圆锥曲线高考选择题(附详细答案)
- 格式:docx
- 大小:65.61 KB
- 文档页数:14
答案解析1将方程a 2x 2+b 2y 2=1与ax +by 2=0转化为标准方程:x b ay b y a x -==+22222,111.因为a >b >0,因此,ab 11>>0,所以有:椭圆的焦点在y 轴,抛物线的开口向左,得D 选项. 4.答案:B 2.答案:D ∵θ∈(0,4π),∴sin θ∈(0,22),∴a 2=tan θ,b 2=c ot θ∴c 2=a 2+b 2=tan θ+c ot θ,∴e 2=θθθθ222sin 1tan cot tan =+=a c ,∴e =θsin 1,∴e ∈(2,+∞) 3.答案:D 由双曲线方程判断出公共焦点在x 轴上∴椭圆焦点(2253n m -,0),双曲线焦点(2232n m +,0)∴3m 2-5n 2=2m 2+3n 2∴m 2=8n 2又∵双曲线渐近线为y =±||2||6m n ⋅²x∴代入m 2=8n 2,|m |=22|n |,得y =±43x 4答案:C 由F 1、F 2的坐标得2c =3-1,c =1,又∵椭圆过原点a -c =1,a =1+c =2,又∵e =21=a c ,∴选C. 5.答案:D 由题意知a =2,b =1,c =3,准线方程为x =±ca 2,∴椭圆中心到准线距离为6.答案:C 渐近线方程为y =±b a x ,由b a ²(-ba )=-1,得a 2=b 2,∴c =2a ,14.答案:B y =-x 2的标准式为x 2=-y ,∴p =21,焦点坐标F (0,-41). 7.答案:A 不妨设F 1(-3,0),F 2(3,0)由条件得P (3,±23),即|PF 2|=23,|PF 1|=2147,因此|PF 1|=7|PF 2|,故选A.8.答案:A 将已知椭圆中的x 换成-y ,y 换成-x 便得椭圆C 的方程为9)3(4)2(22+++y x=1,所以选A.9.答案:A 由已知有⇒⎪⎪⎩⎪⎪⎨⎧==2142a c c a a =2,c =1,b 2=3,于是椭圆方程为3422y x +=1, 10.答案:C 如图8—14,原点O 逆时针方向旋转90°到O ′,则O ′(-4,4)为旋转后椭圆的中心,故旋转后所得椭圆方程为25)4(9)4(22-++y x =1.所以选C. 11.答案:B 把已知方程化为25)1(9)3(22++-y x =1,∴a =5,b =3,c =4 ∵椭圆的中心是(3,-1),∴焦点坐标是(3,3)和(3,-5).12.答案:A 由已知,直线l 的方程为ay +bx -ab =0,原点到直线l 的距离为43c ,则有c b a ab 4322=+,又c 2=a 2+b 2,∴4ab =3c 2,两边平方,得16a 2(c 2-a 2)=3c 4,两边同除以a 4,并整理,得3e 4-16e 2+16=0∴e 2=4或e 2=34.而0<a <b ,得e 2=222221ab a b a +=+>2,∴e 2=4.故e =2.13.答案:D ,得2)cos 2(2θ-x +(y +sin θ)2=1.∴椭圆中心的坐标是(2cos θ,-sinθ).其轨迹方程是⎩⎨⎧-==θθsin cos 2y x θ∈[0,2π].即22x +y 2=1(0≤x ≤2,-1≤y ≤0).30.答案:C 将双曲线方程化为标准形式为x 2-32y=1,其焦点在x 轴上,且a =1,b =3,故其渐近线方程为y =±abx =±3x ,所以应选C.14.答案:D 原方程可变为ky x 2222+=1,因为是焦点在y 轴的椭圆,所以⎪⎩⎪⎨⎧>>220k k ,解此不等式组得0<k <1,因而选D.15.答案:A 解法一:由双曲线方程知|F 1F 2|=25,且双曲线是对称图形,假设P (x ,142-x ),由已知F 1P ⊥F 2 P ,有151451422-=+-⋅--x x x x ,即1145221,52422=-⋅⋅==x S x ,因此选A.16.答案:23因为F 1、F 2为椭圆的焦点,点P 在椭圆上,且正△POF 2的面积为3,所以S =21|OF 2|²|PO |sin60°=43c 2,所以c 2=4.∴点P 的横、纵坐标分别为23,2c c ,即P (1,3)在椭圆上,所以有2231b a +=1,又b 2+c 2=a 2,⎩⎨⎧+==+22222243ba b a a b17.答案:(3,2)解法一:设直线y =x -1与抛物线y 2=4x 交于A (x 1,y 1),B (x 2,y 2),其中点为P (x 0,y 0).由题意得⎩⎨⎧=-=xy x y 412,(x -1)2=4x ,x 2-6x +1=0.∴x 0=221x x +=3.y 0=x 0-1=2.∴P (3,2). 18.答案:1625)2(22y x +- =1由两焦点坐标得出椭圆中心为点(2,0),焦半径c =3 ∵长轴长为10,∴2a =10,∴a =5,∴b =22c a -=4∴椭圆方程为1625)2(22y x +-=1 19答案:(±7,0)由双曲线方程得出其渐近线方程为y =±2m x ∴m =3,求得双曲线方程为3422y x -=1,从而得到焦点坐标. 20.答案:(2,1)抛物线(y -1)2=4(x -1)的图象为抛物线y 2=4x 的图象沿坐标轴分别向右、向上平移1个单位得来的.∵抛物线y 2=4x 的焦点为(1,0)∴抛物线(y -1)2=4(x -1)的焦点为(2,1)21.答案:-1椭圆方程化为x 2+ky 52-=1∵焦点(0,2)在y 轴上,∴a 2=k -5,b 2=1又∵c 2=a 2-b 2=4,∴k =-122答案:x 2-4y 2=1设P (x 0,y 0) ∴M (x ,y )∴2,200y y x x == ∴2x =x 0,2y =y 0∴442x -4y 2=1⇒x 2-4y 2=1 23.答案:516设|PF 1|=M ,|PF 2|=n (m >n )a =3 b =4 c =5∴m -n =6 m 2+n 2=4c 2 m 2+n 2-(m -n )2=m 2+n 2-(m 2+n 2-2mn )=2mn =4³25-36=64 mn =32.又利用等面积法可得:2c ²y =mn ,∴y =516 24.答案:16922y x -=1由已知a =3,c =5,∴b 2=c 2-a 2=16又顶点在x 轴,所以标准方程为16922y x -=1. 25.解:(1)椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4,得2a =4,即a =2.又点A (1,23)在椭圆上,因此222)23(21b +=1得b 2=3,于是c 2=1.所以椭圆C 的方程为3422y x +=1,焦点F 1(-1,0),F 2(1,0). (2)设椭圆C 上的动点为K (x 1,y 1),线段F 1K 的中点Q (x ,y )满足:2,2111yy x x =+-=, 即x 1=2x +1,y 1=2y . 因此3)2(4)12(22y x ++=1.即134)21(22=++y x 为所求的轨迹方程.(3)类似的性质为:若M 、N 是双曲线:2222by a x -=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN之积是与点P 位置无关的定值.设点M 的坐标为(m ,n ),则点N 的坐标为(-m ,-n ),其中2222bn a m -=1.又设点P 的坐标为(x ,y ),由mx ny k m x n y k PN PM++=--=,, 得k PM ²k PN =2222m x n y m x n y m x n y --=++⋅--,将22222222,ab n b x a b y =-=m 2-b 2代入得k PM ²k PN =22ab .26解:(1)设F 2(c ,0)(c >0),P (c ,y 0),则2222by a c -=1.解得y 0=±a b 2∴|PF 2|=a b 2在直角三角形PF 2F 1中,∠PF 1F 2=30°解法一:|F 1F 2|=3|PF 2|,即2c =ab 23将c 2=a 2+b 2代入,解得b 2=2a 2 解法二:|PF 1|=2|PF 2|由双曲线定义可知|PF 1|-|PF 2|=2a ,得|PF 2|=2a .∵|PF 2|=a b 2,∴2a =ab 2,即b 2=2a 2,∴2=a b故所求双曲线的渐近线方程为y =±2x .27.(Ⅰ)解:由椭圆定义及条件知2a =|F 1B |+|F 2B |=10,得a =5,又c =4所以b =22c a -=3.故椭圆方程为92522y x +=1. (Ⅱ)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=59.(如图8—18) 因为椭圆右准线方程为x =425,离心率为54根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2)由|F 2A |,|F 2B |,|F 2C |成等差数列,得54(425-x 1)+54(425-x 2)=2³59由此得出x 1+x 2=8.设弦AC 的中点为P (x 0,y 0) 则x 0=28221=+x x =4. (Ⅲ)由A (x 1,y 1),C (x 2,y 2)在椭圆上,得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x 图8—18④⑤由④-⑤得9(x 12-x 22)+25(y 12-y 22)=0. 即)))(2(25)2(921212121x x y y y y x x --+++=0(x 1≠x 2) 将kx x y y y y y x x x 1,2,422121021021-=--=+==+(k ≠0)代入上式,得 9³4+25y 0(-k1)=0(k ≠0). 由上式得k =3625y 0(当k =0时也成立). 由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m . 所以m =y 0-4k =y 0-925y 0=-916y 0. 由P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称,如图8—18)的内部,得-59<y 0<59. 所以-516<m <516. 28.解法一:由已知|PF 1|+|PF 2|=6,|F 1F 2|=25,根据直角的不同位置,分两种情况:若∠PF 2F 1为直角,则|PF 1|2=|PF 2|2+|F 1F 2|2即|PF 1|2=(6-|PF 1|)2+20, 得|PF 1|=314,|PF 2|=34,故27||||21=PF PF ;若∠F 1PF 2为直角,则|F 1F 2|2=|PF 1|2+|PF 2|2,即20=|PF 1|2+(6-|PF 1|)2,得|PF 1|=4,|PF 2|=2,故||||21PF PF =2.29.证法一:依题设得椭圆的半焦距c =1,右焦点为F (1,0),右准线方程为x =2,点E 的坐标为(2,0),EF 的中点为N (23,0). 若AB 垂直于x 轴,则A (1,y 1),B (1,-y 1),C (2,-y 1),∴AC 中点为N (23,0),即AC 过EF 中点N .若AB 不垂直于x 轴,由直线AB 过点F ,且由BC ∥x 轴知点B 不在x 轴上,故直线AB 的方程为y =k (x -1),k ≠0.记A (x 1,y 1)和B (x 2,y 2),则(2,y 2)且x 1,x 2满足二次方程22x +k 2(x -1)2=1,即(1+2k 2)x 2-4k 2x +2(k 2-1)=0∴2221222121)1(2,214kk x x k k x x +-=+=+. 又x 12=2-2y 12<2,得x 1-23≠0,故直线AN 、CN 的斜率分别为 )1(2232,32)1(22322211111-=-=--=-=x k yk x x k x y k .∴k 1-k 2=2k ²32)32)(1()1(1121-----x x x x∵(x 1-1)-(x 2-1)(2x 1-3)=3(x 1+x 2)-2x 1x 2-4 =2211k+[12k 2-4(k 2-1)-4(1+2k 2)]=0, ∴k 1-k 2=0,即k 1=k 2.故A 、C 、N 三点共线.所以,直线AC 经过线段EF 的中点N .30.解:设椭圆C 的方程为12222=+b y a x ,由题意a =3,c =22,于是b =1.∴椭圆C 的方程为92x +y 2=1.由⎪⎩⎪⎨⎧=++=19222y x x y 得10x 2+36x +27=0, 因为该二次方程的判别式Δ>0,所以直线与椭圆有两个不同的交点, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=518-, 故线段AB 的中点坐标为(51,59-).图8—22。
高考数学之圆锥曲线常见习题及解析(经典版)_ss 圆锥曲线常见习题及解析(经典版)1一.多项选择题:x2y2x2y2??1,双曲线2?2?1(a?0,b?0)的焦点是椭圆的顶点,顶点是椭圆的焦点,1.已知椭圆方程43ab则双曲线的离心率为a、 2b。
3c。
2d。
三x2y22.双曲线2?2?1(a?0,b?0)的左、右焦点分别为f1,f2,渐近线分别为l1,l2,点p在第AB在第一象限,在L1上。
如果L2⊥ Pf1,L2//PF2,双曲线的偏心率是A.5[答案]Bb.2c、 3()d.2bbx,l2:y??x、因为点P在Aa1的第一象限,在L1上,让P(x0,Y0),x0?0,因为L2⊥ Pf1,那么Pf1呢?PF2,即OP?f1f2?c、 l2//pf22bb222即x02?y02?c2,又y0?x0,代入得x0?(x0)?c,解得x0?a,y0?b,即p(a,b)。
所以aabbb??(?)?? 1bla,因为2⊥ Pf1,那么a?cakpf1L2的斜率为a?c【解析】双曲线的左焦点f1(?c,0),右焦点f2(c,0),渐近线l1:y?2b2?a(a?c)?a?ac?c?2a,所以c2?ac?2a2?0,所以e2?e?2?0,解得e?2,所以双曲线你说呢?所以选择Bx2y23.已知双曲线2?2?1?a?0,b?0?的一条渐近线的斜率为2,且右焦点与抛物线y2?43x的焦如果AB点重合,双曲线的偏心率等于a.2b.3c、二,2d、二,34.抛物线y?如果4x2上的点m到焦点的距离为1,则点m的纵坐标为a78b.1516c。
34d.0x2y2??由1的两条渐近线包围的三角形的面积是5条抛物线y°??12x和双曲线932a 3b。
23c。
2d。
33[答]dx2y233??1的两渐近线为y?【解析】抛物线y??12x的准线为x?3,双曲线x和y??x,93332令x?3,分别解得y1?3,y2??3,所以三角形的低为3?(?3)?23,高为3,所以三角形的面积为1.23? 3.33,选择d.226抛物线y?4x的焦点形成一条直线,并在两点a和B处与抛物线相交,它们到达直线x??2的距离之和等于5,则这样的直线a、是的,只有一个B。
高中数学圆锥曲线专题*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡阅卷人一、单选题(共10题;共20分)得分1. ( 2分) 波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为()A. B. C. D.2. ( 2分) 古希腊数学家阿波罗尼奥斯的著作圆锥曲线论中给出了圆的另一种定义:平面内,到两个定点A、B距离之比是常数的点M的轨迹是圆若两定点A、B的距离为3,动点M满足,则M点的轨迹围成区域的面积为A. B. C. D.3. ( 2分) 已知、为双曲线的左、右焦点,过右焦点的直线,交的左、右两支于、两点,若为线段的中点且,则双曲线的离心率为()A. B. C. D.4. ( 2分) 已知双曲线的右焦点为,点,为双曲线左支上的动点,且周长的最小值为16,则双曲线的离心率为()A. 2B.C.D.5. ( 2分) 关于曲线:性质的叙述,正确的是()A. 一定是椭圆B. 可能为抛物线C. 离心率为定值D. 焦点为定点6. ( 2分) 古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9C. (x+5)2+y2=16D. x2+(y+5)2=97. ( 2分) 已知是双曲线上一点,且在轴上方,,分别是双曲线的左、右焦点,,直线的斜率为,的面积为,则双曲线的离心率为()A. 3B. 2C.D.8. ( 2分) 在正四面体中,点为所在平面上的动点,若与所成角为定值,则动点的轨迹是()A. 圆B. 椭圆C. 双曲线D. 抛物线9. ( 2分) 已知,及抛物线方程为,点在抛物线上,则使得为直角三角形的点个数为()A. 1个B. 2个C. 3个D. 4个10. ( 2分) 已知双曲线的左、右焦点分别为,,若双曲线上存在点P使,则离心率的取值范围是()A. B. C. D.阅卷人二、填空题(共10题;共10分)得分11. ( 1分) 已知正实数是的等比中项,则圆锥曲线=1的离心率为________12. ( 1分) 设抛物线的焦点为F,过点F的直线l与抛物线交于A,B两点,且,则弦长________.13. ( 1分) 已知双曲线:(,)的左,右焦点分别为,,过右支上一点作双曲线的一条渐近线的垂线,垂足为.若的最小值为,则双曲线的离心率为________.14. ( 1分) 若椭圆的离心率为,则的短轴长为________.15. ( 1分) 从抛物线图象上一点作抛物线准线的垂线,垂足为,且,设为抛物线的焦点,则的面积为________.16. ( 1分) 设抛物线的焦点为,过点的直线与抛物线交于,两点,且,点是坐标原点,则的面积为________17. ( 1分) 已知双曲线的下焦点为,虚轴的右端点为,点在的上支,为坐标原点,直线和直线的倾斜角分别为,,若,则的最小值为________.18. ( 1分) 已知为椭圆的左焦点,过点的直线交椭圆于两点,若,则直线的斜率为________.19. ( 1分) 椭圆的左、右焦点分别为、,点P在椭圆C上,已知,则________.20. ( 1分) 已知椭圆的右顶点为A,左,右焦点为F1,F2,过点F2与x轴垂直的直线与椭圆的一个交点为B.若|F1F2|=2,|F2B| ,则点F1到直线AB的距离为________.阅卷人三、解答题(共30题;共280分)得分21. ( 10分) 已知椭圆E:=1(a>b>0)的上、下焦点分别为F1,F2,点D在椭圆上,DF2⊥F1F2,△F1F2D的面积为2 ,离心率e= ,抛物线C:x2=2py(p>0)的准线l经过D点.(1)求椭圆E与抛物线C的方程;(2)过直线l上的动点P作抛物线的两条切线,切点为A,B,直线AB交椭圆于M,N两点,当坐标原点O落在以MN为直径的圆外时,求点P的横坐标t的取值范围.22. ( 10分) 椭圆C1:+y2=1,椭圆C2:(a>b>0)的一个焦点坐标为(,0),斜率为1的直线l与椭圆C2相交于A、B两点,线段AB的中点H的坐标为(2,﹣1).