各向同性材料弹性常数间的关系推导
- 格式:doc
- 大小:418.50 KB
- 文档页数:2
变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式;轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中;扭转的概念、纯剪切的概念、薄壁圆筒的扭转,剪切虎克定律、切应力互等定理;静矩、惯性矩、惯性积、惯性半径、平行移轴公式、组合图形的惯性矩和惯性积的计算、形心主轴和形心主惯性矩概念;应力状态的概念、主应力和主平面、平面应力状态分析—解析法、图解法(应力圆)、三向应力圆,最大切应力、广义胡克定律、三个弹性常数E 、G 、μ间的关系、应变能密度、体应变、畸变能密度;强度理论的概念、杆件破坏形式的分析、最大拉应力理论、最大拉应变理论、最大切应力理论、畸变能理论、相当应力的概念;疲劳破坏的概念、交变应力及其循环特征、持久极限及其影响因素。
第一章 a 绪论变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式第一节 材料力学的任务与研究对象1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或残余变形。
第二节 材料力学的基本假设1、 连续性假设:材料无空隙地充满整个构件。
2、 均匀性假设:构件内每一处的力学性能都相同3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。
第三节 内力与外力截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力第四节 应力1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。
胡克定律2、 E σε=,E 为(杨氏)弹性模量3、 G τγ=,剪切胡克定律,G 为切变模量第二章 轴向拉压应力与材料的力学性能轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中第一节 拉压杆的内力、应力分析1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。
1.已知铝的工程弹性常数E=69Gpa,G=26.54Gpa,υ=0.3,试求铝的柔量分量和模量分量。
2.由T300/4211复合材料的单向层合构成的短粗薄壁圆筒,如图2-2所示,单层方向为轴线方向。
已知壁厚t为1mm,圆筒平均半径R0为20mm,试求在轴向力p= 10kN作用下,圆筒平均半径增大多少(假设短粗薄壁圆筒未发生失稳,且忽略加载端对圆筒径向位移的约束)?3.一个用单向层合板制成的薄壁圆管,在两端施加一对外力偶矩M=0.1kN·m和拉力p=17kN(见图2-10)。
圆管的平均半径R0=20mm,壁厚t=2mm。
为使单向层合板的纵向为最大主应力方向,试求单向层合板的纵向与圆筒轴线应成多大角度?4.试求B(4)/5505复合材料偏轴模量的最大值与最小值,及其相应的铺层角。
5.一个由T300/4211单向层合板构成的薄壁圆管,平均半径为R0,壁厚为t,其单层纵向与轴线成450。
圆管两头在已知拉力P作用下。
由于作用拉力的夹头不能转动,试问夹头受到多大力偶矩?6.由T300/4211复合材料构成的单向层合圆管,已知圆管平均半径R0为20mm ,壁厚t为2mm ,单层的纵向为圆管的环向,试求圆管在受有气体内压时,按蔡-胡失效准则计算能承受多大压力p?7.试求斯考契1002(玻璃/环氧)复合材料在θ=450偏轴下按蔡-胡失效准则计算的拉伸与压缩强度。
8.试给出各向同性单层的三维应力-应变关系式。
9.试给出各向同性单层的三维应力-应变关系式。
