。
常用的传感器有光敏电阻、光电二极管、太阳能光伏电池等。
传感器采集到的数据将被送往控制器进行处理。
六、支架支架是安装在地面或屋顶上,用于支撑光伏板并实现转动的设备。
通常采用钢材或铝合金材料制成,具有足够强度和稳定性。
七、原理太阳能双轴跟踪系统的原理基于日地运动学原理。
地球绕着太阳公转,同时自转,因此在任何时刻都会有一个方向与太阳相对应。
通过精确测量这个方向,就可以实现对光伏板的精确跟踪。
具体来说,系统中安装有两个传感器:一个用于测量水平方向上的角度(俯仰角),另一个用于测量垂直方向上的角度(方位角)。
根据这两个角度以及当前时间和地理位置等信息,控制器可以计算出太阳的位置,并确定光伏板需要转动的角度和方向。
控制器通过驱动电机来实现光伏板的转动,使其始终朝向太阳,并保持与太阳光线垂直。
八、总结太阳能双轴跟踪系统是提高太阳能利用效率的重要手段之一,其原理基于日地运动学原理。
系统由控制器、电机、传感器和支架等组成,通过精确测量太阳位置和光线强度来实现对光伏板的精确跟踪。
光伏发电双轴智能跟踪系统设计摘要:随着经济与技术的共同发展,人们对于能源的需求越来越大,使得目前对于能源的消耗量逐渐增长,但是目前大多数能源还都是采用以往的化石燃料焚烧的方法来都得到。
因此,为了能够使得能源进行一定的优化与改善,就需要不断的探索并开发出新能源。
通过光伏发电双轴智能跟踪系统的应用,能够有效的实现将太阳能转化为电能,在该系统中采用了单片机、锂电池、光电传感器、电机等设备,通过这些设备的应用能够实现智能化的跟踪光源,充分的获取所需的太阳能,并将其合理的利用,有效的发挥该系统的作用。
本篇文章就对于光伏发底单双轴智能跟踪系统进行研究与分析,从而促进该系统的推广与应用,实现新能源的开发与应用。
关键词:光伏发电;智能跟踪系统;在光伏发电的实际应用过程中,其太阳能的有效利用成为了一大难题,因此,为了能够有效的获取充足的太阳能,并且提高电能生产的效率,需要对发电效率以及光能的获取这两项内容进行研究与分析。
对于地球而言,其每个地方所受到太阳照射的时间、程度都是不一样的,且其变化的速度非常快。
因此,为了能够保证光伏发电能够不受该问题的影响,能够获取充足的光能,需要设计出一种特殊的光伏发电系统,并且保证该系统的应用过程中太阳的位置光能发电板的位置能够相互匹配,提高光能的收集效率。
根据相关的研究发现,采用追踪模式能够有效的追踪光能的位置,从而提高光能获取的效率,因此光伏发电双轴智能跟踪系统的研发与应用是非常必要的。
1双轴智能跟踪系统的作用原理在双轴智能跟踪系统的应用过程中,需要相关设备及装置的支持,其中双轴智能跟踪装置发挥重要的作用,在该装置的内部通过应用两个同种类型的电机,能够实现对于高度以及角度的控制,从而保证光伏发电所使用的发电板能够时刻与太阳照射之间的角度保持在90度,在应用的过程中电机通过旋转来时刻的追踪太阳位置的变化情况。
在光伏发电双轴智能跟踪系统中还会利用光电传感器设备,通过该设备的应用能够有效的将光信号转化为电信号。
太阳能发电自动跟踪系统技术方案太阳能发电自动跟踪系统是一种能够根据太阳位置实时调整太阳能电池板角度的技术方案。
根据太阳的位置变化,自动跟踪系统可以最大程度地使太阳能电池板与太阳光源保持垂直,从而提高太阳能发电效率。
下面是一个关于太阳能发电自动跟踪系统技术方案的详细描述。
1.系统结构太阳能发电自动跟踪系统主要由以下组件组成:太阳能电池板、追踪装置、控制器和电池等设备。
太阳能电池板是核心组件,负责将太阳光转化为电能。
追踪装置通过电机和传感器实现对太阳能电池板角度的调整。
控制器则负责收集太阳位置信息,控制追踪装置的工作,并实时监测太阳能发电系统的工作状态。
2.工作原理太阳能发电自动跟踪系统的工作原理是基于太阳位置的实时计算和反馈控制的。
系统通过安装在太阳能电池板上的传感器,实时监测太阳位置,并将数据传输给控制器。
控制器会根据太阳位置信息,计算出太阳能电池板需要调整的角度,并通过追踪装置调整电池板的角度,使其面向太阳。
3.太阳位置计算太阳位置计算是太阳能发电自动跟踪系统的核心算法之一、根据地理位置和时间,可以通过公式计算出太阳高度角和方位角。
高度角表示太阳光线与地平面的夹角,而方位角表示太阳在东西方向上的位置。
利用这些数据,可以精确计算出太阳在天空中的位置。
4.追踪装置追踪装置是太阳能发电自动跟踪系统的核心部件之一、它包括电机和支架,能够根据控制器的指令,调整太阳能电池板的角度。