(1)求椭圆C2的方程;(2)设P为椭圆C2上一点,点M、N在椭圆C1上,且,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.23. ( 10分) 已知A(1,)是离心率为的椭圆E:+ =1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.(1)求椭圆E的方程;(2)试证明直线BC的斜率为定值,并求出这个定值;(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.24. ( 10分) 设抛物线C1:y2=8x的准线与x轴交于点F1,焦点为F2.以F1,F2为焦点,离心率为的椭圆记为C2.(Ⅰ)求椭圆C2的方程;(Ⅱ)设N(0,﹣2),过点P(1,2)作直线l,交椭圆C2于异于N的A、B两点.(ⅰ)若直线NA、NB的斜率分别为k1、k2,证明:k1+k2为定值.(ⅱ)以B为圆心,以BF2为半径作⊙B,是否存在定⊙M,使得⊙B与⊙M恒相切?若存在,求出⊙M的方程,若不存在,请说明理由.25. ( 10分) 在平面直角坐标系xOy中,椭圆:的离心率为,y轴于椭圆相交于A、B两点,,C、D是椭圆上异于A、B的任意两点,且直线AC、BD相交于点M,直线AD、BC相交于点N.(1)求椭圆的方程;(2)求直线MN的斜率.26. ( 10分) 已知椭圆C:(a>b>0)的离心率为,左、右焦点分别为F1,F2,点G在椭圆C上,且• =0,△GF1F2的面积为2.(1)求椭圆C的方程;(2)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1,k2,当最大时,求直线l的方程.27. ( 10分) 已知椭圆的中心在原点,焦点在轴上,左右焦点分别为,,且,点在椭圆上.(1)求椭圆的方程;(2)过的直线与椭圆相交于两点,且的面积为,求以为圆心且与直线相切的圆的方程.28. ( 10分) 设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.29. ( 10分) 如图,在平面直角坐标系中,已知椭圆的左、右顶点分别为,,过右焦点的直线与椭圆交于,两点(点在轴上方).(1)若,求直线的方程;(2)设直线,的斜率分别为,.是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.30. ( 10分) 已知抛物线y2=2px(p>0)的焦点为F与椭圆C的一个焦点重合,且抛物线的准线与椭圆C 相交于点.(1)求抛物线的方程;(2)过点F是否存在直线l与椭圆C交于M,N两点,且以MN为对角线的正方形的第三个顶点恰在y轴上?若存在,求出直线l的方程;若不存在,请说明理由.31. ( 10分) 已知椭圆的长轴长为4,离心率为.(I)求C的方程;(II)设直线交C于A,B两点,点A在第一象限, 轴,垂足为M, 连结BM并延长交C于点N.求证:点A在以BN为直径的圆上.32. ( 10分) 已如椭圆E:()的离心率为,点在E上.(1)求E的方程:(2)斜率不为0的直线l经过点,且与E交于P,Q两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由33. ( 5分) 已知点P(x,y)满足条件.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)直线l与圆O:x2+y2=1相切,与曲线C相较于A,B两点,若,求直线l的斜率.34. ( 5分) 设直线l:y=k(x+1)(k≠0)与椭圆3x2+y2=a2(a>0)相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.(Ⅰ)证明:a2>;(Ⅱ)若,求△OAB的面积取得最大值时的椭圆方程.35. ( 15分) 已知点在抛物线上,是直线上的两个不同的点,且线段的中点都在抛物线上.(Ⅰ)求的取值范围;(Ⅱ)若的面积等于,求的值.36. ( 5分) 如图,曲线Γ由曲线C1:(a>b>0,y≤0)和曲线C2:(a>0,b>0,y>0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.37. ( 5分) 已知椭圆的离心率为,,分别是椭圆的左右焦点,过点的直线交椭圆于,两点,且的周长为12.(Ⅰ)求椭圆的方程(Ⅱ)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.38. ( 10分) 如图,已知点F为抛物线C:()的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l的倾斜角为45°时,.(1)求抛物线C的方程.(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.39. ( 10分) 已知椭圆过点,且离心率为.(1)求椭圆的标准方程;(2)若点与点均在椭圆上,且关于原点对称,问:椭圆上是否存在点(点在一象限),使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.40. ( 5分) 已知椭圆E: 过点(0,1)且离心率.(Ⅰ)求椭圆E的方程;(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.41. ( 10分) 已知抛物线,抛物线与圆的相交弦长为4. (1)求抛物线的标准方程;(2)点为抛物线的焦点,为抛物线上两点,,若的面积为,且直线的斜率存在,求直线的方程.42. ( 10分) 设椭圆的左、右焦点分别为,、,,点在椭圆上,为原点.(1)若,,求椭圆的离心率;(2)若椭圆的右顶点为,短轴长为2,且满足为椭圆的离心率).①求椭圆的方程;②设直线:与椭圆相交于、两点,若的面积为1,求实数的值.43. ( 10分) 已知椭圆C:(a>b>0)的右焦点为F(1,0),且点P在椭圆C上,O为坐标原点.(1)求椭圆C的标准方程;(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.44. ( 10分) 在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,点在线段上,且,点的轨迹为曲线.(1)求曲线的方程;(2)过抛物线:的焦点作直线交抛物线于,两点,过且与直线垂直的直线交曲线于另一点,求面积的最小值,以及取得最小值时直线的方程.45. ( 10分) 已知点,分别是椭圆的长轴端点、短轴端点,为坐标原点,若,.(1)求椭圆的标准方程;(2)如果斜率为的直线交椭圆于不同的两点(都不同于点),线段的中点为,设线段的垂线的斜率为,试探求与之间的数量关系.46. ( 10分) 已知椭圆E:+ =1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.47. ( 10分) 已知椭圆C:=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C 上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.48. ( 10分) 已知椭圆C:+ =1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的方程;(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.①若线段AB中点的横坐标为﹣,求斜率k的值;②若点M(﹣,0),求证:• 为定值.49. ( 10分) 已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.(1)求椭圆的方程;(2)证明:直线恒过定点.50. ( 10分) 如图,中心为坐标原点O的两圆半径分别为,,射线OT与两圆分别交于A、B两点,分别过A、B作垂直于x轴、y轴的直线、,交于点P.(1)当射线OT绕点O旋转时,求P点的轨迹E的方程;(2)直线l:与曲线E交于M、N两点,两圆上共有6个点到直线l的距离为时,求的取值范围.答案解析部分一、单选题1.【答案】D【考点】椭圆的简单性质【解析】【解答】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则 =2,化简得.∵△MAB面积的最大值为8,△MCD面积的最小值为1,∴,解得,∴椭圆的离心率为.故答案为:D.【分析】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则利用两点距离公式得出,∵△MAB面积的最大值为8,△MCD面积的最小值为1,利用三角形面积公式求出a,b的值,再利用椭圆中a,b,c三者的关系式结合离心率公式变形求出椭圆的离心率。
圆锥曲线全国卷高考真题解答题一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.9.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.12.2018年全国普通高等学校招生统一考试理数(全国卷II )设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.13.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.14.2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.15.2018年全国卷Ⅲ文数高考试题已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+.16.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)设A 、B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.17.2017年全国普通高等学校招生统一考试文科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .18.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.19.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.20.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在C 上(1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)已知曲线2:,2x C y D =,为直线12y上的动点,过D 作C 的两条切线,切点分别为,A B .(1)证明:直线AB 过定点: (2)若以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.22.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷带解析)设1F , 2F 分别是椭圆C : 22221(0)x y a b a b+=>>的左、右焦点, M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a , b .23.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ) 已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积24.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或. 【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小. 2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【分析】(1)设直线l :32y x m =+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得1252x x +=;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果. 【详解】(1)设直线l 方程为:32y x m =+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系. 3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)2y x =-【解析】试题分析:设出F ,由直线AFc ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF,()0,2A -所以23c =,c =又222,2c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.4.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+. 【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示;(2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kbx k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-. (2)四边形OAPB 能为平行四边形. ∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = 239k =+2(3)23(9)mk k k -⨯+.解得147k =247k =.∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形. 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 【答案】(Ⅰ0ax y a --=0ax y a ++=(Ⅱ)存在 【详解】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得(2,)M a a ,(2,)N a -,或(22,)M a -,,)N a a .∵12y x '=,故24x y =在x =2a a C 在(22,)a a 处的切线方程为(2)y a a x a -=-,即0ax y a --=.故24x y =在x =-22a 处的导数值为-a ,C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=或0ax y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+.当=-b a 时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力 6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:设的方程为.(1)由在线段上,又;(2)设与轴的交点为(舍去),.设满足条件的的中点为.当与轴不垂直时.当与轴垂直时与重合所求轨迹方程为.试题解析:由题设,设,则,且.记过两点的直线为,则的方程为.............3分(1)由于在线段上,故,记的斜率为的斜率为,则,所以..................5分(2)设与轴的交点为,则,由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合,所以,所求轨迹方程为.........12分考点:1.抛物线定义与几何性质;2.直线与抛物线位置关系;3.轨迹求法.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =.因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当32k =时上式不成立,因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->,解得322k <<. 因此k 的取值范围是()32,2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.8.2016年全国普通高等学校招生统一考试理科数学(新课标1卷) 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)答案见解析;(Ⅱ).【解析】试题分析:(Ⅰ)利用椭圆定义求方程;(Ⅱ)把面积表示为关于斜率k 的函数,再求最值。