10.试给出单层正轴在平面应变状态下的折算柔量和折算模量表达式。
11.试给出单层偏轴时的ij与正轴时的Cij之间的转换关系式。
12.已知各向同性单层的工程弹性常数E、G、υ具有如下关系式:------------------------------------G=E/2(1+v)试分别推导其对应的模量分量与柔量分量表达式。
13.两个相同复合材料的单向层合板构成同样直径与壁厚的圆筒,一个单层方向是轴线方向,另一个单层方向是圆周方向,将两个圆筒对接胶接,当两端受有轴向力时,试问两个圆筒的直径变化量是相同还是不相同的,为什么?2.14. 在正轴下,一点处的正应变ε1、、ε2只与该处的正应力σ1、、、σ2有关,而与剪应力τ12无关,为什么?15.一块边长为a的正方形单向层合板,材料为T300/4211,厚度为h=4mm,紧密地夹在两块刚度无限大的刚性板之间(见图2-16),在压力p=2kN作用下,试分别计算在(a)、(b)两种情况下,单向层合板在压力p方向的变量△a,哪一种情况的变形较小?16.试用应力转换和应变转换关系式,证明各向同性材料的工程弹性常数存在如下关系式:--------------------------------G=E/2(1+v)。
1.弹性体应变能学习思路:弹性体在外力作用下产生变形,因此外力在变形过程中作功。
同时,弹性体内部的能量也要相应的发生变化。
借助于能量关系,可以使得弹性力学问题的求解方法和思路简化,因此能量原理是一个有效的分析工具。
本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。
根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。
探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。
如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。
因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。
学习要点:1. 应变能;2. 格林公式;3. 应变能原理。
弹性体发生变形时,外力将要做功,内部的能量也要相应的发生变化。
本节通过热力学的观点,分析弹性体的功能变化规律。
根据热力学的观点,外力在变形过程中所做的功,一部分将转化为内能,一部分将转化为动能;另外变形过程中,弹性体的温度将发生变化,它必须向外界吸收或释放热量。
设弹性体变形时,外力所做的功为d W,则d W=d W1+d W2其中,d W1为表面力F s所做的功,d W2为体积力F b所做的功。
变形过程中,由外界输入热量为d Q,弹性体的内能增量为d E,根据热力学第一定律,d W1+d W2=d E - d Q因为将上式代入功能关系公式,则如果加载很快,变形在极短的时间内完成,变形过程中没有进行热交换,称为绝热过程。
绝热过程中,d Q=0,故有d W1+d W2=d E对于完全弹性体,内能就是物体的应变能,设U0为弹性体单位体积的应变能,则由上述公式,可得即设应变能为应变的函数,则由变应能的全微分对上式积分,可得U0=U0( ij),它是由于变形而存储于物体内的单位体积的弹性势能,通常称为应变能函数或变形比能。
在绝热条件下,它恒等于物体的内能。
比较上述公式,可得以上公式称为格林公式,格林公式是以能量形式表达的本构关系。
(完整版)材料力学简答题1、(中)材料的三个弹性常数是什么?它们有何关系?材料的三个弹性常数是弹性模量E,剪切弹性模量G和泊松比μ,它们的关系是G=E/2(1+μ)。
2、何谓挠度、转角?挠度:横截面形心在垂直于梁轴线方向上的线位移。
转角:横截面绕其中性轴旋转的角位移。