追踪装置可以分为单轴和双轴两种类型。
单轴追踪装置只能实现水平角度的调整,而双轴追踪装置还可以调整垂直角度。
5.控制器控制器是太阳能发电自动跟踪系统的关键组件之一、它负责收集太阳位置数据,并根据算法计算太阳能电池板需要调整的角度。
控制器还可以监测系统的工作状态,并根据环境条件进行智能调节,例如在阴天或夜间停止跟踪,以节省能源。
6.电池电池是太阳能发电自动跟踪系统的能量储存装置。
太阳能发电系统不仅可以随着太阳位置的变化而调整电池板的角度,同时也可以将多余的电能储存到电池中,以备不时之需。
太阳能双轴跟踪控制系统工作流程太阳能是一种清洁、可再生的能源,近年来得到了广泛的应用。
然而,由于太阳能的收集效率与太阳的位置有关,因此需要使用太阳能跟踪系统来提高太阳能的收集效率。
太阳能双轴跟踪控制系统是一种高效的太阳能跟踪系统,下面将介绍该系统的工作流程。
一、系统结构太阳能双轴跟踪控制系统由以下几部分组成:1. 太阳能电池板:用于收集太阳能供电。
2. 电机和减速器:用于控制太阳能电池板的运动。
3. 传感器:用于检测太阳的位置和太阳能电池板的位置。
4. 控制器:用于控制电机和减速器的运动,使太阳能电池板始终面向太阳并跟随太阳运动。
二、系统工作原理太阳能双轴跟踪控制系统的工作原理如下:1. 传感器检测到太阳的位置。
2. 控制器接收传感器的信号,并计算出太阳能电池板需要转动的角度和方向。
3. 控制器控制电机和减速器的运动,使太阳能电池板始终面向太阳并跟随太阳运动。
4. 传感器不断检测太阳的位置,并向控制器发送信号,控制器根据信号调整太阳能电池板的位置。
5. 太阳能电池板始终面向太阳并跟随太阳运动,从而提高太阳能的收集效率。
三、系统优点太阳能双轴跟踪控制系统具有以下优点:1. 收集效率高:太阳能双轴跟踪控制系统可以使太阳能电池板始终面向太阳并跟随太阳运动,从而提高太阳能的收集效率。
2. 稳定性强:太阳能双轴跟踪控制系统可以根据传感器检测到的太阳位置进行实时调整,保证太阳能电池板始终面向太阳并跟随太阳运动,从而保证系统的稳定性。
3. 适应性强:太阳能双轴跟踪控制系统可以适应不同的地理位置和气候条件,从而适用范围广。
4. 节能环保:太阳能双轴跟踪控制系统使用太阳能作为能源,不产生污染物,具有良好的节能环保效果。
四、系统应用太阳能双轴跟踪控制系统可以广泛应用于太阳能发电、太阳能光热利用等领域。
例如,在太阳能发电中,太阳能双轴跟踪控制系统可以提高太阳能电池板的收集效率,从而提高发电量;在太阳能光热利用中,太阳能双轴跟踪控制系统可以调整太阳能集热器的位置,从而提高集热效率。
基于单片机的双轴太阳光追踪器设计太阳能作为一种洁净的能源,是一种可再生能源,有着化石能源无法比拟的优越性,但太阳能利用效率低,这一问题一直影响和阻碍人们对太阳能的利用,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了人们对太阳能的利用率。
本设计采用光电跟踪的方法,利用步进电机驱动,设计了双轴独立自动太阳跟踪控制系统。
通过对跟踪机构进行水平、垂直两个自由度的控制,调整太阳能电池板的角度实现对太阳的跟踪。
采用单片机来实现的太阳能追踪系统能有效提高太阳板的光电转化效率,并具有较广泛的应用前景。
标签:太阳能;跟踪;光敏二极管;单片机;步进电机太阳能作为一种清洁的可再生的新型能源,受到了人们的广泛重视,目前利用太阳发电的方式主要有光伏发电、光热发电等,它们均为固定安装,无法根据太阳光的不断变化,来调整迎光面,做不到太阳光的实时垂直照射,这样就会使太阳能资源得不到充分利用,所以有必要研究如何最大程度地提高太阳能的利用率。
要提高太阳能的利用率,应从两个方面入手,一是提高太阳能的接收效率,二是提高太阳能装置的能量转换率。
其中,太阳能的接收效率与太阳光的照射角度有关,已经有人研究了太阳光角度与太阳能的接收效率的关系,理论分析表明:太阳的非跟踪与跟踪,能量的接收率相差37.7%,精确的跟踪太阳可使太阳能接收装置的热效率大为提高,进而可以提高太阳能的利用率。
现阶段市场上使用的跟踪系统有单轴太阳能自动跟踪器、步进式太阳能自动跟踪、可自动跟踪的太阳灶、五像限法太阳自动跟踪仪、单轴液压式自动跟踪、极轴式跟踪。
它们存在结构复杂、跟踪精度不高、不能全自动跟踪等不足。
