LMS及RLS自适应干扰抵消算法的比较
- 格式:doc
- 大小:569.86 KB
- 文档页数:25
MATLAB 仿真实现LMS 和RLS 算法题目:序列x(n)有AR (2)模型产生:)()2()1()(21n w n x a n x a n x +-+-=,w(n)是均值为0、方差为1的高斯白噪声序列。
.7.0,4.121-==a a 用LMS 算法和RLS 算法来估计模型参数21,a a 。
按照课本第三章63页的要求,仿真实现LMS 算法和RLS 算法,比较两种算法的权值收敛速度,并对比不同u 值对LMS 算法以及λ值对RLS 算法的影响。
解答:1 数据模型(1)高斯白噪声用用randn 函数产生均值为0、方差为1的标准正态分布随机矩阵来实现。
随后的产生的信号用题目中的AR (2)模型产生,激励源是之前产生的高斯白噪声。
(2)信号点数这里取为2000,用2000个信号来估计滤波器系数。
(3)分别取3个不同的u 、λ值来分析对不同算法对收敛效果的影响。
其中u=[0.001,0.003,0.006],lam=[1,0.98,0.94]。
2 算法模型2.1自适应算法的基本原理自适应算法的基本信号关系如下图所示:图 1 自适应滤波器框图输入信号x(n)通过参数可调的数字滤波器后产生输出信号y(n),将其与参考信号d(n)进行比较,形成误差信号e(n)。
e(n)通过某种自适应算法对滤波器参数进行调整,最终是e(n)的均方值最小。
当误差信号e(n)的均方误差达到最小的时候,可以证明信号y(n)是信号d(n)的最佳估计。
2.2 LMS 算法简介LMS 算法采用平方误差最小的原则代替最小均方误差最小的原则,信号基本关系如下:1()()()()()()(1)()2()()(0,1,2,....1)N i i i y n w n x n i e n d n y n w n w n e n x n i i N μ-=-=-+=+-=-∑写成矩阵型式为:()()()()()()(1)()2()()T y n W n X n e n d n y n W n W n e n X n μ==-+=+式中,W(n) 为n 时刻自适应滤波器的权矢量,011()[(),(),....()]TN W n w n w n w n -=,N 为自适应滤波器的阶数;X( n) 为n 时刻自适应滤波器的参考输入矢量,由最近N 个信号采样值构成,()[(),(1),....(1)]TX n x n x n x n N =--+;d ( n) 是期望的输出值;e ( n) 为自适应滤波器的输出误差调节信号(简称失调信号) ;μ是控制自适应速度与稳定性的增益常数,又叫收敛因子或步长因子。
自适应滤波器(分别采用LMS 和RLS 算法)对IIR 系统辨识1. LMS 和RLS 算法简介LMS 自适应滤波算法是以均方误差最小为准则的,其意义是是滤波器的输出信号和需要信号的误差平方的统计平均值最小,这个准则是依据输入数据的长期统计特性寻求最佳滤波的。
而最小二乘(RLS )算法是只依据一组数据来寻求最佳滤波的方法。
因此,LMS 滤波是统计意义上的最佳滤波器,而RLS 滤波是针对不同的数据组生成不同的最佳滤波器。
RLS 算法实际上是FIR 维纳滤波器的一种时间递归算法,它是严格以最小二乘方准则为依据的算法。
它的主要优点是收敛速度快,因此,首先在快速信道均衡,实时系统辨识和时间序列分析中得到广泛应用。
其主要缺点是每次迭代计算量很大(对于L 阶横向滤波器,计算量数量级为2L ),因此,在信号处理中它的应用曾一度收到限制。
但是近年来人们重新对它产生了兴趣,主要是因为它具有收敛速度快的优点。
RLS 算法的关键是用二乘方的时间平均的最小化准则取代最小均方准则,并按时间迭代计算。
具体来说,是要对初始时刻到当前时刻所有误差的平方进行平均并使其最小化,在按照这一准则确定FIR 滤波器的权系数矢量w ,即所依据的准则是20()()min nk n e k ε===∑ (1)其中()()()e k d k y k =-式中,()d k 是期望响应,()y k 是L 阶FIR 滤波器的输出相应,即()()()T T y k k k ==w x x w (2)2. 自适应滤波器系统辨识原理如下图所示为自适应滤波器辨识未知系统的基本结构图,其中未知系统可以使FIR 结构,也可以是IIR 结构。
在结构图中,x(n)为辨识系统而产生的输入信号,通常可以选择为白噪声,同时输入未知系统和自适应滤波器。
d(n)为未知系统的输出信号,即自适应滤波器的参考信号。