3、强度理论分哪两类?最大应切力理论属于哪一类强度理论?Ⅰ.研究脆性断裂力学因素的第一类强度理论,其中包括最大拉应力理论和最大伸长线应变理论;Ⅱ. 研究塑性屈服力学因素的第二类强度理论,其中包括最大切应力理论和形状改变能密度理论。
4、何谓变形固体?在材料力学中对变形固体有哪些基本假设?在外力作用下,会产生变形的固体材料称为变形固体。
变形固体有多种多样,其组成和性质是复杂的。
对于用变形固体材料做成的构件进行强度、刚度和稳定性计算时,为了使问题得到简化,常略去一些次要的性质,而保留其主要性质。
根据其主要的性质对变形固体材料作出下列假设。
1.均匀连续假设。
2.各向同性假设。
3.小变形假设。
5、为了保证机器或结构物正常地工作,每个构件都有哪些性能要求?强度要求、刚度要求和稳定性要求。
6、用叠加法求梁的位移,应具备什么条件?用叠加法计算梁的位移,其限制条件是,梁在荷载作用下产生的变形是微小的,且材料在线弹性范围内工作。
具备了这两个条件后,梁的位移与荷载成线性关系,因此梁上每个荷载引起的位移将不受其他荷载的影响。
7、列举静定梁的基本形式?简支梁、外伸梁、悬臂梁。
8、列举减小压杆柔度的措施?(1)加强杆端约束(2)减小压杆长度,如在中间增设支座(3)选择合理的截面形状,在截面面积一定时,尽可能使用那些惯性矩大的截面。
9、欧拉公式的适用范围?=只适用于压杆处于弹性变形范围,且压杆的柔度应满足:λ≥λ110、列举图示情况下挤压破坏的结果?一种是钢板的圆孔局部发生塑性变形,圆孔被拉长;另一种是铆钉产生局部变形,铆钉的侧面被压扁。
11、简述疲劳破坏的特征?(1)构件的最大应力在远小于静应力的强度极限时,就可能发生破坏;(2)即使是塑性材料,在没有显著的塑性变形下就可能发生突变的断裂破坏;(3)断口明显地呈现两具区域:光滑区和粗糙区。
弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
材料力学(应力应变部分)→规定载荷作用下,强度要求,就是指构件应有足够的抵抗破坏的能力。
刚度要求,就是指构件应有足够的抵抗变形的能力。
→变形的基本假设:连续性假设,均匀性假设,各向同性假设。
→沿不同方向力学性能不同的材料,称为各向异性材料,如木材、胶合板和某些人工合成材料。
→ 分布力 表面力集中力(火车轮对钢轨压力,滚珠轴承对轴的反作用力) 体积力是连续分布于物体内各点的力,例如物体的自重和惯性力等。
→动载荷,静载荷→应力p 应分解为正应力σ ,切应力τ 。
→应力单位pa ,1pa=1N/m 2;常用Mpa ,1Mpa=106pa 。
第二章 拉伸、压缩与剪切2.2 轴向拉伸或压缩时横截面上的内力和应力→习惯上,把拉伸的轴力规定为正,压缩时的轴力规定为负。
→用横截面上的应力来度量杆件的受力程度。
→F N =σA ;σ(x)=F N (x)/A(x)2.3 直杆轴向拉伸或压缩时斜截面上的内力和应力 α轴向拉伸(压缩)时,在杆件的横截面上,正应力为最大值;在与杆件轴线成45°的斜截面上,切应力为最大值。
最大切应力在数值上等于最大正应力的二分之一。
此外,α=90°时,σα=τα=0 ,这表示在平行于杆件轴线的纵向截面上无任何应力。
(应力,p=F/A ,45°斜截面上,力→√22,面积→√22。
) 2.7 安全因数许用应力和安全因数的数值,可以在有关部门的一些规范中查到。
目前一般机械制造中,在静载的情况下,对塑性材料可取n s =1.2~2.5。
脆性材料均匀性较差,且断裂突然发生,有更大的危险性,所以取n b =2~3.5,甚至取到3~9。
2.8 轴向拉伸或压缩时的变形→胡克定律,当应力不超过材料的比例极限时,应力与应变成正比。
σ=Eε ,弹性模量E 的值随材料而不同。
∆l l=ε=σE =F AE ;∆l =FLAE即,对长度相同,受力相等的杆件,有EA 越大则变形Δl越小,所以称EA 为杆件的抗拉/压刚度。