1 设计方案本设计可使太阳光永远垂直照射在接收面上,提高了太阳能的吸收率和转化率,设计结构简单,成本低廉,单片机控制稳定,能自动跟踪阳光,最大面积地吸收太阳光能,合理利用了资源。
追日性能良好的太阳能电池板双轴自动追踪系统,使太阳能电池板在南北、东西两个方向追踪太阳,提高太阳能利用率。
《太阳能电池板追日自动跟踪系统的研究》篇一一、引言随着科技的不断进步和环保意识的日益增强,太阳能作为一种清洁、可再生的能源,其利用和开发受到了广泛关注。
太阳能电池板作为太阳能利用的核心设备,其效率和性能的优化显得尤为重要。
本文将着重研究太阳能电池板追日自动跟踪系统,探讨其原理、优势及其在太阳能利用中的应用。
二、太阳能电池板追日自动跟踪系统的原理太阳能电池板追日自动跟踪系统是一种利用传感器和控制系统,使太阳能电池板能够根据太阳的运动轨迹进行自动调整的系统。
该系统通过传感器实时检测太阳的位置,然后通过控制系统驱动电机,使电池板面向太阳,从而提高太阳能的利用率。
三、追日自动跟踪系统的优势1. 提高太阳能利用率:通过自动跟踪太阳的运动轨迹,太阳能电池板能够始终保持最佳的角度接收太阳光,从而提高太阳能的利用率。
2. 增加发电量:由于电池板能够实时调整角度,使得其在一天中能够接收更多的太阳光,从而增加发电量。
3. 延长电池板使用寿命:自动跟踪系统能够减少因阴影、灰尘等因素导致的电池板效率降低的问题,从而延长电池板的使用寿命。
四、追日自动跟踪系统的实现方式目前,追日自动跟踪系统主要有单轴和双轴两种实现方式。
1. 单轴追日自动跟踪系统:该系统只有一个旋转轴,只能进行单方向的旋转。
通过在东、西两个方向上进行旋转,使电池板始终面向太阳。
这种实现方式相对简单,成本较低。
2. 双轴追日自动跟踪系统:该系统具有两个旋转轴,能够在水平和垂直两个方向上进行旋转。
通过精确控制两个轴的旋转,使电池板能够精确地跟踪太阳的运动轨迹。
这种实现方式虽然成本较高,但能够提高太阳能的利用率和发电量。
五、追日自动跟踪系统的应用太阳能电池板追日自动跟踪系统已广泛应用于太阳能电站、光伏发电站、太阳能热水器等领域。
在太阳能电站中,通过使用追日自动跟踪系统,可以提高发电量,降低发电成本,提高经济效益。
在光伏发电站和太阳能热水器中,通过使用追日自动跟踪系统,可以提高设备的性能和寿命,降低维护成本。
光伏斜单轴相对于平单轴、双轴收益率摘要:1.光伏斜单轴概述2.光伏平单轴、双轴收益率对比3.光伏斜单轴的优势及应用场景4.投资决策建议正文:随着光伏发电在我国的普及和技术的不断进步,光伏支架系统的种类也日益丰富。
本文将重点探讨光伏斜单轴相对于平单轴、双轴的收益率问题,帮助投资者更好地选择合适的光伏支架系统。
首先,我们来了解一下光伏斜单轴。
光伏斜单轴跟踪系统是一种采用单一轴线进行跟踪的光伏支架系统,能够根据太阳的运动轨迹自动调整光伏板的角度,以最大限度地接收太阳能。
相较于平单轴和双轴跟踪系统,光伏斜单轴在安装成本、维护难度等方面具有更高的性价比。
接下来,我们对比一下光伏平单轴、双轴与斜单轴的收益率。
根据国内外众多研究数据和实践经验,光伏斜单轴的收益率普遍高于平单轴和双轴。
原因在于,斜单轴跟踪系统能够在一定程度上减少阴影对光伏板的影响,提高太阳能的利用率。
同时,斜单轴跟踪系统的结构更为简单,降低了故障率和维护成本。
在相同的投资成本下,斜单轴的发电量更高,收益率相应更高。
那么,光伏斜单轴的优势及应用场景有哪些呢?首先,斜单轴跟踪系统适用于地势较为平坦的地区,能够适应不同地形和土壤条件。
其次,斜单轴跟踪系统适用于太阳能资源丰富的地区,能够最大限度地发挥其发电潜力。
最后,斜单轴跟踪系统适用于对发电量有较高要求的投资者,其较高的收益率和发电量能够满足投资者的需求。
最后,针对投资者在选择光伏支架系统时的困惑,我们给出以下建议:在投资前,充分了解各种光伏支架系统的性能、成本和收益情况;根据项目所在地的地理、气候和太阳能资源条件,选择适宜的支架系统;在确保投资收益的同时,兼顾支架系统的稳定性和维护成本。
总之,光伏斜单轴作为一种具有较高收益率和实用性的支架系统,值得投资者关注和选择。
总之,光伏斜单轴作为一种高效、实用的支架系统,在收益率方面具有明显优势。
光伏斜单轴相对于平单轴、双轴收益率光伏发电是目前比较常见的一种可再生能源发电方式,而光伏斜单轴、平单轴和双轴是光伏发电系统中比较常见的三种跟踪方式。
在这三种方式中,光伏斜单轴和平单轴是比较常见的方式,而双轴由于需要更多的运动部件和控制系统,因此使用相对较少。