调整自适应滤波器的系数,使误差信号e(n)的均方误差达到最小,则自适应滤波器的输出y(n)近似等于未知系统的输出d(n)。
目前常见的自适应算法研究与比较常见自适应滤波算法有:递推最小二乘算法,最小均方误差算法,归一化均方误差算法,快速精确最小均方误差算法,子带滤波,频域的自适应滤波等等。
其中最典型最有代表性的两类自适应算法就是递推最小二乘算法和最小均方误差算法,以下对几种较常用的算法进行介绍:1、递归最小二乘法(RLS)RLS 算法的基本方法为:K(n) 称为Kalman 增益向量,λ是一个加权因子,其取值范围0 <λ< 1 ,该算法的初始化一般令H( - 1) = 0及P( - 1) = 1/δI,其中δ是小的正数。
2、最小均方误差算法(LMS)最小均方误差算法(LMS)是一种用瞬时值估计梯度矢量的方法,即(1)按照自适应滤波器滤波系数矢量的变化与梯度矢量估计的方向之间的关系,可以写出LMS算法调整滤波器系数的公式如下所示:(2)上式中的为步长因子。
值越大,算法收敛越快,但稳态误差也越大;值越小,算法收敛越慢,但稳态误差也越小。
为保证算法稳态收敛,应使在以下范围取值:从收敛速度来看,RLS 算法明显优于LMS 算法,但RLS 算法在运算上却比LMS 算法复杂得多,为了减小计算复杂度,并保留RLS 的收敛性能,人们提出了一些改进的RLS 算法。
如RLS 格型算法,快速RLS 算法,梯度格型算法,快速横向滤波器算法等。
总的来看,这些以收敛法都是以运算速度换取运算复杂性。
于是人们研究介于两者之间的一种算法, 如共轭梯度法、自仿射投影算法等。
共轭梯度法不需要RLS 中的矩阵运算,也没有某些快速RLS 算法存在的不稳定问题,但它的缺点是稳态误差比较大。
而LMS 算法的优点是运算简便,但它只有一个可调整参数,即步长因子μ ,可以用来控制收敛速率, 由于μ的选择受系统稳定性的限制, 因此, 算法的收敛速度受到很大限制。
为了加快收敛速度人们提出许多改进的LMS 算法。
(1)块处理LMS算法(BLMS)为了对付LMS运算量大的问题,在LMS基础上提出了块处理LMS(BLMS)。
基于LMS和RLS算法的自适应滤波器仿真自适应滤波器是一种可以自动调整其权重参数来适应不断变化的信号环境的滤波器。
常用的自适应滤波算法包括最小均方(LMS)和最小二乘(RLS)算法。
本文将对基于LMS和RLS算法的自适应滤波器进行仿真,并分析其性能和特点。
首先,介绍LMS算法。
LMS算法是一种基于梯度下降的自适应滤波算法。
其权重更新规则为:w(n+1)=w(n)+μ*e(n)*x(n),其中w(n)为当前时刻的权重,μ为步长(学习速率),e(n)为当前时刻的误差,x(n)为输入信号。
通过不断迭代和更新权重,LMS算法可以使滤波器的输出误差逐渐减小,从而逼近期望的输出。
接下来,进行LMS自适应滤波器的仿真实验。
考虑一个声纳系统的自适应滤波器,输入信号x(n)为声波信号,输出信号y(n)为接收到的声纳信号,期望输出信号d(n)为理想的声纳信号。
根据LMS算法,可以通过以下步骤进行仿真实验:1.初始化权重w(n)为零向量;2.读取输入信号x(n)和期望输出信号d(n);3.计算当前时刻的滤波器输出y(n)=w^T(n)*x(n),其中^T表示矩阵的转置;4.计算当前时刻的误差e(n)=d(n)-y(n);5.更新权重w(n+1)=w(n)+μ*e(n)*x(n);6.重复步骤2-5,直到滤波器的输出误差满足预设条件或达到最大迭代次数。
然后,介绍RLS算法。
RLS算法是一种递推最小二乘的自适应滤波算法。
其基本思想是通过不断迭代更新滤波器的权重,使得滤波器的输出误差的二范数最小化。
RLS算法具有较好的收敛性和稳定性。
接下来,进行RLS自适应滤波器的仿真实验。
基于声纳系统的例子,RLS算法的步骤如下:1.初始化滤波器权重w(n)为一个较小的正数矩阵,初始化误差协方差矩阵P(n)为一个较大的正数矩阵;2.读取输入信号x(n)和期望输出信号d(n);3.计算增益矩阵K(n)=P(n-1)*x(n)/(λ+x^T(n)*P(n-1)*x(n)),其中λ为一个正则化参数;4.计算当前时刻的滤波器输出y(n)=w^T(n)*x(n);5.计算当前时刻的误差e(n)=d(n)-y(n);6.更新滤波器权重w(n+1)=w(n)+K(n)*e(n);7.更新误差协方差矩阵P(n)=(1/λ)*(P(n-1)-K(n)*x^T(n)*P(n-1));8.重复步骤2-7,直到滤波器的输出误差满足预设条件或达到最大迭代次数。
LMS和RLS算法应用及仿真分析