高三圆锥曲线选填训练一、选择题(本大题共10小题,每小题4分,共40分)1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-by a x 的离心率为 ( )A .45B .25C .32D .452.椭圆125922=+y x 的准线方程是 ( )A .425±=xB .516±=xC .425±=y D .516±=y 3.椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的( )A .7倍B .5倍C .4倍D .3倍4.过双曲线x 2-22y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有( ) A .1条 B .2条C .3条D .4条5.如果双曲线1366422=-y x 上的一点P 到双曲线的右焦点的距离是8,那么点P 到右准线的距离是( ) A .10 B .7732 C .27 D .5326.抛物线顶点在原点,焦点在y 轴上,其上一点P(m ,1)到焦点距离为5,则抛物线方程为( )A .y x 82=B .y x 82-=C .y x 162=D .y x 162-=7.若抛物线y 2=2p x 上的一点A (6,y )到焦点F 的距离为10,则p 等于 ( ) A .4 B .8 C .16 D .328.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若BF BC 2=,且3=AF ,则此抛物线的方程为 ( ) A .x y 232=B .x y 32=C .x y 292=D .x y 92=9.曲线192522=+y x 与曲线)925(192522≠<=-+-k k k y k x 且 有相同的(A .长、短轴B .焦距C .离心率D .准线10.过椭圆222214x y a a += (a>0)的焦点F 作一直线交椭圆于P, Q 两点,若线段PF 与QF 的长分别为p, q ,则11p q+等于( ) A .4a B .12aC .4aD .2a二、填空题(本大题共4小题,每小题4分,共16分)11.椭圆的焦点是F 1(-3,0)F 2(3,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则椭圆的方程为_____________________________.12.椭圆1322=+y x 上的点到直线x -y+6=0的距离的最小值是 .13.已知双曲线C 的渐近线方程是x y 32±=,且经过点M ()1,29-,则双曲线C 的方程是 .14.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值为 .2009届福鼎一中高三圆锥曲线选填训练 (2)1.抛物线28x y =-的准线方程是 ( )(A) 132x = (B )y =2 (C )14x = (D )y=42.双曲线229436x y -=-的渐近线方程是( )(A) 23y x =± (B )32y x =± (C )94y x =± (D )49y x =±3.已知双曲线22221(0)x y a b a b -=>>22221x y a b =+的离心率为 ( )(A) 12 (B (C (D 4. 平面内两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么 ( ) A .甲是乙成立的充分不必要条件 B .甲是乙成立的必要不充分条件 C .甲是乙成立的充要条件 D .甲是乙成立的非充分非必要条件 5.双曲线2288mx my -=的一个焦点是(0,-3),则m 的值为( )(A) -1 (B )1± (C ) (D )±6.顶点在原点,以x 轴为对称轴的抛物线上一点的横坐标为6,此点到焦点的距离等于10,则抛物线焦点到准线的距离等于( )(A) 4 (B )8 (C )16 (D )327..曲线221169x y -=与221169x y m m-=+-(m>-16且9m ≠) ( ) (A) 有相同的实轴 (B )有相同的焦距 (C )有相等的离心率 (D )有相同的准线8 若椭圆22221x y a b+=,''AA BB 为长轴,为短轴,F 为靠近A 点的焦点,若'B F AB ⊥,则此椭圆的离心率为 ( )(A)(B (C ) 12 (D )29. 12,F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ∠= ,则12F PF 的面积是( ) (A) 2 (B )4 (C )8 (D )1610.如果双曲线2216436x y -=上一点P 到它的右焦点的距离为8,那么点P 到它的左准线的距离为( )(A) 645(B )325 (C 10 (D )96511.过点P (4,4)与双曲线221169x y -=只有一个公共点的直线有( )条 (A) 1 (B ) 2 (C )3 (D )4 12抛物线2y x =上到直线24x y -=的最短距离是( )(A)(B (C ) (D ) 二、填空题132y kx =-交抛物线28y x =于A ,B 两点,若AB 中点的横坐标是2,则AB =________. 14. 已知抛物线型拱桥的顶点距离水面2米时,测量水面宽为8米,当水面上升12米后,水面的宽度是____. 15.与圆221:(3)9C x y ++=外切且与圆222:(3)1C x y -+=内切的动圆圆心轨迹为______________. 16圆心在抛物线22(0)x y x =>上,并且与抛物线的准线及y 轴都相切的圆的方程是__ _.圆锥曲线(1)一.选择题:11、1273622=+y x 12、22 13、181822=-y x 14、25 圆锥曲线(2)二、13. 14. 15.221(2)45x y x -=≥ 16.221(1)()12x y -+-=圆锥曲线(1)11、1273622=+y x 12、22 13、181822=-y x 14、25 圆锥曲线(2)二、13. 14. 15.221(2)45x y x -=≥ 16.221(1)()12x y -+-=圆锥曲线(1)11、1273622=+y x 12、22 13、181822=-y x 14、25 圆锥曲线(2)二、13. 14. 15.221(2)45x y x -=≥ 16.221(1)()12x y -+-=圆锥曲线(1)二.填空题:11、1273622=+y x 12、22 13、181822=-y x 14、25 圆锥曲线(2)二、13. 14. 15.221(2)45x y x -=≥ 16.。
2021年高考数学理试题分类汇编:圆锥曲线(含答案)2021年高考数学理试题分类汇编——圆锥曲线一、选择题1.【2021年四川高考】设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,那么直线OM的斜率的最大值为?答案】C2.【2021年天津高考】双曲线x^2/a^2-y^2/b^2=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,那么双曲线的方程为?答案】D3.【2021年全国I高考】方程x^2/4-y^2/n^2=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是?答案】A4.【2021年全国I高考】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点,|AB|=42,|DE|=25,那么C的焦点到准线的距离为?答案】B5.【2021年全国II高考】圆x+y-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,那么a=?答案】A6.【2021年全国II高考】圆F_1,F_2是双曲线E: x^2/4-y^2/9=1的左、右焦点,点M在E上,MF_1与x轴垂直,F_1F_2=b/a*sin∠MF_1F_2,那么E的离心率为?答案】A7.【2021年全国III高考】O为坐标原点,F是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点,A、B分别为C的左、右顶点。
P为C上一点,且PF⊥x轴。
过点A的直线l与线段PF交于点M,与y轴交于点E。
假设直线BM经过OE的中点,那么C的离心率为?答案】A8.【2021年浙江高考】椭圆C_1: x^2/4+y^2/m^2=1(m>1)与双曲线C_2: x^2/4-y^2/n^2=1(n>0)的焦点重合,e_1,e_2分别为C_1,C_2的离心率,且e_1>e_2,那么m、n的大小关系是?答案】m>n2y-1由AN·BM = (x-a)(y-b)(x+c)(y+c) = (x+c)(y+c)得证。
椭圆一、选择题 1.(2021·高考大纲全国卷)椭圆的中心在原点,焦距为4,一条准线为x =-4,那么该椭圆的方程为( )A.x 216+y 212=1B.x 212+y 28=1C.x 28+y 24=1D.x 212+y 24=1 解析:选C.由题意知椭圆的焦点在x 轴上,故可设椭圆方程为x 2a 2+y 2b2=1(a >b >0).由题意知⎩⎪⎨⎪⎧2c =4,a 2c =4,∴⎩⎪⎨⎪⎧c =2,a 2=8,∴b 2=a 2-c 2=4,故所求椭圆方程为x 28+y 24=1. 2.(2021·高考浙江卷)椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点,假设C 1恰好将线段AB 三等分,那么( )A .a 2=132 B .a 2=13C .b 2=12D .b 2=2解析:选C.由题意知,a 2=b 2+5,因此椭圆方程为(a 2-5)x 2+a 2y 2+5a 2-a 4=0,双曲线的一条渐近线方程为y =2x ,联立方程消去y ,得(5a 2-5)x 2+5a 2-a 4=0,∴直线截椭圆的弦长d =5×2a 4-5a 25a 2-5=23a , 解得a 2=112,b 2=12.3.椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,那么椭圆离心率的取值范围是( )A .(0,22]B .(0,12]C .[2-1,1)D .[12,1)解析:选D.设P (x 0,y 0),那么|PF |=a -ex 0.又点F 在AP 的垂直平分线上,∴a -ex 0=a 2c -c ,因此x 0=a (ac -a 2+c 2)c 2.又-a ≤x 0<a ,∴-a ≤a (ac -a 2+c 2)c 2<a .∴-1≤e 2+e -1e 2<1.又0<e <1,∴12≤e <1.4.椭圆x 24+y 23=1的长轴的左、右端点分别为A 、B ,在椭圆上有一个异于点A 、B 的动点P ,假设直线P A 的斜率k P A =12,那么直线PB 的斜率k PB 为( )A.34B.32C .-34D .-32解析:选D.设点P (x 1,y 1)(x 1≠±2),那么k P A =y 1x 1+2,k PB =y 1x 1-2,∵k P A ·k PB =y 1x 1+2·y 1x 1-2=y 21x 21-4=3(1-x 214)x 21-4=-34,∴k PB =-34k P A =-34×2=-32,故应选D.5.椭圆E :x 2a 2+y2b2=1(a >b >0),以其左焦点F 1(-c,0)为圆心,以a -c 为半径作圆,过上顶点B 2(0,b )作圆F 1的两条切线,设切点分别为M ,N .假设过两个切点M ,N 的直线恰好经过下顶点B 1(0,-b ),那么椭圆E 的离心率为( )A.2-1B.3-1C.5-2D.7-3解析:选B.由题意得,圆F 1: (x +c )2+y 2=(a -c )2. 设M (x 1,y 1),N (x 2,y 2),那么切线B 2M :(x 1+c )(x +c )+y 1y =(a -c )2, 切线B 2N :(x 2+c )(x +c )+y 2y =(a -c )2. 又两条切线都过点B 2(0,b ),所以c (x 1+c )+y 1b =(a -c )2,c (x 2+c )+y 2b =(a -c )2. 所以直线c (x +c )+yb =(a -c )2就是过点M 、N 的直线. 又直线MN 过点B 1(0,-b ),代入化简得c 2-b 2=(a -c )2,所以e =3-1. 二、填空题 6.(2021·高考课标全国卷)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C的方程为__________.解析:设椭圆方程为x 2a 2+y 2b2=1,由e =22知c a =22,故b 2a 2=12.由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,故a =4.∴b 2=8.∴椭圆C 的方程为x 216+y 28=1.答案:x 216+y 28=17.(2021·高考江西卷)假设椭圆x 2a 2+y 2b2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,那么椭圆方程是________.解析:由题意可得切点A (1,0).切点B (m ,n )满足⎩⎪⎨⎪⎧n -12m-1=-mn m 2+n 2=1,解得B ⎝⎛⎭⎫35,45.∴过切点A ,B 的直线方程为2x +y -2=0.令y =0得x =1,即c =1;令x =0得y =2,即b =2. ∴a 2=b 2+c 2=5,∴椭圆方程为x 25+y 24=1.答案:x 25+y 24=18.(2021·高考四川卷)椭圆x 2a 2+y 25=1(a 为定值,且a >5)的左焦点为F ,直线x =m 与椭圆相交于点A 、B ,△F AB 的周长的最大值是12,那么该椭圆的离心率是________.解析:设椭圆的右焦点为F ′,如图,由椭圆定义知,|AF |+|AF ′|=|BF |+|BF ′|=2a . 又△F AB 的周长为|AF |+|BF |+|AB |≤|AF |+|BF |+|AF ′|+|BF ′|=4a , 当且仅当AB 过右焦点F ′时等号成立. 此时4a =12,那么a =3.故椭圆方程为x 29+y 25=1,所以c =2,所以e =c a =23.答案:23三、解答题9.设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 2的直线l 与椭圆C相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3.(1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.解:(1)设椭圆C 的焦距为2c ,由可得F 1到直线l 的距离3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0, 直线l 的方程为y =3(x -2).联立 ⎩⎪⎨⎪⎧y =3(x -2)x 2a 2+y 2b 2=1,得(3a 2+b 2)y 2+43b 2y -3b 4=0.解得y 1=-3b 2(2+2a )3a 2+b 2,y 2=-3b 2(2-2a )3a 2+b 2.因为AF 2→=2F 2B →,所以-y 1=2y 2.即3b 2(2+2a )3a 2+b 2=2·-3b 2(2-2a )3a 2+b 2,得a =3.而a 2-b 2=4,所以b = 5.故椭圆C 的方程为x 29+y 25=1.10.(2021·高考辽宁卷)如图,椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e .直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(1)设e =12,求|BC |与|AD |的比值;(2)当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由. 解:(1)因为C 1,C 2的离心率相同,故依题意可设C 1: x 2a 2+y 2b 2=1,C 2:b 2y 2a 4+x 2a2=1(a >b >0). 设直线l :x =t (|t |<a ),分别与C 1,C 2的方程联立,求得A ⎝⎛⎭⎫t ,a b a 2-t 2,B ⎝⎛⎭⎫t ,b a a 2-t 2. 当e =12时,b =32a ,分别用y A ,y B 表示A ,B 的纵坐标,可知|BC |∶|AD |=2|y B |2|y A |=b 2a 2=34.(2)当t =0时的l 不符合题意,当t ≠0时,BO ∥AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等, 即b a a 2-t 2t =ab a 2-t 2t -a,解得t =-ab 2a 2-b2=-1-e 2e 2·a .因为|t |<a ,又0<e <1,所以1-e 2e 2<1,解得22<e <1.所以当0<e ≤22时,不存在直线l ,使得BO ∥AN ;当22<e <1时,存在直线l ,使得BO ∥AN . 11.(探究选做)椭圆C 1:x 2a 2+y 2b2=1(a >b >0) 的左、右焦点分别为F 1、F 2,其中F 2也是抛物线C 2:y 2=4x 的焦点,M 是C 1与C 2在第一象限的交点,且|MF 2|=53.(1)求椭圆C 1的方程;(2)菱形ABCD 的顶点A 、C 在椭圆C 1上,顶点B 、D 在直线7x -7y +1=0上,求直线AC 的方程.解:(1)设M (x 1,y 1),∵F 2(1,0),|MF 2|=53.由抛物线定义,x 1+1=53,∴x 1=23,∵y 21=4x 1,∴y 1=263. ∴M (23,263),∵M 在C 1上,∴49a 2+83b 2=1,又b 2=a 2-1,∴9a 4-37a 2+4=0,∴a 2=4或a 2=19<c 2舍去.∴a 2=4,b 2=3.∴椭圆C 1的方程为x 24+y 23=1.(2)∵直线BD 的方程为7x -7y +1=0,四边形ABCD 为菱形,∴AC ⊥BD ,设直线AC 的方程为y =-x +m ⎩⎪⎨⎪⎧y =-x +mx 24+y 23=1⇒7x 2-8mx +4m 2-12=0,∵A 、C 在椭圆C 1上,∴Δ>0,∴m 2<7, ∴-7<m <7.设A (x 1,y 1),C (x 2,y 2),那么x 1+x 2=8m7.y 1+y 2=(-x 1+m )+(-x 2+m )=-(x 1+x 2)+2m=-8m 7+2m =6m 7.∴AC 的中点坐标为(4m 7,3m 7),由ABCD 为菱形可知,点(4m 7,3m7)在直线BD :7x -7y+1=0上,∴7·4m 7-7·3m7+1=0,m =-1.∵m =-1∈(-7,7),∴直线AC 的方程为y =-x -1,即x +y +1=0.双曲线一、选择题1.(2021·高考湖南卷)设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,那么a 的值为( )A .4B .3C .2D .1解析:选C.渐近线方程可化为y =±32x .∵双曲线的焦点在x 轴上,∴9a 2=⎝⎛⎭⎫±322,解得a =±2.由题意知a >0,∴a =2. 2.(2021·高考天津卷)双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),那么双曲线的焦距为( )A .2 3B .2 5C .4 3D .4 5解析:选B.双曲线左顶点为A 1(-a,0),渐近线为y =±bax ,抛物线y 2=2px (p >0)焦点为F ⎝⎛⎭⎫p 2,0,准线为直线x =-p2.由题意知-p2=-2,∴p =4,由题意知2+a =4,∴a =2.∴双曲线渐近线y =±b 2x 中与准线x =-p 2交于(-2,-1)的渐近线为y =b 2x ,∴-1=b2×(-2),∴b =1.∴c 2=a 2+b 2=5,∴c =5,∴2c =2 5.3.设双曲线的左准线与两条渐近线交于A 、B 两点,左焦点在以AB 为直径的圆内,那么该双曲线的离心率的取值范围为( )A .(0,2)B .(1,2)C .(22,1) D .(2,+∞)解析:选B.法一:由⎩⎨⎧x =-a 2c ,y =-b ax ,得A ⎝⎛⎭⎫-a 2c ,ab c . 同理可得B ⎝⎛⎭⎫-a 2c ,-ab c .又左焦点F (-c,0),∴F A →=⎝⎛⎭⎫b 2c ,ab c ,FB →=⎝⎛⎭⎫b 2c ,-ab c .∵点F 在以AB 为直径的圆内,∴F A →·FB →<0,即⎝⎛⎭⎫b 2c 2-⎝⎛⎭⎫ab c 2<0,∴b 4<a 2b 2, ∴b 2<a 2,即c 2-a 2<a 2,∴c 2<2a 2, 即e 2<2,∴e < 2.又∵e >1,∴1<e < 2.法二:由⎩⎨⎧x =-a 2c,y =-ba x ,得A ⎝⎛⎭⎫-a 2c ,abc . 