光伏斜单轴相对于平单轴和双轴的收益率有何不同呢?首先我们需要了解一下这三种方式的工作原理。
光伏斜单轴系统是指光伏组件能够在一条轴线上进行水平旋转,并且可以在一定角度范围内进行倾斜。
这样的设计,可以使得光伏组件在不同时间段和季节都能够更好地面对太阳辐射,从而提高能量收集效率。
平单轴系统是指光伏组件只能在一条水平轴线上旋转,而无法进行倾斜。
这样的设计,使得光伏组件只能根据太阳的位置进行水平旋转,无法在不同季节和时间段内对太阳辐射进行更好的面对,因此会使得能量收集效率相对稍低。
双轴系统是指光伏组件可以在两个轴线上进行旋转,既可以水平旋转,也可以进行倾斜。
这样的设计,使得光伏组件可以更好地追踪太阳的位置,从而提高能量收集效率。
但是由于双轴系统需要更多的运动部件和控制系统,造价相对较高,因此使用相对较少。
综上所述,光伏斜单轴相对于平单轴和双轴在能量收集效率上具有明显的优势。
其主要有以下几点原因:首先,光伏斜单轴系统可以根据具体的情况进行倾斜,从而更好地面对太阳辐射。
在不同的季节和时间段内,太阳的高度角都会有所不同,如果光伏组件能够通过倾斜进行调整,就可以更好地接收太阳辐射能量,从而提高能量收集效率。
其次,光伏斜单轴系统在水平旋转的情况下,也可以更好地面对太阳辐射。
由于光伏斜单轴系统可以灵活调整角度,因此可以在不同时间段内,根据太阳运动的轨迹进行跟踪,使得光伏组件始终能够面对太阳,从而提高能量收集效率。
另外,光伏斜单轴系统相对于双轴系统的造价更低。
由于双轴系统需要更多的运动部件和控制系统,造价相对较高,因此使用相对较少。
而光伏斜单轴系统只需要进行水平旋转和倾斜,因此在造价上更具有优势。
内蒙古工业大学硕士学位论文光伏发电自动跟踪系统姓名:张嘉英申请学位级别:硕士专业:检测技术与自动化装置指导教师:陈爱国20060601摘要以常规能源为基础的能源结构随着资源的不断耗用将愈来愈不适应可持续发展的需要,加速开发利用太阳能等可再生能源已成为人们的共识。
利用洁净的太阳光能,以半导体光生伏打效应为基础的光伏发电技术有着十分广阔的应用前景。
本课题主要论述了单轴太阳能自动跟踪系统的设计方法。
对自动跟踪控制系统的组成及其功能进行了详细的分析与研究,采用单片机C8051F310作为控制芯片,设计了整套自动跟踪装置。
所设计出的系统具有体积小、功耗低、成本低、抗干扰能力强等特点。
单轴太阳能自动跟踪系统通过单片机控制系统自动跟踪太阳方位角,高度角可手动进行调整,使太阳能电池保持较大的发电功率。
通过对单轴自动跟踪系统与双轴自动跟踪系统发电效率的比较,理论证明它的可行性。
本设计取消了用于检测太阳能电池板法线与太阳光线间夹角的传感器,而直接利用太阳能电池板发电量作为角度调节依据实现控制。
我国牧区大量使用的是无跟踪的光伏系统,太阳能发电效率较低。
本文所述的单轴跟踪系统,结构简单,性价比高,特别适宜在这些地区使用。
关键词:光伏系统;太阳角自动跟踪;单轴跟踪系统IAbstractWith the resources being used continuously, the energy structure based on conventional energy resources will not more and more adapt to requirement of sustainable development. So accelerating the exploitation and utilization of renewable resources that solar energy is principle part has been our common ideas. Using the clean solar light energy, the technology of photovoltaic generating electricity is very promising. The thesis presents a new optimal design method.This thesis mainly describes a method of single axis solar energy automatic tracing system. Every part of this automatic