LMS算法(Least Mean Squares)是一种基于梯度下降策略的机器学
习算法,它主要应用于解决系统辨识、信号分类和数据拟合等问题。
LMS
算法是一种收敛率较高的优化算法,由于其算法简单、快速,因此在工业
中被广泛应用。
基本原理:LMS算法的基本原理是进行参数更新,以最小化残差平方
和(RSS)作为目标函数,从而改善结果的稳定性和准确性。
LMS算法的
另一个重要思想是,在学习过程中每次迭代都仅使用当前一个输入和相应
的输出。
因此,该算法不需要获得训练样本数据的完整集合,可以仅仅从
一个训练样本中获得有限的信息,并通过这种限定的信息进行迭代。
LMS算法的算法步骤:
(1)初始化参数θ;
(2)给定一个输入样本xn,根据当前的参数θ计算出预测输出ŷn;
(3)根据已知的真实输出dn,计算出当前的残差en;
(4)根据梯度下降法更新参数θ;
(5)重复2~4步,直到达到目标函数的收敛性。
仿真分析:
首先,使用Matlab仿真模拟LMS算法,以模拟实际的系统辨识任务。
MIMO均衡算法(CMALMSRLS)原理介绍MIMO(Multiple Input Multiple Output)均衡算法是用来解决多输入多输出通信系统中的信号干扰问题的一种方法。
MIMO系统是一种通过在发送和接收端使用多个天线来提高通信性能的技术,它可以同时传输多个信号流,从而提高了系统的传输容量和可靠性。
MIMO均衡算法主要有三种:CMA(Constant Modulus Algorithm)、LMS(Least Mean Square Algorithm)和RLS(Recursive Least Square Algorithm)。
下面将对这三种算法的原理进行详细介绍。
1.CMA算法原理:CMA算法是一种基于判决反馈的盲均衡算法,主要用于消除通信系统中的多径干扰。
其原理基于一种常数模型,即假设接收信号的样本具有常数模量。
CMA算法通过最小化误差信号的功率来估计多径信道,从而实现均衡。
算法的核心思想是根据判决反馈,通过调整均衡器的参数来最小化误差信号的功率。
2.LMS算法原理:LMS算法是一种基于梯度下降法的自适应均衡算法,其主要特点是简单易理解、计算速度快。
LMS算法通过最小化接收信号与期望信号之间的误差来更新均衡器的权重。
算法的核心思想是根据误差信号和输入信号之间的相关性来更新均衡器的参数,从而逐步优化均衡器的性能。
3.RLS算法原理:RLS算法是一种基于递推最小二乘法的自适应均衡算法,其主要特点是收敛速度快、抗干扰性能好。
RLS算法通过最小化误差的均方值来更新均衡器的权重。
算法的核心思想是根据输入信号和误差信号之间的相关性来更新均衡器的参数,从而实现均衡。
相比于LMS算法,RLS算法的计算复杂度较高,但是收敛速度更快,适用于信道条件变化频繁的情况。
总而言之,MIMO均衡算法通过调整均衡器的权重来消除多输入多输出通信系统中的信号干扰,从而提高通信系统的性能。
CMA算法是一种基于判决反馈的盲均衡算法,LMS算法是一种基于梯度下降法的自适应均衡算法,RLS算法是一种基于递推最小二乘法的自适应均衡算法。
自适应噪声对消的归一化LMS算法自适应滤波是一种在信号处理和通信系统中广泛应用的技术。
在实际应用中,滤波器的性能受到信号中的噪声和干扰的影响。
为了提高滤波器的性能,有必要采用自适应滤波算法来对抗这些噪声。
归一化最小均方算法(Normalized Least Mean Square, NLMS)是自适应滤波中一种常用的算法。
其背后的基本思想是根据梯度下降法不断调整滤波器的系数,以最小化误差信号的均方误差。
NLMS算法的主要思路是根据目标信号和输出信号的差异来不断更新滤波器的系数。
算法按照以下步骤进行迭代:1.初始化滤波器的系数向量w和步长参数μ,其中w是滤波器的系数,μ是步长参数。
2.读取输入信号x(n)和目标信号d(n)。
3.计算输出信号y(n):y(n)=w^T(n)x(n)其中,w^T(n)是滤波器系数向量w的转置。
4.计算误差信号e(n):e(n)=d(n)-y(n)5.更新滤波器的系数:w(n+1)=w(n)+μe(n)x(n)/(x(n)^Tx(n)+δ)其中,δ是一个小正数,用来避免零除的情况。
6.回到步骤2,进行下一次迭代。
在NLMS算法中,步长参数μ的选择非常关键。
若选择过大,会导致算法不稳定;若选择过小,会导致算法的收敛速度变慢。
一般来说,μ的值越小,算法越稳定,但收敛速度较慢,因此需要进行合理的调整。
归一化是NLMS算法中一个重要步骤。
归一化可以消除信号的幅度差异,使得每个信号的贡献相对均等。