弹塑性⼒学习题集(有图)·弹塑性⼒学习题集$殷绥域李同林编!…中国地质⼤学·⼒学教研室⼆○○三年九⽉⽬录—弹塑性⼒学习题 (1)第⼆章应⼒理论.应变理论 (1)第三章弹性变形.塑性变形.本构⽅程 (6)第四章弹塑性⼒学基础理论的建⽴及基本解法 (8)第五章平⾯问题的直⾓坐标解答 (9)第六章平⾯问题的极坐标解答 (11)第七章柱体的扭转 (13)(第⼋章弹性⼒学问题⼀般解.空间轴对称问题 (14)第九章* 加载曲⾯.材料稳定性假设.塑性势能理论 (15)第⼗章弹性⼒学变分法及近似解法 (16)第⼗⼀章* 塑性⼒学极限分析定理与塑性分析 (18)第⼗⼆章* 平⾯应变问题的滑移线场理论解 (19)附录⼀张量概念及其基本运算.下标记号法.求和约定 (21)习题参考答案及解题提⽰ (22){前⾔弹塑性⼒学是⼀门理论性较强的技术基础课程,它与许多⼯程技术问题都有着⼗分密切地联系。
应⽤这门课程的知识,能较真实地反映出物体受载时其内部的应⼒和应变的分布规律,能为⼯程结构和构件的设计提供可靠的理论依据,因⽽受到⼯程类各专业的重视。
《弹塑性⼒学习题集》是专为《弹塑性⼒学》(中国地质⼤学李同林、殷绥域编,研究⽣教学⽤书。
)教材的教学使⽤⽽编写的配套教材。
本习题集紧扣教材内容,选编了170余道习题。
作者期望通过不同类型习题的训练能有助于读者理解和掌握弹塑性⼒学的基本概念、基础理论和基本技能,并培养和提⾼其分析问题和解决问题的能⼒。
鉴于弹塑性⼒学课程理论性强、内容抽象、解题困难等特点,本书对所编习题均给出了参考答案,并对难度较⼤的习题给出了解题提⽰或解答。
…编者2003年9⽉%弹塑性⼒学习题第⼆章应⼒理论·应变理论~2—1 试⽤材料⼒学公式计算:直径为1cm 的圆杆,在轴向拉⼒P = 10KN 的作⽤下杆横截⾯上的正应⼒σ及与横截⾯夹⾓?=30α的斜截⾯上的总应⼒αP 、正应⼒ασ和剪应⼒ατ,并按弹塑性⼒学应⼒符号规则说明其不同点。
.
'.
*§8-8 各向同性材料弹性常数之间的关系
在建立应力和应变间的关系
时,对于各向同性材料,引用了三个
弹性常数,它们是E、G、μ。§3-3
中曾经提到,三个弹性常数之间存在
着以下关系
2(1)EG
(8-21)
现在就证明这个关系。
图8-22 变一纯剪切应力状态下的单
元体。根据倒8-3的分析,主应力σ1
存在于α0=-45°的主平面上,σ3存
图8-22
在于α0=-135°的主平面上,且σ1=-σ3=τ。将σ1和σ3代入公式(8-18)
1123
2231
3312
1
[()]1[()]1[()]EEE
(8-18)(单元体的周围六个面皆为主平面时,广义胡克定
律)
并令σ2=0,得出σ1方向的线应变为
113
1
()(1)EE
(a)
此外,由剪切胡克定律,可以求得直角xoy的剪应变xy为
xy
xy
GG
(b)
对单元体abcd来说,由于0xyz,故有0xy。将所求出的x、y、
xy
代入公式(8-11),cos2sin2222xyxyxy (8-11)(平面应变状
态分析),
并令45o,再次求得沿σ1方向的应变为12xy
将(b)式代入上式,得12G (c)
令(a),(c) 两式相等,便可得到需要证明的关系式
.
'.
2(1)EG
,因为广义胡克定律只适用于各向同性材料,因而由广义胡克定律导出的以上
关系式,也只适用于各向同性材料。
以上参考《材料力学》刘鸿文 主编 第二版 上册
§8-9 复杂应力状态下的变形比能
这一章能过变形比能推导。
如果应力和应变关系是线性的,变形比能的公式12u。
于是三向应力状态下的应变能为112233111222u,以应变的广义胡克定律
1123
2231
3312
1
[()]1[()]1[()]EEE
(8-18)代入上式,整理得
222
123122331
1
[)2()]2uE
8-24
以上参考《材料力学》刘鸿文 主编 第三版 上册