system and its function are analyzed in detail. A set of automatic tracing device is designed with Microcontroller C8051F310. This system has four characteristics, such as smaller cubage, lower power, lower cost, more robust despite strong interfere . Moreover, some programs are designed to debug the designed system, to test its reliability and the results of test are given.Single axis solar energy automatic tracing system follows the orientation angle with Microcontroller system.Height angle can be adjusted by hand ,it makes the solar cell keep the higher electricity power.The single axis solar energy automatic tracing system is compared with the double axis solar energy automatic tracing system,we testify its feasibility in theory . Double axis solar energy automatic tracing system consists of solar transducer,this device gets rid of transducer,it uses power of solar cell as angle regulation basis to realize controlling.In a pasturing area of our country, they use photovoltaic system without tracing device, solar electricity efficiency is lower, the tracing system we designed has better tracing effect ,its configuration is simple, the capability price ratio is high,it is adapt to be use there in particular.Key words:Photovoltaic system; Solar angle automatic tracing; Single axis tracing systemII原创性声明本人声明:所呈交的学位论文是本人在导师的指导下进行的研究工作及取得的研究成果。
单轴跟踪系统与双轴跟踪系统的比较/news/785.html时间:2011-12-12 08:34 来源:Powerway 点击:497 次太阳能作为一种清洁无污染的能源,发展前景非常广阔,已成为各国竞相开发的绿色能源。
但太阳能存在着密度低,间歇性,光照方向和强度不断随时间变化等问题。
传统的太阳能电池...太阳能作为一种清洁无污染的能源,发展前景非常广阔,已成为各国竞相开发的绿色能源。
但太阳能存在着密度低,间歇性,光照方向和强度不断随时间变化等问题。
传统的太阳能电池板大都采用固定式安装,即电池板固定在某个角度,不随太阳的位置变化而变化。
严重影响光电转化效率,据推算:如果光电系统与太阳光线角度存在25度偏差,就会因垂直入射的辐射能减少而使光伏阵列输出功率下降10%左右。
一年四季春夏秋冬,白天到晚上太阳的起落,太阳光线角度,时刻都在变化。
因此如何在随着光线角度改变电池面板角度,来提升光伏转换率,这就切入到我们主题,单轴跟踪系统与双轴跟踪。
本文将通过结构以及运动机构两者的不同点,还有不同纬度地区单轴及双轴跟踪的投资回报率做个比较。