归一化过程如下:1.计算输入信号的自相关矩阵:R=E[x(n)x^T(n)]其中,E[.]表示对信号进行期望估计,x^T(n)表示输入信号x(n)的转置。
2.计算自相关矩阵的迹:μ=Tr(R)/M其中,Tr(R)表示矩阵R的迹,M表示输入信号的维度。
3.将步长参数μ乘以自相关矩阵的逆矩阵:μ=μ/(R+δI)^{-1}其中,δ是一个小正数,I是单位矩阵。
4.将步长参数归一化至合适范围:μ = μ / max(μ)归一化步骤可以使得步长参数μ的取值在一个合理的范围内,从而提高算法的稳定性和收敛速度。
中国网络大学CHINESE NETWORK UNIVERSITY 毕业设计(论文)
院系名称:百度网络学院
专业:百度
学生姓名:百度
学号:123456789
指导老师:百度
中国网络大学教务处制
2019年3月1日
前言
自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。
我们知道,在目前的移动通信领域中,克服多径干扰,提高通信质量是一个非常重要的问题,特别是当信道特性不固定时,这个问题就尤为突出,而自适应滤波器的出现,则完美的解决了这个问题。
另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。
自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。
自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。
自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。
其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。
线性自适应滤波算法的种类很多,有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。
其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法,它们都具有很高的工程应有价值。
本文正是想通过这一与我们生活相关的问题,对简单的噪声进行消除,更加深刻地了解这两种算法。
我们主要分析了下LMS算法和RLS算法的基本原理,以及用程序实现了用两种算法自适应消除信号中的噪声。
通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现,给出了这两种算法性能的综合评价。
1 绪论
1.1课题背景与意义
自适应噪声抵消( Adaptive Noise Cancelling,ANC) 技术是自适应信号处理的一个应用分支,其主要理论和框架由B.Widrow等在1975 年提出,经过三十多年的丰富和扩充,现在已经应用到了很多领域,比如车载免提通话设备,房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling,AEC) ,在母体上检测胎儿心音,机载电子干扰机收发隔离等,都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。
自适应干扰抵消中的关键技术是自适应滤波器,自适应滤波器的实现是影响系统收敛速度、噪声抵消效果的关键部分。
自适应滤波器(Adaptive Filter) 的基本目标是以某种方式调整其参数,让滤波器的输出尽可能的让包含某个特定参考信号的目标函数最小化。
调整滤波器参数的方法就是自适应算法(Adaptive Algorithm),自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。
寻求收敛速度快、计算复杂性低、数值稳定性好的自适应滤波算法是研究人员不断努力追求的目标。
目前两种典型的自适应滤波算法是最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法。
在近几十年中,LMS类算法已广泛应用于干扰抵消、信道均衡、系统识别以及阵列信号处理之中。
Widrow等人提出的最小均方(Least Mean Square,LMS)算法就是一种以期望响应和滤波器输出信号之间误差的均方值最小为原则。
LMS算法的优点是结构简单、鲁棒性强,其缺点是收敛速度很慢。
基于最小二乘准则,递归最小二乘(Recursive Least Square,RLS)算法确定自适应滤波器的权系数向量使估计误差的加权平方和最小。
