LMS类自适应算法ppt
- 格式:ppt
- 大小:402.78 KB
- 文档页数:23
LMS 算法自适应均衡器实验08S005073 房永奎一、实验目的1、掌握LMS 算法的计算过程,加深对LMS 算法的理解。
2、研究用LMS 算法自适应均衡引起失真的线性色散信道问题。
3、研究特征值扩散度()R χ和步长参数μ对学习曲线的影响。
二、实验原理1、自适应均衡器)n图1 自适应信道均衡试验原理图自适应均衡器用来纠正存在加性白噪声的信道的畸变,信道均衡器的原理框图如1所示。
随机噪声发生器(1)产生用来探测信道的测试信号序列{n x },本实验中由Bernoulli 序列组成,n x =±1,随机变量n x 具有零均值和单位方差。
随机噪声发生器(2)产生干扰信道的白噪声()n ν,具有零均值,方差为2νσ=0.001。
信道的脉冲响应用升余弦表示为:20.51cos (2)1,2,30n n n h W π⎧⎡⎤⎛⎫+-=⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪⎩(1) 其中,参数W 控制均衡器抽头输入相关矩阵的特征值分布()R χ,并且特征值分布随着W 的增大而扩大。
均衡器具有11M =个抽头。
由于信道的脉冲响应n h 关于n =2时对称,那么均衡器的最优抽头权值on ω在5n =时对称。
因此,信道的输入n x 被延时了257∆=+=个样值,以便提供均衡器的期望响应。
通过选择匹配横向均衡器中点的合适延时∆,LMS 算法能够提供信道响应的最小相位分量和非最小相位分量之逆。
2、均衡器输入相关矩阵在时刻n ,均衡器第1个抽头的输入为()()()31k k u n h x n k v n ==-+∑ (2)其中所有参数均为实数。
因此,均衡器输入的11个抽头(),(1),,(10)u n u n u n --的自相关矩阵R 为一个对称的1111⨯矩阵。
此外,因为脉冲响应n h 仅在1,2,3n =时为非零,且噪声过程()v n 是零均值、方差为2v σ的白噪声,因此相关矩阵R 是主对角线的,有以下特殊结构所示:()()()()()()()()()()()()()()()012001012021010021000000r r r r r r r r r r r r r r r ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦R (3) 其中()22221230v r h h h σ=+++ (4)()12231r h h h h =+ (5)()132r h h = (6)其中方差20.001v σ=。
传统的通信系统中,基站大线通常是全向天线,此时,基站在向某一个用户发射或接收信号时,不仅会造成发射功率的浪费,还会对处于其他方位的用户产生干扰。
然而,虽然阵列天线的方向图是全向的,但是通过一定技术对阵列的输出进行适当的加权后,可以使阵列天线对特定的一个或多个空间目标产生方向性波束,即"波束成形" ,且波束的方向性可控。
波束成形技术可以使发射和接收信号的波束指向所需要用户,提高频谱利用率,降低干扰。
传统的波束成形算法通常是根据用户信号波达方向(DOA)的估计值构造阵列天线的加权向量,且用户信号DOA在一定时间内不发生改变。
然而,在移动通信系统中,用户的空间位置是时变的,此时,波束成形权向量需要根据用户当前位置进行实时更新。
自适应波束成形算法可以满足上述要求。
本毕业设计将对阵列信号处理中的波束成形技术进行研究,重点研究自适应波束成形技术。
要求理解掌握波束成形的基本原理,掌握几种典型的自适应波束成形算法,熟练使用MATLAB仿真软件,并使用MA TLAB仿真软件对所研究的算法进行仿真和分析,评估算法性能。
(一)波束成形:波束成形,源于自适应大线的一个概念。
接收端的信号处理,可以通过对多天线阵元接收到的各路信号进行加权合成,形成所需的理想信号。
从天线方向图(pattern)视角来看,这样做相当于形成了规定指向上的波束。
例如,将原来全方位的接收方向图转换成了有零点、有最大指向的波瓣方向图。
同样原理也适用用于发射端。
对天线阵元馈电进行幅度和相位调整,可形成所需形状的方向图。
波束成形技术属于阵列信号处理的主要问题:使阵列方向图的主瓣指向所需的方向。
在阵列信号处理的范畴内,波束形成就是从传感器阵列重构源信号。
虽然阵列天线的方向图是全方向的,但阵列的输出经过加权求和后,却可以被调整到阵列接收的方向增益聚集在一个方向上,相当于形成了一个“波束”。
波束形成技术的基本思想是:通过将各阵元输出进行加权求和,在一时间内将大线阵列波束“导向”到一个方向上,对期望信号得到最大输出功率的导向位置即给出波达方向估计。
用于消除工频干扰自适应滤波器的设计与仿真一、背景及意义脑科学研究不仅是一项重要的前沿性基础研究,而且是一项对人类健康有重要实际意义的应用研究。