同理可得B ⎝⎛⎭⎫-a 2c,-abc . ∵点F (-c,0)在以AB 为直径的圆内,∴左焦点F 到圆心的距离小于半径长,即c -a 2c <abc ,∴a >b .∴e =ca=a 2+b 2a= 1+b 2a2< 2. 又∵e >1,∴1<e < 2. 4.(2021·高考大纲全国卷)F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,那么cos ∠F 1PF 2=( )A.14B.35C.34D.45解析:选C.由x 2-y 2=2知,a 2=2,b 2=2,c 2=a 2+b 2=4, ∴a =2,c =2.又∵|PF 1|-|PF 2|=2a ,|PF 1|=2|PF 2|, ∴|PF 1|=42,|PF 2|=2 2. 又∵|F 1F 2|=2c =4,∴由余弦定理得cos ∠F 1PF 2=(42)2+(22)2-422×42×22=34.5.(2021·高考山东卷)双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x+5=0相切,且双曲线的右焦点为圆C 的圆心,那么该双曲线的方程为( )A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1D.x 26-y 23=1 解析:选A.∵双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,圆C 的标准方程为(x -3)2+y 2=4,∴圆心为C (3,0). 又渐近线方程与圆C 相切,即直线bx -ay =0与圆C 相切,∴3b a 2+b 2=2,∴5b 2=4a 2.①又∵x 2a 2-y 2b 2=1的右焦点F 2(a 2+b 2,0)为圆心C (3,0),∴a 2+b 2=9.②由①②得a 2=5,b 2=4.∴双曲线的标准方程为x 25-y 24=1.二、填空题6.(2021·高考四川卷)双曲线x 264-y 236=1上一点P 到双曲线右焦点的距离是4,那么点P到左准线的距离是__________.解析:由x 264-y 236=1可知a =8,b =6,那么c =10,设双曲线的左、右焦点分别为F 1、F 2,由|PF 2|=4及双曲线的第一定义得|PF 1|=16+4=20.设点P 到左准线的距离为d ,由双曲线的第二定义有20d =108,即d =16.答案:167.(2021·高考重庆卷)设P 为直线y =b 3a x 与双曲线x 2a 2-y 2b2=1(a >0,b >0)左支的交点,F 1是左焦点,PF 1垂直于x 轴,那么双曲线的离心率e =________.解析:∵直线y =b 3a x 与双曲线x 2a 2-y 2b2=1相交,由⎩⎨⎧y =b 3a x ,x 2a 2-y2b 2=1消去y 得x =32a4,又PF 1垂直于x 轴,∴32a 4=c ,即e =c a =324.答案:3248.双曲线x 2-y 2b2=1(b >0)的一条渐近线的方程为y =2x ,那么b =________.解析:∵双曲线的焦点在x 轴上,∴b a =2,∴b 2a 2=4.∵a 2=1,∴b 2=4. 又∵b >0,∴b =2.答案:2 三、解答题9.由双曲线x 29-y 24=1上的一点P 与左、右两焦点F 1、F 2构成△PF 1F 2,求△PF 1F 2的内切圆与边F 1F 2的切点坐标N .解:由双曲线方程知a =3,b =2,c =13.当点P 在双曲线的右支上时,如右图,根据从圆外一点引圆的两条切线长相等及双曲线定义可得|PF 1|-|PF 2|=2a .由于|NF 1|-|NF 2|=|PF 1|-|PF 2|=2a .① |NF 1|+|NF 2|=2c .②由①②得|NF 1|=2a +2c2=a +c ,∴|ON |=|NF 1|-|OF 1|=a +c -c =a =3. 故切点N 的坐标为(3,0).根据对称性,当P 在双曲线左支上时,切点N 的坐标为(-3,0).10.(2021·高考四川卷)如图,动点M 与两定点A (-1,0)、B (1,0)构成△MAB ,且直线MA 、MB 的斜率之积为4.设动点M 的轨迹为C .(1)求轨迹C 的方程;(2)设直线y =x +m (m >0)与y 轴相交于点P ,与轨迹C 相交于点Q ,R ,且|PQ |<|PR |,求|PR ||PQ |的取值范围. 解:(1)设M 的坐标为(x ,y ),当x =-1时,直线MA 的斜率不存在;当x =1时,直线MB 的斜率不存在.于是x ≠1且x ≠-1.此时,MA 的斜率为y x +1,MB 的斜率为yx -1.由题意,有y x +1·yx -1=4.化简可得,4x 2-y 2-4=0.故动点M 的轨迹C 的方程为4x 2-y 2-4=0(x ≠1且x ≠-1).(2)由⎩⎪⎨⎪⎧y =x +m 4x 2-y 2-4=0,消去y ,可得3x 2-2mx -m 2-4=0.(*) 对于方程(*),其判别式Δ=(-2m )2-4×3(-m 2-4)=16m 2+48>0, 而当1或-1为方程(*)的根时,m 的值为-1或1. 结合题设(m >0)可知,m >0且m ≠1.设Q 、R 的坐标分别为(x Q ,y Q ),(x R ,y R ),那么x Q ,x R 为方程(*)的两根. 因为|PQ |<|PR |,所以|x Q |<|x R |, x Q =m -2m 2+33,x R =m +2m 2+33.所以|PR ||PQ |=⎪⎪⎪⎪x R x Q =21+3m 2+121+3m 2-1=1+22 1+3m2-1. 此时 1+3m 2>1,且 1+3m2≠2,所以1<1+22 1+3m 2-1<3,且1+22 1+3m2-1≠53,所以1<|PR ||PQ |=⎪⎪⎪⎪x R x Q<3,且|PR ||PQ |=⎪⎪⎪⎪x R x Q ≠53.综上所述,|PR ||PQ |的取值范围是⎝⎛⎭⎫1,53∪⎝⎛⎭⎫53,3. 11.(探究选做)双曲线C :x24-y 2=1,P 为C 上的任意一点.(1)求证:点P 到双曲线C 的两条渐近线的距离的乘积是一个常数; (2)设点A 的坐标为(3,0),求|P A |的最小值. 解:(1)证明:设P (x 1,y 1)是双曲线C 上任意一点, 该双曲线的两条渐近线方程分别是x -2y =0和x +2y =0, 点P (x 1,y 1)到两条渐近线的距离分别是 |x 1-2y 1|5和|x 1+2y 1|5, ∴|x 1-2y 1|5·|x 1+2y 1|5=|x 21-4y 21|5=45.故点P 到双曲线C 的两条渐近线的距离的乘积是一个常数. (2)设点P 的坐标为(x ,y )(|x |≥2),那么|P A |2=(x -3)2+y 2=(x -3)2+x 24-1=54(x -125)2+45, ∵|x |≥2,∴当x =125时,|P A |2取到最小值45,即|P A |的最小值为255.抛物线一、选择题1.抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,那么p 的值为( ) A.12 B .1 C .2 D .4解析:选C.由抛物线的标准方程得准线方程为x =-p2.由x 2+y 2-6x -7=0得(x -3)2+y 2=16.∵准线与圆相切,∴3+p2=4,∴p =2.2.(2021·高考四川卷)抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).假设点M 到该抛物线焦点的距离为3,那么|OM |=( )A .2 2B .2 3C .4D .2 5解析:选B.由题意设抛物线方程为y 2=2px (p >0),那么M 到焦点的距离为x M +p 2=2+p2=3,∴p =2,∴y 2=4x .∴y 20=4×2,∴y 0=±22, ∴|OM |=4+y 20=4+8=2 3. 3.(2021·四川成都模拟)设抛物线y 2=8x 的焦点为F ,过点F 作直线l 交抛物线于A 、B 两点.假设线段AB 的中点E 到y 轴的距离为3,那么弦AB 的长为( )A .5B .8C .10D .12解析:选C.设A (x 1,y 1),B (x 2,y 2), |AB |=|AF |+|BF |=x 1+x 2+4, 又E 到y 轴距离为3,∴x 1+x 22=3.∴|AB |=10. 4.(2021·高考课标全国卷)直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,那么△ABP 的面积为( )A .18B .24C .36D .48解析:选C.不妨设抛物线的标准方程为y 2=2px (p >0),由于l 垂直于对称轴且过焦点,故直线l 的方程为x =p2.代入y 2=2px 得y =±p ,即|AB |=2p ,又|AB |=12,故p =6,所以抛物线的准线方程为x =-3,故S △ABP =12×6×12=36.5.(2021·高考四川卷)在抛物线y =x 2+ax -5(a ≠0)上取横坐标为x 1=-4,x 2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x 2+5y 2=36相切,那么抛物线顶点的坐标为( )A .(-2,-9)B .(0,-5)C .(2,-9)D .(1,-6)解析:选A.当x 1=-4时,y 1=11-4a ;当x 2=2时,y 2=2a -1,所以割线的斜率k =11-4a -2a +1-4-2=a -2.设直线与抛物线的切点横坐标为x 0,由y ′=2x +a 得切线斜率为2x 0+a , ∴2x 0+a =a -2,∴x 0=-1.∴直线与抛物线的切点坐标为(-1,-a -4),切线方程为y +a +4=(a -2)(x +1),即(a -2)x -y -6=0.圆5x 2+5y 2=36的圆心到切线的距离d =6(a -2)2+1 .由题意得6(a -2)2+1=65,即(a -2)2+1=5.又a ≠0,∴a =4,此时,y =x 2+4x -5=(x +2)2-9.顶点坐标为(-2,-9). 二、填空题 6.(2021·高考重庆卷)过抛物线y 2=2x 的焦点F 作直线交抛物线于A ,B 两点,假设|AB |=2512,|AF |<|BF |,那么|AF |=__________. 解析:由于y 2=2x 的焦点坐标为⎝⎛⎭⎫12,0,设AB 所在直线的方程为y =k ⎝⎛⎭⎫x -12,A (x 1,y 1),B (x 2,y 2),x 1<x 2,将y =k ⎝⎛⎭⎫x -12代入y 2=2x ,得k 2⎝⎛⎭⎫x -122=2x , ∴k 2x 2-(k 2+2)x +k 24=0.∴x 1x 2=14. 而x 1+x 2+p =x 1+x 2+1=2512,∴x 1+x 2=1312.∴x 1=13,x 2=34.∴|AF |=x 1+p 2=13+12=56.答案:567.抛物线C :y 2=4x 的焦点为F ,C 上的点M 在C 的准线上的射影为M ′,假设MM ′→·MF →=12|MM ′→|·|MF →|,那么点M 的横坐标为________.解析:如下图,∵MM ′→·MF →=|MM ′→||MF →|cos ∠M ′MF =12|MM ′→||MF →|, ∴cos ∠M ′MF =12.∴∠M ′MF =60°.又∵|M ′M |=|MF |,故△MM ′F 为正三角形. 设M (x ,y ),那么M ′(-1,y ),F (1,0), ∴|M ′F |=(-1-1)2+y 2=|MM ′|=x +1,整理得y 2=x 2+2x -3,将y 2=4x 代入y 2=x 2+2x -3得x 2-2x -3=0,即x =3或-1(舍). 答案:3 8.(2021·高考重庆卷)设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,那么圆C 的半径能取到的最大值为__________.解析:如下图,假设圆C 的半径取到最大值,必须为圆与抛物线及直线x =3同时相切,设圆心的坐标为(a,0)(a <3),那么圆的方程为(x -a )2+y 2=(3-a )2,与抛物线方程y 2=2x 联立得x 2+(2-2a )x +6a -9=0,由判别式Δ=(2-2a )2-4(6a -9)=0,得a =4-6,故此时半径为3-(4-6)=6-1.答案:6-1 三、解答题 9.(2021·东北三校调研)点M (5,3)到抛物线y =ax 2的准线的距离为6,试求抛物线的方程.解:当抛物线开口向上时,准线为y =-14a ,点M 到它的距离为14a +3=6,a =112,抛物线的方程为y =112x 2.当抛物线开口向下时,准线为y =-14a ,M 到它的距离为-14a -3=6,a =-136.抛物线的方程为y =-136x 2.所以,抛物线的方程为y =112x 2或y =-136x 2.10.设抛物线y 2=4ax (a >0)的焦点为A ,以B (a +4,0)点为圆心,|BA |为半径,在x 轴上方画半圆,设抛物线与半圆相交于不同两点M 、N ,点P 是MN 的中点.求|AM |+|AN |的值.解:设M 、N 、P 在抛物线的准线上射影分别为M ′、N ′、P ′, 那么由抛物线定义得|AM |+|AN |=|MM ′|+|NN ′|=x M +x N +2a . 又圆的方程为[x -(a +4)]2+y 2=16, 将y 2=4ax 代入得x 2-2(4-a )x +a 2+8a =0,∴x M +x N =2(4-a ),所以|AM |+|AN |=8.11.(探究选做)如图,设抛物线方程为x 2=2py (p >0),M为直线y =-2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B .(1)求证:A ,M ,B 三点的横坐标成等差数列;(2)当M 点的坐标为(2,-2p )时,|AB |=410.求此时抛物线的方程.解:(1)证明:由题意设A (x 1,x 212p ),B (x 2,x 222p ),x 1<x 2,M (x 0,-2p ).由x 2=2py 得y =x 22p ,那么y ′=x p ,所以k MA =x 1p ,k MB =x 2p.因此直线MA的方程为y +2p =x 1p(x -x 0).直线MB 的方程为y +2p =x 2p(x -x 0).所以x 212p +2p =x 1p (x 1-x 0),①x 222p +2p =x 2p(x 2-x 0),② 由①-②得x 1+x 22=x 1+x 2-x 0,因此x 0=x 1+x 22,即2x 0=x 1+x 2.所以A ,M ,B 三点的横坐标成等差数列. (2)由(1)知,当x 0=2时,将其代入①、②并整理得x 21-4x 1-4p 2=0,x 22-4x 2-4p 2=0,所以x 1、x 2是方程x 2-4x -4p 2=0的两根, 因此x 1+x 2=4,x 1x 2=-4p 2,又k AB =x 222p -x 212p x 2-x 1=x 1+x 22p =x 0p ,所以k AB =2p .由弦长公式得|AB |=1+k 2AB ·(x 1+x 2)2-4x 1x 2=1+4p2·16+16p 2. 又|AB |=4 10, 所以p =1或p =2.因此所求抛物线方程为x 2=2y 或x 2=4y . 直线与圆锥曲线一、选择题1.(2021·福州模拟)F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B两点.在△AF 1B 中,假设有两边之和是10,那么第三边的长度为( )A .6B .5C .4D .3解析:选A.根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6.2.(2021·高考大纲全国卷)抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,那么cos ∠AFB =( )A.45B.35C .-35D .-45解析:选D.法一:由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5. ∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.法二:由法一得A (4,4),B (1,-2),F (1,0),∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB →|F A →|·|FB →|=3×0+4×(-2)5×2=-45.3.曲线C 1的方程为x 2-y28=1(x ≥0,y ≥0),圆C 2的方程为(x -3)2+y 2=1,斜率为k (k >0)的直线l 与圆C 2相切,切点为A ,直线l 与曲线C 1相交于点B ,|AB |=3,那么直线AB 的斜率为( )A.33B.12 C .1 D. 3解析:选A.设B (a ,b ),那么由题意可得⎩⎪⎨⎪⎧a 2-b 28=1(a -3)2+b 2=3+1,解得⎩⎪⎨⎪⎧a =1b =0.那么直线AB 的方程为y =k (x -1),故|3k -k |1+k 2=1,∴k =33或k =-33(舍去).4.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A. 2B. 3C.3+12D.5+12解析:选D.设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),如下图,双曲线的一条渐近线方程为y =b a x ,而k BF =-b c ,∴b a ·(-b c)=-1,整理得b 2=ac .∴c 2-a 2-ac =0,两边同除以a 2,得e 2-e -1=0,解得e =1+52或e =1-52(舍去),应选D.5.双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),那么E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 解析:选B.∵k AB =0+153+12=1,∴直线AB 的方程为y =x -3. 由于双曲线的焦点为F (3,0),∴c =3,c 2=9.设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),把y =x -3代入双曲线方程,那么x 2a 2-(x -3)2b 2=1.整理,得(b 2-a 2)x 2+6a 2x -9a 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),那么x 1+x 2=6a 2a 2-b2=2×(-12),∴a 2=-4a 2+4b 2,∴5a 2=4b 2.又a 2+b 2=9,∴a 2=4,b 2=5.∴双曲线E 的方程为x 24-y 25=1.二、填空题6.(2021·高考江西卷)假设椭圆x 2a 2+y 2b2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,那么椭圆方程是________.