RLS算法对输入信号的自相关矩阵的逆进行递推估计更新,收敛速度快,其收敛性能与输入信号的频谱特性无关。
但是,RLS算法的计算复杂度很高,所需的存储量极大,不利于适时实现,倘若自相关矩阵的逆失去了正定特性,这还将引发算法发散。
1.2国内外研究发展状况
自适应滤波的基本理论通过几十年的发展已日趋成熟,近十几年来自适应
滤波器的研究主要针对算法与硬件实现。
算法研究主要是对算法速度和精度的改进,其方法大都采用软件C、MATLAB等仿真软件对算法的建模和修正。
通常,自适应滤波器的硬件实现都是用DSP通用处理器(如TI的TMS320系列)。
DSP器件采用改进的哈佛结构,具有独立的程序和数据空间,允许同时存取程序和数据,内置高速的硬件乘法器(MAC),增强的多级流水线。
DSP具有的硬件乘法模块(MAC),专用的存储器以及适用于高速数据运行的总线结构,使DSP 器件具有高速的数据运算能力。
目前,用DSP器件处理数字信号已经成为电子领域的研究热点。
在自适应信号处理领域,对于数据处理速度在几兆赫兹以内的,通用DSP器件也是首选。
迟男等人在TMS320C32芯片上扩展EPROM和RAM,实现了30阶LMS自适应滤波器,使用的刀D转化器件为AD1674,最高采样频率为l00KHz。
陆斌等人采用TMS320C30数字信号处理器与IMSA110专用滤波器并行处理的方法设计出了自适应滤波器并应用于直接序列的扩频接收系统1221。
赵慧民等人在TMS320C31上实现了自适应权向量滤波器,完成了信号采样频率为80KHz的自适应滤波。
在数据处理速度只要求在几兆赫兹以内的应用场合,这些用DSP实现的自适应滤波器能很好的满足系统实时的需求。
在这种需求场合下,DSP具有不可媲美的性价比。
用FPGA实现自适应滤波器,国外起步比较早,发展也非常迅速。
HesenerA.于1996年提出了用FPGA实现自适应滤波器的设想,并在FPGA上实现了处理速度可达SM的8阶8位FIR滤波器。
Woolfries N.等人用FPGA实现了自适应栈滤波器,并应用于图象处理。
Dawood A.等人用FPGA开发了自适应FIR滤波器并与DSP处理器方案进行了比较研究。
国内有一些关于自适应算法硬件实现的研究,但基本是针对自适应滤波器中的算法,如南开大学李国峰的博士论文用VHDL语言描述了正负数的运算问题和浮点数运算问题,完成了基于FIR的LMS自适应滤波器的硬件设计与逻辑综合。
国防科学技术大学江和平等人讨论了自适应卡尔曼算法的简化,并完成了FPGA的设计。
同济大学梁甲华等人重点讨论了编码方法在FPGA的技术问题。
上海交通大学范瑜等人介绍了用VHDL 语言实现并行延时LMS算法的自适应数字波束成形器的FPGA设计过程。
而针对自适应格型结构采用FPGA硬件实现的文献报导很少,国内中国科学技术大学王显洁等人通过采用流水线结构和运算单元分时复用,提高了运算速度,能够满足实时性预测编码要求。
1998年弗吉尼亚大学的StephenJ.Hevey在其硕士论文中利用DSP处理器和自适应格型递归滤波算法完成了对线性二次型最优控制器的设计,通过实验表明了在宽带干扰下格型结构的滤波器性能优于LMS滤
波器,在窄带和谐波干扰下两者的区别不大,但所需阶数至少比LMS滤波器减少一半,可以节省大量硬件资源[2]。
1.3本文的主要内容安排
本课题主要是研究LMS及RLS自适应干扰抵消算法的比较,通过对两种典型的自适应滤波算法,即最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法的性能特点进行分析及仿真实现,给出了这两种算法性能的综合评价。
论文内容安排如下:
前言:简单介绍了本文研究课题的背景及内容。
第一章绪论:主要介绍了论文所需的有关背景知识和论文主要研究内容的国内外发展现状。
第二章算法原理及软件平台介绍:首先详细分析了自适应滤波器的基本原理,给出了自适应滤波器原理框图及原理的推导过程,接着对MATLAB及算法中用到的MATLAB中的函数进行了简单的概述。
第三章LMS算法分析:本章开始阐述了LMS算法的历史、现状、背景,接着具体分析了LMS算法。
第四章RLS算法分析:本章开始简单介绍了研究RLS算法的背景,然后具体分析了LMS算法。
第五章仿真分析:对两种算法进行MATLAB仿真,通过仿真结果进行对比和分析。
首先是LMS算法关于不同步长μ的比较,接着RLS算法关于不同参数λ的比较,最后是LMS与RLS算法关于最优效果的比较。
第六章总结与展望:对全文做了总结,并分析了今后有待进一步开展的工作。