单轴跟踪,顾名思义,即只有一个旋转轴,来改变电池板的位置角度,来达到太阳光线垂直于电池面板光射强度的最大化,从而提高光伏转化率。
单轴跟踪根据转轴的方位可以分为:水平单轴跟踪,倾斜单轴跟踪,竖直单轴跟踪。
如果按照运动机构动力执行件类型,以及传动系统类型又可以分为:电动推杆单体结构类型,电动推杆联动结构类型,回转减速器单体结构类型,回转减速器联动结构。
水平单轴斜单轴联动结构水平单轴单轴跟踪由电池板支撑系统,转轴梁,动力驱动系统,电动控制系统,中央监控系统等组成。
水平跟踪适合在纬度低于30度的地区内使用,可以提高20%-30% 的发电量斜单轴跟踪以及垂直单轴跟踪适合在纬度高于40的区域使用,可以提高25%-35%的发电量。
双轴跟踪,顾名思义,是指具备两个方向的旋转轴。
这样电池板可以在太阳的方位角,以及高度角上同时跟踪太阳。
单轴、双轴太阳能跟踪系统受力分析及计算
暨太阳能电池板受力,仰角和水平方向的驱动扭矩分析及计算公式
在太阳能跟踪系统中,受外部风力的影响是在设计时需要考虑的重要环节,决定着整套系统的稳定性和安全性,下面是太阳能光伏跟踪发电系统中一些计算公式和经验,对于初入太阳能或已经从事太阳能跟踪发电的工程技术人员有着很好的借鉴和帮助作用。
太阳能跟踪设计原理简易图:
一、太阳能电池板受到风力计算
太阳能电池板受到风力也就是支架、立柱及跟踪传动部件的受力情况,在设计时各部件均要克服也就是大于其所承受的力,整套系统在实际使用过程中才能够安全可靠的运行。
太阳能电池板受到风力计算公式如下:
F=CA*A*WO*cos(a)
式中:F——太阳板上所受的力kg;CA——安全系数,取1.3~1.4;A—太阳板面积平方米(m2);WO——风压kg/m2,风压WO的标准,通常我们应该考虑其最大、最恶劣的使用工况,要按照30年一遇的11级暴风,风速 30m/s计算,其风压WO=60kg/m2 cos(a) ——太阳能电池板最大工作角度
举例:63m2的太阳能电池板受风力是多少?
依照公式:F=CA*A*WO*cos(a)
带入公式:F=1.4*63*60*0.9063(cos25)=4796kg
分析:
1、支架的强度
支架的轴向负载载荷要大于等于4796kg+太阳能板本身重量kg
2、立柱的强度
立柱的抗弯曲和剪切力要大于等于4796kg
3、跟踪传动部件的强度
跟踪传动部件的轴向和径向载荷要大于等于4796kg+系统本身重量
二、仰角方向驱动扭矩计算
仰角方向的驱动扭矩,即整个跟踪系统驱动仰角方向时所需要的动力。
驱动
扭矩的合理选择决定着整套系统的发电效率的高低和系统的正常运行,电机的功
率过大会消耗更多的太阳能电池板自身的发电能量,减低整套系统的发电效率;电机功率太小,驱动不了整套系统,不能正常运行。
仰角方向驱动扭矩计算
M1=CM*A*WO*D* cos(a) *10
式中:M1——太阳板上所受的仰角方向扭力矩Nm;CM——安全系数,取0.02~0.04;A——太阳板面积m2;WO——风压kg/m2;, (按照最大工作状态7级风,风速15m/s计算,WO=15kg/m2) D——太阳能板最大受力方向的尺寸m cos(a) ——太阳能电池板最大工作角度
举例:63m2的太阳能电池板仰角方向驱动扭矩是多少?太阳能板受力方向的尺
寸7.5m
依照公式:M=CM*A*WO*D* cos(a) *10
带入公式:M=0.02*63*15*9*0.9063*10=1541 Nm
最终经过若干级的减速后,输出扭矩达到1541Nm即可驱动63m2的太阳能仰角
方向的电池板。
三、水平方向驱动扭矩计算
水平方向的驱动扭矩相对较小一些,按照摩擦力计算即可以了。
这里要考虑
2方面的摩擦力,一方面是整个支架和电池板的自身重量产生的摩擦力和风对电
池板产生的摩擦力。
整体太阳能电池板相对与跟踪传动轴心的倾覆力矩而产生的
摩擦力可忽略不计,取值稍比实际计算的大些就可以了。
M2=CM*(F+N) *10
式中:M2——太阳板上所受的水平方向扭力矩Nm;CM——摩擦系数,取0.005~0.01;F——太阳板上所受的力kg; N——系统自身重量kg
举例:63m2的太阳能电池板水平方向驱动扭矩是多少?电池板及支架重量假设
N =2000kg
依照公式:M2=CM*(F+N) *10
带入公式:M2=0.01*(4796+2000) *10=679 Nm 取700Nm
最终经过若干级的减速后,输出扭矩达到700Nm即可驱动63m2水平方向的太
阳能电池板。