解析:由题意可得切点A (1,0).切点B (m ,n )满足⎩⎪⎨⎪⎧n -12m -1=-mn m 2+n 2=1,,解得B ⎝⎛⎭⎫35,45.∴过切点A ,B 的直线方程为2x +y -2=0.令y =0得x =1,即c =1;令x =0得y =2,即b =2.∴a 2=b 2+c 2=5,∴椭圆方程为x 25+y 24=1.答案:x 25+y 24=17.(2021·广西梧州高三检测)设点F 为抛物线y =-14x 2的焦点,与抛物线相切于点P (-4,-4)的直线l 与x 轴的交点为Q ,那么∠PQF 的值是________.解析:∵y ′=-12x ,∴k PQ =y ′|x =-4=2,∴直线PQ 的方程为y +4=2(x +4). 令y =0,得x =-2,∴点Q (-2,0).又∵焦点F (0,-1),∴k FQ =-12,∴k PQ ·k FQ =-1,∴∠PQF =π2.答案:π28.F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF →=2FD →,那么C 的离心率为________.解析:法一:如图,设椭圆C 的焦点在x 轴上, B (0,b ),F (c,0),D (x D ,y D ),那么BF →=(c ,-b ),FD →=(x D -c ,y D ), ∵BF →=2FD →,∴⎩⎪⎨⎪⎧c =2(x D -c ),-b =2y D ,∴⎩⎨⎧x D =3c2,y D =-b 2.∴(3c 2)2a 2+(-b 2)2b 2=1,即e 2=13,∴ e =33. 法二:设椭圆C 的焦点在x 轴上, 如图,B (0,b ),F (c,0),D (x D ,y D ), 那么|BF |=b 2+c 2=a .作DD 1⊥y 轴于点D 1,那么由BF →=2 FD →,得|OF ||DD 1|=|BF ||BD |=23,∴|DD 1|=32|OF |=32c ,即x D =3c2.由椭圆的第二定义得|FD |=e (a 2c -3c 2)=a -3c 22a.又由|BF |=2|FD |,得a =2a -3c 2a,整理得c 2a 2=13,即e 2=13.∴e =33.答案:33三、解答题9. 抛物线C 的方程为y 2=4x ,其焦点为F ,准线为l ,过F 作直线m 交抛物线C 于M ,N 两点.求S △OMN 的最小值.解:由题意知F (1,0),l :x =-1, 设m :x =ay +1,M (x 1,y 1),N (x 2,y 2)那么⎩⎪⎨⎪⎧x =ay +1y 2=4x ⇒y 2-4ay -4=0,由根与系数的关系得⎩⎪⎨⎪⎧y 1+y 2=4a y 1y 2=-4.S △OMN =12|OF ||y 1-y 2|=12(y 1+y 2)2-4y 1y 2=12·16a 2+16=2a 2+1≥2(a =0时取得等号). 所以S △OMN 的最小值为2.10.(2021·高考重庆卷)如下图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1、F 2,线段OF 1、OF 2的中点分别为B 1、B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线交椭圆于P 、Q 两点,使PB 2⊥QB 2,求△PB 2Q 的面积.解:(1)设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F 2(c,0).因为△AB 1B 2是直角三角形且|AB 1|=|AB 2|,故∠B 1AB 2为直角,从而|OA |=|OB 2|,得b =c2.结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =25 5.在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2,由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意知,直线PQ 的倾斜角不为0,故可设直线PQ 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0. (*)设P (x 1,y 1)、Q (x 2,y 2),那么y 1,y 2是上面方程的两根, 因此y 1+y 2=4mm 2+5,y 1·y 2=-16m 2+5.又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2),所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2 =(my 1-4)(my 2-4)+y 1y 2 =(m 2+1)y 1y 2-4m (y 1+y 2)+16=-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,知B 2P →·B 2Q →=0,即16m 2-64=0, 解得m =±2.当m =2时,方程(*)化为9y 2-8y -16=0, 故y 1=4+4109,y 2=4-4109,|y 1-y 2|=8910,△PB 2Q 的面积S =12|B 1B 2|·|y 1-y 2|=16910.当m =-2时,同理可得(或由对称性可得)△PB 2Q 的面积S =16910,综上所述,△PB 2Q 的面积为16910.11.(探究选做)(2021·高考上海卷)在平面直角坐标系xOy 中,双曲线C 1:2x 2-y 2=1. (1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交C 1于P 、Q 两点.假设l 与圆x 2+y 2=1相切,求证:OP ⊥OQ ;(3)设椭圆C 2:4x 2+y 2=1.假设M 、N 分别是C 1、C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.解:(1)双曲线C 1:x 212-y 2=1,左顶点A ⎝⎛⎭⎫-22,0,渐近线方程:y =±2x .不妨取过点A 与渐近线y =2x 平行的直线方程为 y =2⎝⎛⎭⎫x +22,即y =2x +1. 解方程组⎩⎪⎨⎪⎧y =-2x ,y =2x +1,得⎩⎨⎧x =-24,y =12.所以所求三角形的面积为S =12|OA ||y |=28.(2)证明:设直线PQ 的方程是y =x +b .因直线PQ 与圆相切,故|b |2=1,即b 2=2. 由⎩⎪⎨⎪⎧y =x +b ,2x 2-y 2=1,得x 2-2bx -b 2-1=0. 设P (x 1,y 1)、Q (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=2b ,x 1x 2=-1-b 2.又y 1y 2=(x 1+b )(x 2+b ),所以OP →·OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2 =2(-1-b 2)+2b 2+b 2=b 2-2=0. 故OP ⊥OQ .(3)证明:当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,那么O 到直线MN 的距离为33. 当直线ON 不垂直于x 轴时, 设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22, 那么直线OM 的方程为y =-1kx .由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎪⎨⎪⎧x 2=14+k2,y 2=k24+k2,所以|ON |2=1+k 24+k 2.同理|OM |2=1+k 22k 2-1.设O 到直线MN 的距离为d , 因为(|OM |2+|ON |2)d 2=|OM |2|ON |2,所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33. 综上,O 到直线MN 的距离是定值. 圆锥曲线综合〔一〕(时间:100分钟 总分值:120分)一、选择题(本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的) 1.抛物线y =4x 2的焦点坐标是( ). A .(0,1) B .(1,0) C .(0,116)D .(116,0)解析 将抛物线方程变为x 2=2×18y ,知p =18,又焦点在y 轴上,且开口向上,所以它的焦点坐标为(0,116). 答案 C2.椭圆x 225+y 216=1上一点P 到椭圆一个焦点的距离为3,那么点P 到另一焦点的距离为( ).A .2B .3C .5D .7 解析 点P 到椭圆的两个焦点的距离之和为2a =10,10-3=7.选D. 答案 D3.以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( ). A .x 2+y 2+2x =0 B .x 2+y 2+x =0 C .x 2+y 2-x =0D .x 2+y 2-2x =0解析 因为抛物线的焦点坐标为(1,0),所以所求圆的圆心为(1,0),又圆过原点,所以圆的半径r =1,故所求圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0,应选D. 答案 D4.以椭圆x 216+y 29=1的顶点为顶点,离心率为2的双曲线方程是( ). A.x 216-y 248=1B.x 29-y 227=1C.x 216-y 248=1或y 29-x 227=1 D .以上都不对解析 当顶点为(±4,0)时,a =4,c =8,b =43,x 216-y 248=1; 当顶点为(0,±3)时,a =3,c =6,b =33,y 29 -x 227=1. 答案 C5.椭圆与双曲线x 23-y 22=1有共同的焦点,且离心率为15,那么椭圆的标准方程为( ). A.x 220+y 225=1 B.x 225+y 220=1 C.x 225+y 25=1D.x 25+y 225=1解析 双曲线x 23-y 22=1中a 21=3,b 21=2,那么c 1=a 21+b 21=5,故焦点坐标为(-5,0),(5,0),故所求椭圆x 2a 2+y 2b 2=1(a >b >0)的c =5,又椭圆的离心率e =c a =15,那么a =5,a 2=25,b 2=a 2-c 2=20,故椭圆的标准方程为x 225+y 220=1. 答案 B6.(2021·山东烟台期末)椭圆x 241+y 225=1的两个焦点为F 1,F 2,弦AB 过点F 1,那么△ABF 2的周长为( ).A .10B .20C .241D .441 解析 |AB |+|BF 2|+|AF 2|=|AF 1|+|BF 1|+|B F 2|+|AF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =441. 答案 D7.双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,那么该双曲线的离心率是( ). A .2 B. 3 C. 2 D.32解析 双曲线x 2a 2-y 2b 2=1的两条渐近线方程为y =±b a x ,依题意b a ·(-b a ) =-1,故b 2a 2=1,所以c 2-a 2a 2=1即e 2=2,所以双曲线的离心率e = 2.应选C. 答案 C8.椭圆x 2sin α-y 2cos α=1(0≤α<2π)的焦点在y 轴上,那么α的取值范围是( ). A .(34π,π) B .(π4,34π) C .(π2,π)D .(π2,34π)解析 椭圆方程化为x 21sin α+y 2-1cos α=1.∵椭圆焦点在y 轴上,∴-1cos α>1sin α>0. 又∵0≤α<2π,∴π2<α<3π4. 答案 D9.抛物线y =2x 2上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +m 对称,且x 1·x 2=-12,那么m 等于( ).A.32 B .2 C.52 D .3 解析 依题意,得k AB =y 2-y 1x 2-x 1=-1,而y 2-y 1=2(x 22-x 21),得x 2+x 1=-12,且(x 2+x 12,y 2+y 12)在直线y =x +m 上,即y 2+y 12=x 2+x 12+m , y 2+y 1=x 2+x 1+2m ,∴2(x 22+x 21)=x 2+x 1+2m ,2[(x 2+x 1)2-2x 2x 1]=x 2+x 1+2m ,2m =3,m =32. 答案 A10.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,那么该双曲线的方程为( ). A.x 25-y 24=1 B.x 24-y 25=1 C.x 23-y 26=1D.x 26-y 23=1解析 圆心的坐标是(3,0),圆的半径是2,双曲线的渐近线方程是bx ±ay =0,c =3,根据得3ba 2+b 2=2,即3b3=2,解得b =2,得a 2=c 2-b 2=5,故所求的双曲线方程是x 25-y 24=1. 答案 A二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上.) 11.点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,那么p =________. 解析 ∵抛物线y 2=2px (p >0)的焦点坐标是(p2,0),由两点间距离公式,得〔p2+2〕2+〔-3〕2=5.解得p =4. 答案 412.假设椭圆x 2+my 2=1的离心率为32,那么它的长半轴长为________.解析 当0<m <1时,y 21m+x 21=1,e 2=a 2-b 2a 2=1-m =34, m =14,a 2=1m =4,a =2;当m >1时,x 21+y 21m =1,a =1.应填1或2.答案 1或213.双曲线x 2a 2-y 2b 2=1(a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,那么双曲线的方程为________.解析 由题意知,椭圆的焦点坐标是(±7,0),离心率是74.故在双曲线中c =7,e =274=c a ,故a =2,b 2=c 2-a 2=3,因此所求双曲线的方程是x 24-y 23=1. 答案 x 24-y 23=114.设椭圆的两个焦点分别为F 1,F 2,过F 2作椭圆长轴的垂线与椭圆相交,其中的一个交点为P ,假设△F 1PF 2为等腰直角三角形,那么椭圆的离心率是________.解析 由题意,知PF 2⊥F 1F 2,且△F 1PF 2为等腰直角三角形,所以|PF 2|=|F 1F 2|=2c ,|PF 1|=2·2c ,从而2a =|PF 1|+|PF 2|=2c (2+1), 所以e =2c2a =12+1=2-1. 答案2-1三、解答题(本大题共5小题,共54分,解答时应写出必要的文字说明,证明过程或演算步骤)15.(10分)双曲线C 与椭圆x 28+y 24=1有相同的焦点,直线y =3x 为C 的一条渐近线.求双曲线C 的方程.解 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由椭圆x 28+y 24=1,求得两焦点为(-2,0),(2,0), ∴对于双曲线C :c =2.又y =3x 为双曲线C 的一条渐近线, ∴ba =3,解得a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1.16.(10分)双曲线与椭圆有共同的焦点F 1(0,-5)、F 2(0,5),点P (3,4)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.解 由共同的焦点F 1(0,-5)、F 2(0,5),可设椭圆方程为y 2a 2+x 2a 2-25=1;双曲线方程为y 2b 2-x 225-b 2=1,点P (3,4)在椭圆上,16a 2+9a 2-25=1,a 2=40, 双曲线的过点P (3,4)的渐近线为 y =b 25-b 2x ,即4=b 25-b 2×3,b 2=16. 所以椭圆方程为y 240+x 215=1;双曲线方程为y 216-x 29=1.17.(10分)抛物线y 2=2x ,直线l 过点(0,2)与抛物线交于M ,N 两点,以线段MN 的长为直径的圆过坐标原点O ,求直线l 的方程. 解 由题意,知直线l 的斜率存在,设为k ,那么直线l 的方程为y =k x +2(k ≠0), 解方程组⎩⎨⎧y =k x +2,y 2=2x ,消去x 得k y 2-2y +4=0,Δ=4-16k >0⇒k <14(k ≠0),设M (x 1,y 1),N (x 2,y 2), 那么y 1+y 2=2k ,y 1·y 2=4k ,⎩⎪⎨⎪⎧x 1=12y 21x 2=12y 22⇒x 1·x 2=14(y 1·y 2)2=4k 2 OM ⊥ON ⇒k OM ·k ON =-1,∴x 1·x 2+y 1·y 2=0, ∴4k 2+4k =0,解得k =-1.所以所求直线方程为y =-x +2,即x +y -2=0.18.(12分)椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2. (1)求椭圆的方程; (2)求△CDF 2的面积.解 (1)易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2, 由⎩⎪⎨⎪⎧y =-2x -2,x 22+y 2=1,得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=-169,x 1·x 2=23,∴|CD |=1+〔-2〕2|x 1-x 2| =5·〔x 1+x 2〕2-4x 1x 2 =5·〔-169〕2-4×23=1092,又点F 2到直线BF 1的距离d =455, 故S △CDF 2=12|CD |·d =4910.19.(12分)抛物线y 2=4x 截直线y =2x +m 所得弦长AB =35,(1)求m 的值;(2)设P 是x 轴上的一点,且△ABP 的面积为9,求P 的坐标. 解 (1)由⎩⎨⎧y 2=4x ,y =2x +m ,得4x 2+4(m -1)x +m 2=0,由根与系数的关系,得x 1+x 2=1-m ,x 1·x 2=m 24, |AB |=1+k 2〔x 1+x 2〕2-4x 1x 2 =1+22〔1-m 〕2-4·m 24=5〔1-2m 〕.由|AB |=35,即5〔1-2m 〕=35⇒m =-4. (2)设P (a ,0),P 到直线AB 的距离为d ,那么d =|2a -0-4|22+〔-1〕2=2|a -2|5,又S △ABP =12|AB |·d , 那么d =2·S △ABP|AB |,2|a -2|5=2×935⇒|a -2|=3⇒a =5或a =-1, 故点P 的坐标为(5,0)和(-1,0).