随着社会的发展、人类寿命的延长,因脑衰老、紊乱或损伤而引起的脑疾患,对社会财富消耗和家庭的负担日益增大。
许多国家纷纷将脑科学的研究列入国家规划,并且制订长远的研究计划。
人们把21 世纪看成是脑科学研究高潮的时代。
在脑电信号的实际检测过程中,往往含有心电、眼动伪迹、肌电信号、50Hz工频干扰以及其它干扰源所产生的干扰信号,这给脑电分析以及脑电图的临床应用带来了很大的困难。
因此如何从脑电中提取出有用的信息是非常具有挑战性,且又很有学术价值、实用价值的研究课题。
本论文从信号处理的角度出发,采集脑电波,使得在强干扰背景下的脑电信号得以提取,还原出干净的脑电波,用于临床医学、家庭保健等。
医生可以利用所采集到的脑电波来进行对病人神经松弛训练,通过脑电生物反馈技术实现自我调节和自我控制。
运用生物反馈疗法,就是把求治者体内生理机能用现代电子仪器予以描记,并转换为声、光等反馈信号,因而使其根据反馈信号,学习调节自己体内不遂意的内脏机能及其他躯体机能、达到防治身心疾病的目的。
这种反馈疗法是在一定程度上发掘人体潜能的一种人—机反馈方法。
有研究表明脑电生物反馈对多种神经功能失调疾病有明显疗效。
对于有脑障碍或脑疾病的人,也可以随时监测其脑电信号,及早地发现问题,避免不必要的损失。
二、脑电数字信号处理的研究现状脑电的监护设备在国内外品种繁多,高新技术含量高,技术附加值高,相比而言,我国的产品较国际高水平产品落后10-15 年。
但近年来,国内产品也逐步利用高新技术使产品向自动化、智能化、小型化、产品结构模块化方向发展。
国内产品在抗干扰、数字处理、实时传输数据等方面已有很大进展,使脑电检测不再是只能在屏蔽室进行。
目前,脑电信号的数字滤波从原理上来看,主要有FIR滤波器和IIR滤波器。
FIR滤波器可以提供线性滤波,但存在阶数较高,运算较为复杂的缺点[11];而IIR滤波器是一种非线性滤波器,它可以用较少的阶数实现性能良好的滤波,是目前运用较广泛的一种滤波器[10]。
LMS自适应滤波算法1960年Widrow和Hoff提出最小均方误差算法(LMS),LMS算法是随机梯度算法中的一员。
使用“随机梯度”一词是为了将LMS算法与最速下降法区别开来。
该算法在随机输入维纳滤波器递归计算中使用确定性梯度。
LMS算法的一个显著特点是它的简单性。
此外,它不需要计算有关的相关函数,也不需要矩阵求逆运算。
由于其具有的简单性、鲁棒性和易于实现的性能,在很多领域得到了广泛的应用。
1LMS算法简介LMS算法是线性自适应滤波算法,一般来说包含两个基本过程:(1)滤波过程:计算线性滤波器输出对输入信号的响应,通过比较输出与期望响应产生估计误差。
(2)自适应过程:根据估计误差自动调整滤波器参数。
如图1-1所示,用表示n时刻输入信号矢量,用表示n时刻N阶自适应滤波器的权重系数,表示期望信号,表示误差信号,是主端输入干扰信号,u是步长因子。
则基本的LMS算法可以表示为(1)(2)图1-1 自适应滤波原理框图由上式可以看出LMS算法实现起来确实很简单,一步估计误差(1),和一步跟新权向量(2)。
2迭代步长u的作用2.1 理论分析尽管LMS算法实现起来较为简单,但是精确分析LMS的收敛过程和性能却是非常困难的。
最早做LMS收敛性能分析的是Widrow等人,他们从精确的梯度下降法出发,研究权矢量误差的均值收敛特性。
最终得到代价函数的收敛公式:′(3)式(3)揭示出LMS算法代价函数的收敛过程表现为一簇指数衰减曲线之和的形式,每条指数曲线对应于旋转后的权误差矢量的每个分量,而他们的衰减速度,对应于输入自相关矩阵的每个特征值,第i条指数曲线的时间常数表示为τ小特征值对应大时间常数,即衰减速度慢的曲线。
而大特征值对应收敛速度快的曲线,但是如果特征值过大以至于则导致算法发散。
从上式可以明显看出迭代步长u在LMS算法中会影响算法收敛的速度,增大u可以加快算法的收敛速度,但是要保证算法收敛。
最大步长边界:稳态误差时衡量LMS算法的另一个重要指标,稳定的LMS算法在n时刻所产生的均方误差,其最终值∞是一个常数。
基于误差通道在线建模的自适应内模控制算法研究学号密级哈尔滨工程大学学士学位论文LMS算法、FLMS算法、振动控制院 (系) 名称:动力与能源工程学院专业名称:轮机工程学生姓名:黎文科指导教师:杨铁军教授哈尔滨工程大学2014年6月哈尔滨工程大学学士学位论文摘要振动的主动控制技术已被广泛应用于工业,以减少环境振动的危害。
传统的被动控制技术的不足可以用它来弥补,主动控制技术可以有效地控制低频噪声和振动并且自动跟踪声振频率的变化。
在实际的控制系统中,误差通道是影响减振降噪效果和系统稳定性的主要因素之一,它主要包括D/A、功率放大器、A/D、执行机构,物理路径,误差传感器等。
考虑到误差通道传递函数S(z)的影响,FXLMS算法作为LMS的延伸在主动控制中得到广泛的应用。
在实际系统中,S(z)是时变或者非线性的。
因此,保证FXLMS算法在声振主动控制系统中的收敛性,对误差通道的辨识有着重要的实际意义。