圆锥曲线综合〔二〕(考试时间90分钟,总分值120分)一、选择题(本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析: 双曲线x 24-y 212=-1的焦点坐标为(0,±4),顶点坐标为(0,±23),故所求椭圆的焦点在y 轴上,a =4,c =23,∴b 2=4,所求方程为x 24+y 216=1,应选D.答案: D2.设P 是椭圆x 2169+y 2144=1上一点,F 1、F 2是椭圆的焦点,假设|PF 1|等于4,那么|PF 2|等于( )A .22B .21C .20D .13解析: 由椭圆的定义知,|PF 1|+|PF 2|=26, 又∵|PF 1|=4,∴|PF 2|=26-4=22. 答案: A3.双曲线方程为x 2-2y 2=1,那么它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D .(3,0) 解析: 将双曲线方程化为标准方程为x 2-y 212=1, ∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62, 故右焦点坐标为⎝⎛⎭⎫62,0.答案: C 4.假设抛物线x 2=2py的焦点与椭圆x 23+y 24=1的下焦点重合,那么p 的值为( )A .4B .2C .-4D .-2解析: 椭圆x 23+y 24=1的下焦点为(0,-1),∴p2=-1,即p =-2. 答案: D5.假设k ∈R ,那么k >3是方程x 2k -3-y 2k +3=1表示双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 方程x 2k -3-y 2k +3=1表示双曲线的条件是(k -3)(k +3)>0,即k >3或k <-3.故k >3是方程x 2k -3-y 2k +3=1表示双曲线的充分不必要条件.应选A. 答案: A6.F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,那么椭圆离心率的取值范围是( )A .(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1解析: 由MF 1→·MF 2→=0可知点M 在以线段F 1F 2为直径的圆上,要使点M 总在椭圆内部,只需c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2, 故离心率e =c a <22.因为0<e <1,所以0<e <22. 即椭圆离心率的取值范围是⎝⎛⎭⎫0,22.应选C. 答案: C7.抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,那么cos ∠AFB =( )A.45B.35 C .-35D .-45解析 方法一:由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5.。
专题16:圆锥曲线全国卷高考真题选择题36道(解析版)一、单选题1,2020年全国统一高考数学试卷(理科)(新课标Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3C .6D .9【答案】C 【分析】利用抛物线的定义建立方程即可得到答案. 【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p .故选:C. 【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题. 2,2020年全国统一高考数学试卷(理科)(新课标Ⅰ)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程. 【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l 的距离为2d ==>,所以直线 l 与圆相离.试卷第2页,总25页依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =当直线MP l ⊥时,min MP =, min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,1x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D. 【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题. 3,2020年全国统一高考数学试卷(文科)(新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )ABCD【答案】B 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--== 圆心到直线230x y --=的距离均为2255d -==; 所以,圆心到直线230x y --=25. 故选:B. 【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.4,2020年全国统一高考数学试卷(文科)(新课标Ⅱ)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .32【答案】B 【分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b =+. 【详解】2222:1(0,0)x y C a b a b-=>> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩试卷第4页,总25页故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==取等号∴C 的焦距的最小值:8故选:B. 【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.5,2020年全国统一高考数学试卷(理科)(新课标Ⅲ) 设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)【答案】B 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果. 【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B. 【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 6,2020年全国统一高考数学试卷(理科)(新课标Ⅲ)设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A .1 B .2C .4D .8【答案】A 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca =,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A. 【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.7,2018年全国普通高等学校招生统一考试理科数学(新课标I 卷) 设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5 B .6C .7D .8【答案】D 【分析】试卷第6页,总25页首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点(1,2),(4,4)M N ,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得(0,2),(3,4)FM FN ==,最后应用向量数量积坐标公式求得结果. 【详解】根据题意,过点(–2,0)且斜率为23的直线方程为2(2)3y x =+, 与抛物线方程联立22(2)34y x y x⎧=+⎪⎨⎪=⎩,消元整理得:y y -+=2680, 解得(1,2),(4,4)M N ,又(1,0)F , 所以(0,2),(3,4)FM FN ==,从而可以求得03248FM FN ⋅=⨯+⨯=,故选D. 【点睛】该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出(1,2),(4,4)M N ,之后借助于抛物线的方程求得(1,0)F ,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M 、N 的坐标,应用韦达定理得到结果.8,2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C的两条渐近线的交点分别为M 、N .若OMN 为直角三角形,则|MN |= A .32B .3C.D .4【答案】B 【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得3(,22M N -,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为±(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和3y x =-联立,求得3(,2M N ,所以3MN ==,故选B. 点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线MN 的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.9,2018年全国普通高等学校招生统一考试理数(全国卷II )双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y x =D .y x = 【答案】A 【解析】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:2222221312,c b c a b e e a a a a-==∴==-=-=∴=因为渐近线方程为by x a=±,所以渐近线方程为y =,选A.试卷第8页,总25页点睛:已知双曲线方程22221(,0)x y a b a b -=>求渐近线方程:22220x y by x a b a -=⇒=±. 10,2018年全国普通高等学校招生统一考试理数(全国卷II )已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A且斜率为6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14【答案】D 【详解】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP斜率为6得,222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2221=4,54sin()3c a c e a c PAF =∴==+-∠,故选D. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 11,2018年全国卷Ⅲ理数高考试题直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是 A .[]26, B .[]48,C. D.⎡⎣【答案】A 【解析】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB 22=点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离1202222d ++==故点P 到直线x y 20++=的距离2d 的范围为2,32⎡⎤⎣⎦则[]22122,62ABPSAB d d ==∈ 故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.12,2018年全国卷Ⅲ理数高考试题设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP ,则C 的离心率为A .5B 3C .2D 2【答案】B 【详解】分析:由双曲线性质得到2PF b =,PO a =然后在2Rt PO F 和在12Rt PF F △中利用余弦定理可得.详解:由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF b F OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)2222246322b c abc a b cc+-∴=⇒=⋅试卷第10页,总25页e ∴=故选B .点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题.13,2017年全国普通高等学校招生统一考试理科数学(新课标1卷)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14C .12D .10【答案】A 【解析】设11223344(,),(,),(,),(,)A x y B x y D x y E x y ,直线1l 的方程为1(1)y k x =-,联立方程214(1)y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=-212124k k +=,同理直线2l 与抛物线的交点满足22342224k x x k ++=,由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=,当且仅当121k k =-=(或1-)时,取等号.点睛:对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin p AB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=.14,2017年全国普通高等学校招生统一考试理科数学(新课标2卷)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 ( ) A .2 BCD【答案】A 【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d =()2,0到直线0bx ay +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A .点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).15.2017年全国普通高等学校招生统一考试理科数学(全国卷3)【答案】B试卷第12页,总25页则C 的方程为2145x y 2-= . 本题选择B 选项.16.2017年全国普通高等学校招生统一考试理科数学(全国卷3正式版)已知椭圆C :22221x y a b+=,(a>b>0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63 B .33 C .23 D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离222ab d a a b ==+,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,63c e a ==,故选A.17.2016年全国普通高等学校招生统一考试理科数学(新课标1卷)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 A .(–1,3) B .(–1,) C .(0,3) D .(0,)【答案】A 【解析】由题意知:双曲线的焦点在轴上,所以,解得,因为方程表示双曲线,所以,解得,所以的取值范围是,故选A .【考点】双曲线的性质【名师点睛】双曲线知识一般作为客观题出现,主要考查双曲线的几何性质,属于基础题.注意双曲线的焦距是2c而不是c,这一点易出错.18.2016年全国普通高等学校招生统一考试理科数学(新课标1卷)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为A.2 B.4 C.6 D.8【答案】B【解析】试题分析:如图,设抛物线方程为,圆的半径为r,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【考点】抛物线的性质【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.19.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)圆的圆心到直线的距离为1,则()A.B.C.D.2【答案】A【解析】试题分析:由配方得,所以圆心为试卷第14页,总25页,因为圆的圆心到直线的距离为1,所以,解得,故选A.【考点】 圆的方程,点到直线的距离公式【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离. 已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围.20.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知00(,)M x y 是双曲线C :2212x y -=上的一点,1F ,2F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .33(,)-B .33(,)-C .2222(,)-D .2323(,)- 【答案】A 【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF ⋅=0000(3,)(3,)x y x y ---⋅--=2220003310x y y +-=-<,解得03333y -<<,故选A. 考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.21,2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A .5 B .2C .3D .2【答案】D 【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.22,2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ) 已知为双曲线:的一个焦点,则点到的一条渐近线的距离为( ) A .B .3C .D .【答案】A 【解析】试题分析:由已知得,双曲线C 的标准方程为.则,,设一个焦点,一条渐近线的方程为,即,所以焦点F 到渐近线的距离为,选A .【考点定位】1、双曲线的标准方程和简单几何性质;2、点到直线的距离公式.23,2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ) 已知抛物线C :的焦点为F ,准线为,P 是上一点,Q 是直线PF 与C 得一个交点,若4FP FQ =,则( )试卷第16页,总25页A .B .C .D .【答案】B 【详解】试题分析:如图所示,因为4FP FQ =,故34PQ PF =,过点Q 作QMl ⊥,垂足为M ,则//QM x 轴,所以344MQ PQ PF==,所以3MQ =,由抛物线定义知,3QF MQ ==,选B .【考点定位】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.24,2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷)设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A .334B .938C .6332D .94【答案】D 【解析】由题意可知:直线AB 的方程为33)4y x =-,代入抛物线的方程可得:24390y --=,设A 11(,)x y 、B 22(,)x y ,则所求三角形的面积为1324⨯94,故选D.考点:本小题主要考查直线与抛物线的位置关系,考查两点间距离公式等基础知识,考查同学们分析问题与解决问题的能力.25,2019年全国统一高考数学试卷(文科)(新课标Ⅰ)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B 【分析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得2n =,从而可求解. 【详解】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得试卷第18页,总25页223611n n +=,解得32n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.26.2019年全国统一高考数学试卷(理科)(新课标Ⅱ) 若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .8【答案】D 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D . 【详解】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养. 27,2019年全国统一高考数学试卷(理科)(新课标Ⅱ)设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A .2 B .3 C .2 D .5【答案】A 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==. 2e ∴=,故选A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.28,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)双曲线C:2242x y-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若=PO PF,则△PFO的面积为A.4B.2C.D.【答案】A【分析】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.【详解】由2,,,a b c====.,PPO PF x=∴=,又P在C的一条渐近线上,不妨设为在2y x=上,112224PFO PS OF y∴=⋅==△,故选A.【点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.29,2018年全国普通高等学校招生统一考试文数(全国卷II)已知1F,2F是椭圆C的两个焦点,P是C上的一点,若12PF PF⊥,且2160PF F∠=︒,则C的离心率为A.1-B.2CD1【答案】D【解析】分析:设2||PF m=,则根据平面几何知识可求121,F F PF,再结合椭圆定义可求离心率.试卷第20页,总25页详解:在12F PF ∆中,122190,60F PF PF F ∠=∠=︒设2||PF m =,则12122,c F F m PF ===,又由椭圆定义可知1221)a PF PF m =+=则离心率212c c e a a ====, 故选D.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.30,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为A .13B .12C .2D 【答案】C 【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得a =最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率为2e ==,故选C. 点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中,,a b c 的关系求得结果.31,2018年全国卷Ⅲ文数高考试题文试卷第22页,总25页已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为 AB .2C.2D.【答案】D 【解析】分析:由离心率计算出ba,得到渐近线方程,再由点到直线距离公式计算即可.详解:e c a ===1ba∴= 所以双曲线的渐近线方程为x y 0±= 所以点(4,0)到渐近线的距离d ==故选D点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题. 32,2017年全国普通高等学校招生统一考试文科数学(新课标1卷)已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A的坐标是(1,3),则APF 的面积为 A .13B .1 2C .2 3D .32【答案】D 【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3=±y ,所以||3PF =,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,选D .点睛:本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得(2,0)F ,结合PF 与x 轴垂直,可得||3PF =,最后由点A 的坐标是(1,3),计算△APF 的面积.33,2017年全国普通高等学校招生统一考试文科数学(新课标2卷) 若,则双曲线的离心率的取值范围是( ) A .B .C .D .【答案】C 【解析】, , ,,,则,选C.34.(2017新课标全国卷Ⅲ文科)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A .6B 3C .23D .13【答案】A 【解析】以线段12A A 为直径的圆的圆心为坐标原点()0,0,半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即22d a a b==+,整理可得223a b ,即()2223,a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率2633c e a ===,故选A.试卷第24页,总25页【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.35,2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ) 已知双曲线的离心率为2,则A .2B .C .D .1【答案】D 【解析】试题分析:由离心率可得:,解得:.考点:复数的运算36,2019年全国统一高考数学试卷(文科)(新课标Ⅰ)双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒【答案】D 【分析】由双曲线渐近线定义可得tan130,tan 50b b a a -=︒∴=︒,再利用21c b e a a ⎛⎫==+ ⎪⎝⎭双曲线的离心率. 【详解】 由已知可得tan130,tan 50b ba a-=︒∴=︒, 2222222sin 50sin 50cos 50111tan 501cos 50cos 50cos50c b e a a ︒︒+︒⎛⎫∴==+=+︒=+==⎪︒︒︒⎝⎭,故选D . 【点睛】对于双曲线:()222210,0x y a b a b -=>>,有21c b e a a ⎛⎫==+ ⎪⎝⎭()222210x y a b a b +=>>,有c e a ==,。
全国高考理科数学试题分类汇编9:圆锥曲线一、选择题1 .(2019年高考江西卷(理))过点引直线l与曲线y =A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A .y EB BC CD=++3B.3-C.3±D.2 .(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))双曲线2214x y -=的顶点到其渐近线的距离等于 ( )A .25B .45CD3 .(2019年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.2214x -= B .22145x y -=C .22125x y -=D.2212x -=4 .(2019年高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>)则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±5 .(2019年高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等6 .(2019年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是 ( ) A .12B.2C .1 D7 .(2019年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是[来源:12999数学网]( )A .2B .3C .23 D .26 8 .(2019年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p = ( )A .1B .32C .2D .39 .(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是 ( )A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦,10.(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知抛物线2:8C y x=与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12BCD .211.(2019年高考北京卷(理))若双曲线22221x y a b-=,则其渐近线方程为( )A .y =±2xB .y=C .12y x =±D.2y x =±12.(2019年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线1C :212y xp =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M .若1C在点M 处的切线平行于2C 的一条渐近线,则p =( )A. B. C.3 D.313.(2019年高考新课标1(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 14.(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点)2,0(,则C 的方程为( )A .24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x =D .22y x =或216y x =15.(2019年上海市春季高考数学试卷(含答案))已知 A B 、为平面内两定点,过该平面内动点M 作直线AB的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是 ( )A .圆B .椭圆C .抛物线D .双曲线16.(2019年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( )A.4B1C.6-D二、填空题17.(2019年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))双曲线191622=-y x 的两条渐近线的方程为_____________.18.(2019年高考江西卷(理))抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则P =_____________19.(2019年高考湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___.20.(2019年高考上海卷(理))设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =,则Γ的两个焦点之间的距离为________24.(2019年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________25.(2019年高考陕西卷(理))双曲线22116x y m -=的离心率为54, 则m 等于_______.26.(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,A F B F ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e =______. 27.(2019年上海市春季高考数学试卷(含答案))抛物线28y x =的准线方程是_______________ 三、解答题30.(2019年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小题满分9分.已知椭圆C 的两个焦点分别为1(1 0)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P FQ ⊥,求直线l 的方程.31.(2019年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;32.(2019年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;36.(2019年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D (1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.37.(2019年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =,过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=. (1)求该椭圆的标准方程;38.(2019年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设椭圆2222:11x y E a a+=-的焦点在x 轴上(Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;39.(2019年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.40.(2019年普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆22221(0)x y a b a b+=>>的左焦(第21题图)点为F , , 过点F 且与x (Ⅰ) 求椭圆的方程; 【答案】41.(2019年高考江西卷(理))如图,椭圆2222+=1(>>0)x y C a b a b :经过点3(1,),2P 离心率1=2e ,直线l 的方程为=4x .(1) 求椭圆C 的方程;42.(2019年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程;43.(2019年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))平面直角坐标系xOy中,过椭圆2222:1(0)x y M a b a b+=>>的右焦点F 作直0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.【答案】46.(2019年高考陕西卷(理))已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8.(Ⅰ) 求动圆圆心的轨迹C 的方程;47.(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O )01x =,切线.MA 的斜率为12-.(I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为48.(2019年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12F F ,,离心率为3,直线2y =与C 的两个交点间. (I)求,;a b ;49.(2019年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分6分,第2小题满分6分.已知抛物线24C y x =:的焦点为F . (1) 点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程;全国高考理科数学试题分类汇编9:圆锥曲线【答案】B 【答案】C 【答案】B 【答案】C 【答案】D 【答案】B 【答案】D 【答案】C 【答案】B 【答案】D 【答案】B 【答案】D 【答案】D 【答案】C 【答案】C 【答案】A 二、填空题【答案】 【答案】6 【答案】 【答案】.【答案】【答案】9 【答案】 【答案】三、解答题【答案】[解](1)设椭圆的方程为.根据题意知, 解得,故椭圆的方程为.(2)容易求得椭圆的方程为.当直线的斜率不存在时,其方程为,不符合题意;当直线的斜率存在时,设直线的方程为.由 得.设,则因为,所以,即解得,即.故直线的方程为或.【答案】解:所以,.又由已知,, [来源:12999]所以椭圆C的离心率【答案】解:(Ⅰ)由于,将代入椭圆方程得由题意知,即又所以,所以椭圆方程为【答案】解:(Ⅰ)由已知得到,且,所以椭圆的方程是;(Ⅱ)因为直线,且都过点,所以设直线,直线,所以圆心到直线的距离为,所以直线被圆所截的弦;由,所以,所以当时等号成立,此时直线答案】解: (Ⅰ)【答案】由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3.设动圆的圆心为(,),半径为R. [来源:12999](Ⅰ)∵圆与圆外切且与圆内切,∴|PM|+|PN|===4,由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为.(Ⅱ)对于曲线C上任意一点(,),由于|PM|-|PN|=≤2,∴R≤2,当且仅当圆P的圆心为(2,0)时,R=2.∴当圆P的半径最长时,其方程为,当的倾斜角为时,则与轴重合,可得|AB|=.当的倾斜角不为时,由≠R知不平行轴,设与轴的交点为Q,则=,可求得Q(-4,0),∴设:,由于圆M相切得,解得.当=时,将代入并整理得,解得=,∴|AB|==.当=-时,由图形的对称性可知|AB|=,综上,|AB|=或|AB|=.【答案】(Ⅰ) 依题意,设抛物线的方程为,由结合,解得.所以抛物线的方程为.(Ⅱ) 抛物线的方程为,即,求导得设,(其中),则切线的斜率分别为,, 所以切线的方程为,即,即同理可得切线的方程为因为切线均过点,所以,所以为方程的两组解.所以直线的方程为.47.(2019年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))【答案】【答案】(1)设动点的坐标为,点的坐标为,则,因为的坐标为,所以,由得.即解得代入,得到动点的轨迹方程为.。