虽然传统的前馈结构的FXLMS算法以其良好的控制效果和自适应性而得到广泛应用,但其有一个严重的缺点:需要参考信号,这在很多情况下是很难保证的。
因此,需要采用反馈结构的控制算法,也称为内模算法,它通过误差信号来估计原始的声振信号,并用估计值来作为参考输入信号。
考虑到控制过程中误差通道的影响和前馈结构的FXLMS算法的局限性,采用误差通道在线辨识的自适应内模算法来实现声振的主动控制是本论文的研究重点。
在MATLAB环境下,对主动控制系统进行了仿真研究。
仿真结果表明,在不同形式激励条件下,采用具有误差通道在线辨识功能的自适应内模算法来实现的主动控制取得了比较满意的控制效果,系统具有很强的鲁棒性。
关键词:LMS算法;内模控制;振动主动控制;误差通道在线辨识基于误差通道在线建模的自适应内模控制算法研究AbstractActive vibration control (AVC) has been widely applied in industry to reduce environmental vibration because of its more efficient and economical than the traditional passive methods for low-frequency noise and vibration suppression and its ability of tracking the disturbance under the time varying phenomena.In practical control systems, the secondary path comprising the D/A converter, smoothing filter, power amplifier and A/D converter actuator, physical path, error sensor, and other components is one of the key affecting factors for noise and vibration reduction and the stability of the system .The FXLMS algorithm is an extension of LMS algorithm for active noise and vibration control systems, which takes into account of the influence of secondary path transfer function S(z) .In some practical cases, S(z) can be time varying or non-linear. For these cases, online modeling of S(z) is required to ensure the convergence of the FXLMS algorithm for the active noise and vibration control system .So the modeling of secondary path is important and practical.Though typical Feed Forward Filtered-x Least Mean Square algorithm (FXLMS) has the advantage of high control correction rate and strong adaptive capacity for non-stationary response, it has a critical defect that the reference signal of the external excitation should be obtained which is very difficult for some situation. So a feedback control algorithms which is also called adaptive internal model control technique (IMC) is presented which uses the system error signal to obtain an estimate of the original vibration signal and uses the estimated value as the reference signal adaptive filter.Considering the effects of the second path and the limitations of feedforward control structure which adopt the FXLMS algorithm, an adaptive internal model control technique (IMC) with online secondary path modeling is proposed to reduce environmental vibration in this research. Both the theoretical analysis and the simulation using MATLAB indict that the new control algorithm with online secondary path modeling has a satisfied control performance and a strong robustness.Keywords:LMS algorithm ; Internal-Model-Control ; Active Vibration Control ; Online Secondary Path Modeling哈尔滨工程大学学士学位论文目录第一章绪论 (1)1.1研究的目的和意义 (1)1.2国内外研究状况 (3)1.2.1国外研究状况 (3)1.2.2国内研究状况 (4)1.3 论文的主要研究内容 (5)第二章性能函数 (6)2.1 性能函数的推导 (6)2.2.寻找最优点的方法 (9)2.2.1最陡下降法 (9)2.2.2牛顿法 (11)2.2.3共轭梯度法 (12)2.3本章小结 (14)第三章LMS算法 (15)3.1 LMS算法的导出 (15)3.2自适应LMS算法的收敛性 (17)3.3自适应滤波器的关闭 (19)3.4 LMS的一些改进算法 (20)3.4.1可调参数对性能影响 (20)3.4.2变步长(VSSLMS)算法 (22)3.4.3归一化LMS算法 (23)3.5本章小结 (24)第四章 LMS算法在振动控制中的应用 (25)4.1 LMS算法在振动控制中面临的问题 (25)4.2滤波x-LMS 算法及其收敛性 (26)4.2.1滤波x-LMS(FxLMS)算法的推导 (26)4.2.2滤波x-LMS 算法的稳定性和收敛性分析 (27)4.3 M-LMS 算法及其收敛性 (29)基于误差通道在线建模的自适应内模控制算法研究4.3.1 修改的LMS(MLMS)算法的推导 (29)4.3.2 MLMS算法稳定性和收敛性分析 (31)4.4误差通道的在线辩识问题 (32)4.4.1叠加噪声的技术 (33)4.4.2 不叠加噪声的技术 (35)4.5本章小结 (37)结论...................................................................................................... 错误!未定义书签。
Harbin Institute of Technology自适应信号处理实验课程名称:自适应信号处理设计题目:LMS算法自适应均衡器实验院系:电子与信息工程学院专业:信息与通信工程设计者:宋丽君学号:11S005090指导教师:邹斌设计时间:2011.4.10哈尔滨工业大学一、实验目的研究用LMS算法自适应均衡未知失真的线性色散信道。
通过本实验加深对LMS算法的理解,并分析特征值扩散度和步长参数对收敛迭代次数的影响。
二、实验原理最小均方算法(LMS算法)是线性自适应滤波算法,包括滤波过程和自适应过程,这两个过程一起工作组成了反馈环。
图1给出了自适应横向滤波器的框图。
图1 自适应横向滤波器框图LMS算法是随机梯度算法中的一员,LMS算法的显著特点是实现简单,同时通过对外部环境的自适应,它可以提供很高的性能。
由于LMS算法在计算抽头权值的迭代计算的过程中移走了期望因子,因此抽头权值的计算会受到梯度噪声的影响。
但是因为围绕抽头权值起作用的反馈环像低通滤波器,平均时间常数与步长参数μ成反比,所以通过设置较小的μ可以让自适应过程缓慢的进行,这样梯度噪声对抽头权值的影响在很大程度上可以滤除,从而减少失调的影响。
LMS算法在一次迭代中需要2M+1次复数乘法和2M次复数加法,计算的复杂度为O(M),M 为自适应滤波器中抽头权值的数目。
LMS算法广泛地应用于自适应控制、雷达、系统辨识及信号处理等领域。
主要应用有:处理时变地震数据的自适应反卷积,瞬态频率的测量,正弦干扰的自适应噪声消除,自适应谱线增强,自适应波束形成。
三、 实验内容在实验中假设所使用的数据是实数,进行研究的系统框图如下图2所示。
随机数发生器1产生用来探测信道的测试信号n x ;随机数发生器2用来干扰。
信道输出的白噪声源()v n 。
这两个随机数发生器是彼此独立的。
自适应均衡器用来纠正存在加性白噪声的信道畸变。
经过适当延迟,随机数发生器1也提供用做训练序列的自适应均衡器的期望响应。