2018年数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为或(1,.所以AM 的方程为2y x =-+2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+.从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 解:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P1,所以点P2在C 上. 因此222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎪⎨=⎪⎩. 故C 的方程为2214x y +=.(2)设直线P2A 与直线P2B 的斜率分别为k1,k2,如果l 与x 轴垂直,设l :x=t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,),(t,).则121k k +-=-,得2t =,不符合题设.从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得由题设可知22=16(41)0k m ∆-+>. 设A (x1,y1),B (x2,y2),则x1+x2=2841kmk -+,x1x2=224441m k -+.而12121211y y k k x x --+=+1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-) 2016年数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。
圆锥曲线一、单选题1.设椭圆的两个焦点分别为 F 1,F 2 ,过 F 2 作椭圆长轴的垂线交椭圆于点 P ,若△ F 1PF 2 为等腰直角三角形,则椭圆的离心率是( )A .√22B .√2−12C .2−√2D .√2−12.(2016高二上·黄陵开学考)曲线 x 225+y 29 =1与曲线 x 225−k +y 29−k=1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等3.已知双曲线 C:x 2a 2−y 2b2=1(a >0,b >0) 的一条渐近线与直线 3x +√6y +3=0 垂直,以 C的右焦点 F 为圆心的圆 (x −c)2+y 2=2 与它的渐近线相切,则双曲线的焦距为( ) A .1B .2C .√5D .2√54.(2017·浙江模拟)双曲线x 2﹣4y 2=4的渐近线方程是( )A .y=±4xB .y=± 14xC .y=±2xD .y=± 12x5.(2020高一下·高安期中)设点F 为抛物线 y 2=16x 的焦点,A ,B ,C 三点在抛物线上,且四边形 ABCF 为平行四边形,若对角线 |BF|=5 (点B 在第一象限),则对角线 AC 所在的直线方程为( )A .8x −2y −11=0B .4x −y −8=0C .4x −2y −3=0D .2x −y −3=06.(2022·全国甲卷)椭圆 C :x 2a 2+y 2b2=1(a >b >0) 的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线 AP ,AQ 的斜率之积为 14 ,则C 的离心率为( )A .√32B .√22C .12D .137.(2022·全国甲卷)已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的离心率为 13 , A 1,A 2 分别为C 的左、右顶点,B 为C 的上顶点.若 BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅BA 2⃗⃗⃗⃗⃗⃗⃗⃗ =−1 ,则C 的方程为( )A .x 218+y 216=1B .x 29+y 28=1C .x 23+y 22=1D .x 22+y 2=18.(2022·全国乙卷)设F 为抛物线 C :y 2=4x 的焦点,点A 在C 上,点 B(3,0) ,若 |AF|=|BF| ,则 |AB|= ( ) A .2B .2√2C .3D .3√29.(2022·全国乙卷)双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D 的切线与C交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.√52B.32C.√132D.√17210.(2021·新高考Ⅱ卷)抛物线y2=2px(p>0)的焦点到直线y=x+1的距离为√2,则p=()A.1B.2C.2√2D.411.(2021·北京)双曲线C:x2a2−y2b2=1过点(√2,√3),且离心率为2,则该双曲线的标准方程为()A.x2−y23=1B.x23−y2=1C.x2−√3y23=1D.√3x23−y2=112.(2021·全国乙卷)设B是椭圆C:x 25+y2=1的上顶点,点P在C上,则|PB|的最大值为()A.52B.√6C.√5D.213.(2021·全国甲卷)点(3,0)到双曲线x 216−y29=1的一条渐近线的距离为()A.95B.85C.65D.45 14.(2021·全国甲卷)已知F1,F2是双曲线C的两个焦点,P为C上一点,且△F1PF2=60°,|PF1|=3|PF2|,则C的离心率为()A.√72B.√132C.√7D.√1315.(2021·全国乙卷)设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A.[√22,1)B.[12,1)C.(0,√22]D.(0,12]16.(2021·新高考Ⅱ)已知F1,F2是椭圆C:x 29+y24=1的两个焦点,点M在C 上,则|MF1|·|MF2|的最大值为()A.13B.12C.9D.617.(2020·新课标Ⅱ·理)设双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为√5.P是C上一点,且F1P△F2P.若△PF1F2的面积为4,则a=()A.1B.2C.4D.818.(2020·新课标Ⅱ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD△OE ,则C 的焦点坐标为( ) A .( 14,0)B .( 12,0)C .(1,0)D .(2,0)二、多选题19.(2020高二上·福州期中)下列说法中错误的是( )A .“ m =8 ”是“椭圆 x 2m +y 24=1 的离心率为 √22 ”的充要条件B .设 x,y ∈R ,命题“若 x 2+y 2≠0 ,则 xy ≠0 ”是真命题;C .“ −4<k <2 ”是“方程 x 24+k +y 22−k=1 表示的曲线为椭圆”的必要不充分条件D .命题“若 x =3 ,则 x 2−4x +3=0 ”的否命题是真命题20.(2020高三上·珠海月考)已知双曲线 x 24−y 2b2=1 的右焦点与抛物线 y 2=12x 的焦点F 重合,则( )A .双曲线的实轴长为2B .双曲线的离心率为3C .双曲线的渐近线方程为 y =±√52xD .F 到渐近线的距离为 √521.(2022高三上·泰安期末)已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的一条渐近线过点P(√62,√32),F 为C 的右焦点,则下列结论正确的是( ) A .C 的离心率为√62B .C 的渐近线方程为x −√2y =0C .若F 到C 的渐近线的距离为√2,则C 的方程为x 24−y 22=1D .设O 为坐标原点,若|PO|=|PF|,则S ΔPOF =3√2222.(2020高二上·莆田期中)已知抛物线 x 2=4y 的焦点为 F , A(x 1,y 1) , B(x 2,y 2) 是抛物线上两点,则下列结论正确的是( ) A .点 F 的坐标为 (1,0)B .若 A , F , B 三点共线,则 OA⃗⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =−3 C .若直线 OA 与 OB 的斜率之积为 −14 ,则直线 AB 过点 FD .若 |AB|=6 ,则 AB 的中点到 x 轴距离的最小值为223.(2020高二下·凌源期末)已知双曲线 E:x 2a 2−y 2b2=1(a >0,b >0) 的两条渐近线分别为直线l 1:y =2x , l 2:y =−2x ,则下列表述正确的有( )A.a>bB.a=2bC.双曲线E的离心率为√5D.在平面直角坐标系xOy中,双曲线E的焦点在x轴上答案解析部分1.【答案】D【知识点】椭圆的简单性质【解析】【解答】设点 P 在 x 轴上方,则坐标为 (c,b 2a) ,因为△ F 1PF 2 为等腰直角三角形,所以|PF 2|=|F 1F 2| ,即 b 2a =2c ,等式两边同除以 a ,化简得 1−e 2=2e ,解得 e =√2−1 ,故答案为:D .【分析】与焦点横坐标相同的椭圆上的点可直接用参数a ,b 表示该点的纵坐标,联系等腰Rt 三角形可得参数之间的关系,从而得到答案。
2.【答案】D【知识点】椭圆的简单性质【解析】【解答】解:曲线 x 225+y 29=1表示焦点在x 轴上,长轴长为10,短轴长为6,离心率为45,焦距为8. 曲线 x 225−k +y 29−k=1(k <9)表示焦点在x 轴上,长轴长为2 √25−k ,短轴长为2 √9−k ,离心率为 4√25−k,焦距为8. 对照选项,则D 正确. 故选D .【分析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.3.【答案】D【知识点】两条直线垂直与倾斜角、斜率的关系;双曲线的简单性质【解析】【解答】解:由直线垂直的条件,可得 b a ⋅3√6)=−1 ,所 b a =√63,由点 F(c,0) 到渐近线 y =√63x 的距离d =√63c√(√63)2+(−1)2=√2 ,可得 c =√5 , 2c =2√5 . 故答案为:D .【分析】根据渐近线和直线垂直,得到a ,b 的关系,结合渐近线和圆相切得到a ,b ,c 的方程,进而求解即可得到双曲线的焦距 。
4.【答案】D【知识点】双曲线的简单性质【解析】【解答】解:双曲线x2﹣4y2=4的渐近线方程是:y=± 12x.故选:D.【分析】利用双曲线的方程直接求解渐近线方程即可.5.【答案】B【知识点】直线的点斜式方程;抛物线的定义;抛物线的简单性质【解析】【解答】如图所示,设B点的坐标为(x0,y0),则|BF|=x0+4=5,所以x0=1,B点的坐标为(1,4).所以线段BF的中点D的坐标为(52,2).设A(x1,y1),C(x2,y2).有y12=16x1,y22=16x2,且y1+y22=2.所以y12−y22=16(x1−x2),所以y1−y2x1−x2=16y1+y2=4,所以k AC=4 .对角线AC所在的直线方程为AC:y−2=4(x−52),即4x−y−8=0.故答案为:B.【分析】根据抛物线定义和性质,可得B点的坐标为(1,4),线段BF的中点D的坐标为(52,2),再根据点差法可得k AC=4,再根据点斜式即可求出结果.6.【答案】A【知识点】斜率的计算公式;椭圆的简单性质【解析】【解答】解:依题意易知A(-a,0),设P(x1,y1),则Q(-x1,y1),则K AP=y1x1+a,K AQ=y1−x1+a,故K AP·K AQ=y1x1+a·y1−x1+a=y12−x12+a2=14,又x 12a 2+y 12b 2=1 ,则y 12=b 2(a 2−x 12)a 2 , 所以b 2(a 2−x 12)a 2−x 12+a2=14, 即b 2a 2=14, 所以椭圆C 的离心率e =c a =√1−(b 2a2)=√1−14=√32 .故选:A.【分析】设P (x 1,y 1) ,则Q (-x 1,y 1),根据斜率公式结合题意可得K AP ·K AQ=y 12−x 12+a2=14,再根据x 12a 2+y 12b2=1,将y 1用x 1表示,化简求得b 2a 2=14,再结合离心率公式e =√1−(b 2a 2)即可得解.7.【答案】B【知识点】平面向量数量积的运算;平面向量数量积坐标表示的应用;椭圆的简单性质【解析】【解答】解:因为离心率e =c a =√1−(b a )2=13,解得b 2a 2=89,则b 2=89a 2 ,记A 1,A 2分别为C 的左右顶点,则A 1(-a ,0),A 2(a ,0), 又B 为上顶点,所以B (0,b ),所以BA 1→=(−a ,−b ),BA 2→=(a ,−b ) , 因为BA 1→⋅BA 2→=−1所以-a 2+b 2=-1,将b 2=89a 2代入,解得a 2=9,b 2=8,故椭圆的方程为 x 29+y 28=1 .故选:B.【分析】根据离心率及BA 1→⋅BA 2→=−1,解得关于a 2,b 2的等量关系式,即可得解.8.【答案】B【知识点】两点间的距离公式;抛物线的定义【解析】【解答】易知抛物线的焦点为 F(1,0) ,则 |AF|=|BF|=2 ,即点A 到准线 x =−1 的距离为2,所以点A 的横坐标为1,不妨设点A 在x 轴上方,代入得, A(1,2) , 所以 |AB|=√(3−1)2+(0−2)2=2√2 故选:B【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A 的横坐标,进而求得点A 坐标,即可得到答案.9.【答案】C【知识点】双曲线的简单性质;正弦定理的应用;余弦定理的应用【解析】【解答】解:依题意不妨设双曲线焦点在 x 轴,设过 F 1 作圆 D 的切线切点为 G ,所以 OG ⊥NF 1 ,因为 cos∠F 1NF 2=35>0 ,所以 N 在双曲线的右支,所以 |OG|=a , |OF 1|=c , |GF 1|=b ,设 ∠F 1NF 2=α , ∠F 2F 1N =β ,由 cos∠F 1NF 2=35 ,即 cosα=35 ,则 sinα=45 , sinβ=a c , cosβ=bc,在 △F 2F 1N 中, sin∠F 1F 2N =sin(π−α−β)=sin(α+β)=sinαcosβ+cosαsinβ=45×b c +35×a c =3a+4b5c , 由正弦定理得 2c sinα=|NF 2|sinβ=|NF 1|sin∠F 1F 2N=5c2 , 所以 |NF 1|=5c 2sin∠F 1F 2N =5c 2×3a+4b 5c =3a+4b 2 , |NF 2|=5c 2sinβ=5c 2×a c =5a2又 |NF 1|−|NF 2|=3a+4b 2−5a 2=4b−2a2=2a ,所以 2b =3a ,即 b a =32 ,所以双曲线的离心率 e =c a =√1+b2a2=√132 .故选:C【分析】依题意设双曲线焦点在 x 轴,设过 F 1 作圆 D 的切线切点为 G ,可判断 N 在双曲线的右支,设 ∠F 1NF 2=α , ∠F 2F 1N =β ,即可求出 sinα , sinβ , cosβ ,在 △F 2F 1N 中由 sin∠F 1F 2N =sin(α+β) 求出 sin∠F 1F 2N ,再由正弦定理求出 |NF 1| , |NF 2| ,最后根据双曲线的定义得到 2b =3a ,即可得解.10.【答案】B【知识点】点到直线的距离公式;抛物线的简单性质【解析】【解答】解:抛物线的焦点坐标为(p2,0),则其到直线x-y+1=0的距离为d =|p2+1|√2=√2,解得p=2或p=-6(舍去),故p=2. 故答案为:B【分析】根据抛物线的几何性质,结合点到直线的距离公式求解即可11.【答案】A【知识点】双曲线的标准方程;双曲线的简单性质【解析】【解答】解:由e =c a =2得c=2a ,则b 2=c 2-a 2=3a 2则可设双曲线方程为:x 2a 2−y 23a2=1,将点 (√2,√3) 代入上式,得(√2)2a 2−(√3)23a 2=1解得a 2=1,b 2=3故所求方程为: x 2−y 23=1 故答案为:A【分析】根据双曲线的离心率的定义,结合双曲线的几何性质和标准方程求解即可.12.【答案】A【知识点】椭圆的简单性质【解析】【解答】由题意知B(0,1),设P(x,y)则|PB|2=(x-0)2+(y-1)2=x 2+y 2-2y+1=5(1-y 2)+y 2-2y+1=-4y 2-2y+6=-4(y+4)2+254,因为-1≤y ≤1,所以当y =−14时,|PB|2max =254,此时,|PB|max=52,故答案为:A【分析】先写出B 的坐标,然后设任意点P(x,y),再用两点间的距离公式,表示出|PB|,再用本文法计算|PB|的最大值即可。